xref: /openbmc/linux/kernel/module/main.c (revision 67f3c209)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2002 Richard Henderson
4  * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5  */
6 
7 #define INCLUDE_VERMAGIC
8 
9 #include <linux/export.h>
10 #include <linux/extable.h>
11 #include <linux/moduleloader.h>
12 #include <linux/module_signature.h>
13 #include <linux/trace_events.h>
14 #include <linux/init.h>
15 #include <linux/kallsyms.h>
16 #include <linux/buildid.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/elf.h>
23 #include <linux/seq_file.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/rcupdate.h>
27 #include <linux/capability.h>
28 #include <linux/cpu.h>
29 #include <linux/moduleparam.h>
30 #include <linux/errno.h>
31 #include <linux/err.h>
32 #include <linux/vermagic.h>
33 #include <linux/notifier.h>
34 #include <linux/sched.h>
35 #include <linux/device.h>
36 #include <linux/string.h>
37 #include <linux/mutex.h>
38 #include <linux/rculist.h>
39 #include <linux/uaccess.h>
40 #include <asm/cacheflush.h>
41 #include <linux/set_memory.h>
42 #include <asm/mmu_context.h>
43 #include <linux/license.h>
44 #include <asm/sections.h>
45 #include <linux/tracepoint.h>
46 #include <linux/ftrace.h>
47 #include <linux/livepatch.h>
48 #include <linux/async.h>
49 #include <linux/percpu.h>
50 #include <linux/kmemleak.h>
51 #include <linux/jump_label.h>
52 #include <linux/pfn.h>
53 #include <linux/bsearch.h>
54 #include <linux/dynamic_debug.h>
55 #include <linux/audit.h>
56 #include <linux/cfi.h>
57 #include <uapi/linux/module.h>
58 #include "internal.h"
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/module.h>
62 
63 /*
64  * Mutex protects:
65  * 1) List of modules (also safely readable with preempt_disable),
66  * 2) module_use links,
67  * 3) mod_tree.addr_min/mod_tree.addr_max.
68  * (delete and add uses RCU list operations).
69  */
70 DEFINE_MUTEX(module_mutex);
71 LIST_HEAD(modules);
72 
73 /* Work queue for freeing init sections in success case */
74 static void do_free_init(struct work_struct *w);
75 static DECLARE_WORK(init_free_wq, do_free_init);
76 static LLIST_HEAD(init_free_list);
77 
78 struct mod_tree_root mod_tree __cacheline_aligned = {
79 	.addr_min = -1UL,
80 };
81 
82 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
83 struct mod_tree_root mod_data_tree __cacheline_aligned = {
84 	.addr_min = -1UL,
85 };
86 #endif
87 
88 struct symsearch {
89 	const struct kernel_symbol *start, *stop;
90 	const s32 *crcs;
91 	enum mod_license license;
92 };
93 
94 /*
95  * Bounds of module text, for speeding up __module_address.
96  * Protected by module_mutex.
97  */
98 static void __mod_update_bounds(void *base, unsigned int size, struct mod_tree_root *tree)
99 {
100 	unsigned long min = (unsigned long)base;
101 	unsigned long max = min + size;
102 
103 	if (min < tree->addr_min)
104 		tree->addr_min = min;
105 	if (max > tree->addr_max)
106 		tree->addr_max = max;
107 }
108 
109 static void mod_update_bounds(struct module *mod)
110 {
111 	__mod_update_bounds(mod->core_layout.base, mod->core_layout.size, &mod_tree);
112 	if (mod->init_layout.size)
113 		__mod_update_bounds(mod->init_layout.base, mod->init_layout.size, &mod_tree);
114 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
115 	__mod_update_bounds(mod->data_layout.base, mod->data_layout.size, &mod_data_tree);
116 #endif
117 }
118 
119 /* Block module loading/unloading? */
120 int modules_disabled;
121 core_param(nomodule, modules_disabled, bint, 0);
122 
123 /* Waiting for a module to finish initializing? */
124 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
125 
126 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
127 
128 int register_module_notifier(struct notifier_block *nb)
129 {
130 	return blocking_notifier_chain_register(&module_notify_list, nb);
131 }
132 EXPORT_SYMBOL(register_module_notifier);
133 
134 int unregister_module_notifier(struct notifier_block *nb)
135 {
136 	return blocking_notifier_chain_unregister(&module_notify_list, nb);
137 }
138 EXPORT_SYMBOL(unregister_module_notifier);
139 
140 /*
141  * We require a truly strong try_module_get(): 0 means success.
142  * Otherwise an error is returned due to ongoing or failed
143  * initialization etc.
144  */
145 static inline int strong_try_module_get(struct module *mod)
146 {
147 	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
148 	if (mod && mod->state == MODULE_STATE_COMING)
149 		return -EBUSY;
150 	if (try_module_get(mod))
151 		return 0;
152 	else
153 		return -ENOENT;
154 }
155 
156 static inline void add_taint_module(struct module *mod, unsigned flag,
157 				    enum lockdep_ok lockdep_ok)
158 {
159 	add_taint(flag, lockdep_ok);
160 	set_bit(flag, &mod->taints);
161 }
162 
163 /*
164  * A thread that wants to hold a reference to a module only while it
165  * is running can call this to safely exit.
166  */
167 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
168 {
169 	module_put(mod);
170 	kthread_exit(code);
171 }
172 EXPORT_SYMBOL(__module_put_and_kthread_exit);
173 
174 /* Find a module section: 0 means not found. */
175 static unsigned int find_sec(const struct load_info *info, const char *name)
176 {
177 	unsigned int i;
178 
179 	for (i = 1; i < info->hdr->e_shnum; i++) {
180 		Elf_Shdr *shdr = &info->sechdrs[i];
181 		/* Alloc bit cleared means "ignore it." */
182 		if ((shdr->sh_flags & SHF_ALLOC)
183 		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
184 			return i;
185 	}
186 	return 0;
187 }
188 
189 /* Find a module section, or NULL. */
190 static void *section_addr(const struct load_info *info, const char *name)
191 {
192 	/* Section 0 has sh_addr 0. */
193 	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
194 }
195 
196 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
197 static void *section_objs(const struct load_info *info,
198 			  const char *name,
199 			  size_t object_size,
200 			  unsigned int *num)
201 {
202 	unsigned int sec = find_sec(info, name);
203 
204 	/* Section 0 has sh_addr 0 and sh_size 0. */
205 	*num = info->sechdrs[sec].sh_size / object_size;
206 	return (void *)info->sechdrs[sec].sh_addr;
207 }
208 
209 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
210 static unsigned int find_any_sec(const struct load_info *info, const char *name)
211 {
212 	unsigned int i;
213 
214 	for (i = 1; i < info->hdr->e_shnum; i++) {
215 		Elf_Shdr *shdr = &info->sechdrs[i];
216 		if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
217 			return i;
218 	}
219 	return 0;
220 }
221 
222 /*
223  * Find a module section, or NULL. Fill in number of "objects" in section.
224  * Ignores SHF_ALLOC flag.
225  */
226 static __maybe_unused void *any_section_objs(const struct load_info *info,
227 					     const char *name,
228 					     size_t object_size,
229 					     unsigned int *num)
230 {
231 	unsigned int sec = find_any_sec(info, name);
232 
233 	/* Section 0 has sh_addr 0 and sh_size 0. */
234 	*num = info->sechdrs[sec].sh_size / object_size;
235 	return (void *)info->sechdrs[sec].sh_addr;
236 }
237 
238 #ifndef CONFIG_MODVERSIONS
239 #define symversion(base, idx) NULL
240 #else
241 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
242 #endif
243 
244 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
245 {
246 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
247 	return offset_to_ptr(&sym->name_offset);
248 #else
249 	return sym->name;
250 #endif
251 }
252 
253 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
254 {
255 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
256 	if (!sym->namespace_offset)
257 		return NULL;
258 	return offset_to_ptr(&sym->namespace_offset);
259 #else
260 	return sym->namespace;
261 #endif
262 }
263 
264 int cmp_name(const void *name, const void *sym)
265 {
266 	return strcmp(name, kernel_symbol_name(sym));
267 }
268 
269 static bool find_exported_symbol_in_section(const struct symsearch *syms,
270 					    struct module *owner,
271 					    struct find_symbol_arg *fsa)
272 {
273 	struct kernel_symbol *sym;
274 
275 	if (!fsa->gplok && syms->license == GPL_ONLY)
276 		return false;
277 
278 	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
279 			sizeof(struct kernel_symbol), cmp_name);
280 	if (!sym)
281 		return false;
282 
283 	fsa->owner = owner;
284 	fsa->crc = symversion(syms->crcs, sym - syms->start);
285 	fsa->sym = sym;
286 	fsa->license = syms->license;
287 
288 	return true;
289 }
290 
291 /*
292  * Find an exported symbol and return it, along with, (optional) crc and
293  * (optional) module which owns it.  Needs preempt disabled or module_mutex.
294  */
295 bool find_symbol(struct find_symbol_arg *fsa)
296 {
297 	static const struct symsearch arr[] = {
298 		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
299 		  NOT_GPL_ONLY },
300 		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
301 		  __start___kcrctab_gpl,
302 		  GPL_ONLY },
303 	};
304 	struct module *mod;
305 	unsigned int i;
306 
307 	module_assert_mutex_or_preempt();
308 
309 	for (i = 0; i < ARRAY_SIZE(arr); i++)
310 		if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
311 			return true;
312 
313 	list_for_each_entry_rcu(mod, &modules, list,
314 				lockdep_is_held(&module_mutex)) {
315 		struct symsearch arr[] = {
316 			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
317 			  NOT_GPL_ONLY },
318 			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
319 			  mod->gpl_crcs,
320 			  GPL_ONLY },
321 		};
322 
323 		if (mod->state == MODULE_STATE_UNFORMED)
324 			continue;
325 
326 		for (i = 0; i < ARRAY_SIZE(arr); i++)
327 			if (find_exported_symbol_in_section(&arr[i], mod, fsa))
328 				return true;
329 	}
330 
331 	pr_debug("Failed to find symbol %s\n", fsa->name);
332 	return false;
333 }
334 
335 /*
336  * Search for module by name: must hold module_mutex (or preempt disabled
337  * for read-only access).
338  */
339 struct module *find_module_all(const char *name, size_t len,
340 			       bool even_unformed)
341 {
342 	struct module *mod;
343 
344 	module_assert_mutex_or_preempt();
345 
346 	list_for_each_entry_rcu(mod, &modules, list,
347 				lockdep_is_held(&module_mutex)) {
348 		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
349 			continue;
350 		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
351 			return mod;
352 	}
353 	return NULL;
354 }
355 
356 struct module *find_module(const char *name)
357 {
358 	return find_module_all(name, strlen(name), false);
359 }
360 
361 #ifdef CONFIG_SMP
362 
363 static inline void __percpu *mod_percpu(struct module *mod)
364 {
365 	return mod->percpu;
366 }
367 
368 static int percpu_modalloc(struct module *mod, struct load_info *info)
369 {
370 	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
371 	unsigned long align = pcpusec->sh_addralign;
372 
373 	if (!pcpusec->sh_size)
374 		return 0;
375 
376 	if (align > PAGE_SIZE) {
377 		pr_warn("%s: per-cpu alignment %li > %li\n",
378 			mod->name, align, PAGE_SIZE);
379 		align = PAGE_SIZE;
380 	}
381 
382 	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
383 	if (!mod->percpu) {
384 		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
385 			mod->name, (unsigned long)pcpusec->sh_size);
386 		return -ENOMEM;
387 	}
388 	mod->percpu_size = pcpusec->sh_size;
389 	return 0;
390 }
391 
392 static void percpu_modfree(struct module *mod)
393 {
394 	free_percpu(mod->percpu);
395 }
396 
397 static unsigned int find_pcpusec(struct load_info *info)
398 {
399 	return find_sec(info, ".data..percpu");
400 }
401 
402 static void percpu_modcopy(struct module *mod,
403 			   const void *from, unsigned long size)
404 {
405 	int cpu;
406 
407 	for_each_possible_cpu(cpu)
408 		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
409 }
410 
411 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
412 {
413 	struct module *mod;
414 	unsigned int cpu;
415 
416 	preempt_disable();
417 
418 	list_for_each_entry_rcu(mod, &modules, list) {
419 		if (mod->state == MODULE_STATE_UNFORMED)
420 			continue;
421 		if (!mod->percpu_size)
422 			continue;
423 		for_each_possible_cpu(cpu) {
424 			void *start = per_cpu_ptr(mod->percpu, cpu);
425 			void *va = (void *)addr;
426 
427 			if (va >= start && va < start + mod->percpu_size) {
428 				if (can_addr) {
429 					*can_addr = (unsigned long) (va - start);
430 					*can_addr += (unsigned long)
431 						per_cpu_ptr(mod->percpu,
432 							    get_boot_cpu_id());
433 				}
434 				preempt_enable();
435 				return true;
436 			}
437 		}
438 	}
439 
440 	preempt_enable();
441 	return false;
442 }
443 
444 /**
445  * is_module_percpu_address() - test whether address is from module static percpu
446  * @addr: address to test
447  *
448  * Test whether @addr belongs to module static percpu area.
449  *
450  * Return: %true if @addr is from module static percpu area
451  */
452 bool is_module_percpu_address(unsigned long addr)
453 {
454 	return __is_module_percpu_address(addr, NULL);
455 }
456 
457 #else /* ... !CONFIG_SMP */
458 
459 static inline void __percpu *mod_percpu(struct module *mod)
460 {
461 	return NULL;
462 }
463 static int percpu_modalloc(struct module *mod, struct load_info *info)
464 {
465 	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
466 	if (info->sechdrs[info->index.pcpu].sh_size != 0)
467 		return -ENOMEM;
468 	return 0;
469 }
470 static inline void percpu_modfree(struct module *mod)
471 {
472 }
473 static unsigned int find_pcpusec(struct load_info *info)
474 {
475 	return 0;
476 }
477 static inline void percpu_modcopy(struct module *mod,
478 				  const void *from, unsigned long size)
479 {
480 	/* pcpusec should be 0, and size of that section should be 0. */
481 	BUG_ON(size != 0);
482 }
483 bool is_module_percpu_address(unsigned long addr)
484 {
485 	return false;
486 }
487 
488 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
489 {
490 	return false;
491 }
492 
493 #endif /* CONFIG_SMP */
494 
495 #define MODINFO_ATTR(field)	\
496 static void setup_modinfo_##field(struct module *mod, const char *s)  \
497 {                                                                     \
498 	mod->field = kstrdup(s, GFP_KERNEL);                          \
499 }                                                                     \
500 static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
501 			struct module_kobject *mk, char *buffer)      \
502 {                                                                     \
503 	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
504 }                                                                     \
505 static int modinfo_##field##_exists(struct module *mod)               \
506 {                                                                     \
507 	return mod->field != NULL;                                    \
508 }                                                                     \
509 static void free_modinfo_##field(struct module *mod)                  \
510 {                                                                     \
511 	kfree(mod->field);                                            \
512 	mod->field = NULL;                                            \
513 }                                                                     \
514 static struct module_attribute modinfo_##field = {                    \
515 	.attr = { .name = __stringify(field), .mode = 0444 },         \
516 	.show = show_modinfo_##field,                                 \
517 	.setup = setup_modinfo_##field,                               \
518 	.test = modinfo_##field##_exists,                             \
519 	.free = free_modinfo_##field,                                 \
520 };
521 
522 MODINFO_ATTR(version);
523 MODINFO_ATTR(srcversion);
524 
525 static struct {
526 	char name[MODULE_NAME_LEN + 1];
527 	char taints[MODULE_FLAGS_BUF_SIZE];
528 } last_unloaded_module;
529 
530 #ifdef CONFIG_MODULE_UNLOAD
531 
532 EXPORT_TRACEPOINT_SYMBOL(module_get);
533 
534 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
535 #define MODULE_REF_BASE	1
536 
537 /* Init the unload section of the module. */
538 static int module_unload_init(struct module *mod)
539 {
540 	/*
541 	 * Initialize reference counter to MODULE_REF_BASE.
542 	 * refcnt == 0 means module is going.
543 	 */
544 	atomic_set(&mod->refcnt, MODULE_REF_BASE);
545 
546 	INIT_LIST_HEAD(&mod->source_list);
547 	INIT_LIST_HEAD(&mod->target_list);
548 
549 	/* Hold reference count during initialization. */
550 	atomic_inc(&mod->refcnt);
551 
552 	return 0;
553 }
554 
555 /* Does a already use b? */
556 static int already_uses(struct module *a, struct module *b)
557 {
558 	struct module_use *use;
559 
560 	list_for_each_entry(use, &b->source_list, source_list) {
561 		if (use->source == a) {
562 			pr_debug("%s uses %s!\n", a->name, b->name);
563 			return 1;
564 		}
565 	}
566 	pr_debug("%s does not use %s!\n", a->name, b->name);
567 	return 0;
568 }
569 
570 /*
571  * Module a uses b
572  *  - we add 'a' as a "source", 'b' as a "target" of module use
573  *  - the module_use is added to the list of 'b' sources (so
574  *    'b' can walk the list to see who sourced them), and of 'a'
575  *    targets (so 'a' can see what modules it targets).
576  */
577 static int add_module_usage(struct module *a, struct module *b)
578 {
579 	struct module_use *use;
580 
581 	pr_debug("Allocating new usage for %s.\n", a->name);
582 	use = kmalloc(sizeof(*use), GFP_ATOMIC);
583 	if (!use)
584 		return -ENOMEM;
585 
586 	use->source = a;
587 	use->target = b;
588 	list_add(&use->source_list, &b->source_list);
589 	list_add(&use->target_list, &a->target_list);
590 	return 0;
591 }
592 
593 /* Module a uses b: caller needs module_mutex() */
594 static int ref_module(struct module *a, struct module *b)
595 {
596 	int err;
597 
598 	if (b == NULL || already_uses(a, b))
599 		return 0;
600 
601 	/* If module isn't available, we fail. */
602 	err = strong_try_module_get(b);
603 	if (err)
604 		return err;
605 
606 	err = add_module_usage(a, b);
607 	if (err) {
608 		module_put(b);
609 		return err;
610 	}
611 	return 0;
612 }
613 
614 /* Clear the unload stuff of the module. */
615 static void module_unload_free(struct module *mod)
616 {
617 	struct module_use *use, *tmp;
618 
619 	mutex_lock(&module_mutex);
620 	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
621 		struct module *i = use->target;
622 		pr_debug("%s unusing %s\n", mod->name, i->name);
623 		module_put(i);
624 		list_del(&use->source_list);
625 		list_del(&use->target_list);
626 		kfree(use);
627 	}
628 	mutex_unlock(&module_mutex);
629 }
630 
631 #ifdef CONFIG_MODULE_FORCE_UNLOAD
632 static inline int try_force_unload(unsigned int flags)
633 {
634 	int ret = (flags & O_TRUNC);
635 	if (ret)
636 		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
637 	return ret;
638 }
639 #else
640 static inline int try_force_unload(unsigned int flags)
641 {
642 	return 0;
643 }
644 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
645 
646 /* Try to release refcount of module, 0 means success. */
647 static int try_release_module_ref(struct module *mod)
648 {
649 	int ret;
650 
651 	/* Try to decrement refcnt which we set at loading */
652 	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
653 	BUG_ON(ret < 0);
654 	if (ret)
655 		/* Someone can put this right now, recover with checking */
656 		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
657 
658 	return ret;
659 }
660 
661 static int try_stop_module(struct module *mod, int flags, int *forced)
662 {
663 	/* If it's not unused, quit unless we're forcing. */
664 	if (try_release_module_ref(mod) != 0) {
665 		*forced = try_force_unload(flags);
666 		if (!(*forced))
667 			return -EWOULDBLOCK;
668 	}
669 
670 	/* Mark it as dying. */
671 	mod->state = MODULE_STATE_GOING;
672 
673 	return 0;
674 }
675 
676 /**
677  * module_refcount() - return the refcount or -1 if unloading
678  * @mod:	the module we're checking
679  *
680  * Return:
681  *	-1 if the module is in the process of unloading
682  *	otherwise the number of references in the kernel to the module
683  */
684 int module_refcount(struct module *mod)
685 {
686 	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
687 }
688 EXPORT_SYMBOL(module_refcount);
689 
690 /* This exists whether we can unload or not */
691 static void free_module(struct module *mod);
692 
693 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
694 		unsigned int, flags)
695 {
696 	struct module *mod;
697 	char name[MODULE_NAME_LEN];
698 	char buf[MODULE_FLAGS_BUF_SIZE];
699 	int ret, forced = 0;
700 
701 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
702 		return -EPERM;
703 
704 	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
705 		return -EFAULT;
706 	name[MODULE_NAME_LEN-1] = '\0';
707 
708 	audit_log_kern_module(name);
709 
710 	if (mutex_lock_interruptible(&module_mutex) != 0)
711 		return -EINTR;
712 
713 	mod = find_module(name);
714 	if (!mod) {
715 		ret = -ENOENT;
716 		goto out;
717 	}
718 
719 	if (!list_empty(&mod->source_list)) {
720 		/* Other modules depend on us: get rid of them first. */
721 		ret = -EWOULDBLOCK;
722 		goto out;
723 	}
724 
725 	/* Doing init or already dying? */
726 	if (mod->state != MODULE_STATE_LIVE) {
727 		/* FIXME: if (force), slam module count damn the torpedoes */
728 		pr_debug("%s already dying\n", mod->name);
729 		ret = -EBUSY;
730 		goto out;
731 	}
732 
733 	/* If it has an init func, it must have an exit func to unload */
734 	if (mod->init && !mod->exit) {
735 		forced = try_force_unload(flags);
736 		if (!forced) {
737 			/* This module can't be removed */
738 			ret = -EBUSY;
739 			goto out;
740 		}
741 	}
742 
743 	ret = try_stop_module(mod, flags, &forced);
744 	if (ret != 0)
745 		goto out;
746 
747 	mutex_unlock(&module_mutex);
748 	/* Final destruction now no one is using it. */
749 	if (mod->exit != NULL)
750 		mod->exit();
751 	blocking_notifier_call_chain(&module_notify_list,
752 				     MODULE_STATE_GOING, mod);
753 	klp_module_going(mod);
754 	ftrace_release_mod(mod);
755 
756 	async_synchronize_full();
757 
758 	/* Store the name and taints of the last unloaded module for diagnostic purposes */
759 	strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name));
760 	strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints));
761 
762 	free_module(mod);
763 	/* someone could wait for the module in add_unformed_module() */
764 	wake_up_all(&module_wq);
765 	return 0;
766 out:
767 	mutex_unlock(&module_mutex);
768 	return ret;
769 }
770 
771 void __symbol_put(const char *symbol)
772 {
773 	struct find_symbol_arg fsa = {
774 		.name	= symbol,
775 		.gplok	= true,
776 	};
777 
778 	preempt_disable();
779 	BUG_ON(!find_symbol(&fsa));
780 	module_put(fsa.owner);
781 	preempt_enable();
782 }
783 EXPORT_SYMBOL(__symbol_put);
784 
785 /* Note this assumes addr is a function, which it currently always is. */
786 void symbol_put_addr(void *addr)
787 {
788 	struct module *modaddr;
789 	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
790 
791 	if (core_kernel_text(a))
792 		return;
793 
794 	/*
795 	 * Even though we hold a reference on the module; we still need to
796 	 * disable preemption in order to safely traverse the data structure.
797 	 */
798 	preempt_disable();
799 	modaddr = __module_text_address(a);
800 	BUG_ON(!modaddr);
801 	module_put(modaddr);
802 	preempt_enable();
803 }
804 EXPORT_SYMBOL_GPL(symbol_put_addr);
805 
806 static ssize_t show_refcnt(struct module_attribute *mattr,
807 			   struct module_kobject *mk, char *buffer)
808 {
809 	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
810 }
811 
812 static struct module_attribute modinfo_refcnt =
813 	__ATTR(refcnt, 0444, show_refcnt, NULL);
814 
815 void __module_get(struct module *module)
816 {
817 	if (module) {
818 		preempt_disable();
819 		atomic_inc(&module->refcnt);
820 		trace_module_get(module, _RET_IP_);
821 		preempt_enable();
822 	}
823 }
824 EXPORT_SYMBOL(__module_get);
825 
826 bool try_module_get(struct module *module)
827 {
828 	bool ret = true;
829 
830 	if (module) {
831 		preempt_disable();
832 		/* Note: here, we can fail to get a reference */
833 		if (likely(module_is_live(module) &&
834 			   atomic_inc_not_zero(&module->refcnt) != 0))
835 			trace_module_get(module, _RET_IP_);
836 		else
837 			ret = false;
838 
839 		preempt_enable();
840 	}
841 	return ret;
842 }
843 EXPORT_SYMBOL(try_module_get);
844 
845 void module_put(struct module *module)
846 {
847 	int ret;
848 
849 	if (module) {
850 		preempt_disable();
851 		ret = atomic_dec_if_positive(&module->refcnt);
852 		WARN_ON(ret < 0);	/* Failed to put refcount */
853 		trace_module_put(module, _RET_IP_);
854 		preempt_enable();
855 	}
856 }
857 EXPORT_SYMBOL(module_put);
858 
859 #else /* !CONFIG_MODULE_UNLOAD */
860 static inline void module_unload_free(struct module *mod)
861 {
862 }
863 
864 static int ref_module(struct module *a, struct module *b)
865 {
866 	return strong_try_module_get(b);
867 }
868 
869 static inline int module_unload_init(struct module *mod)
870 {
871 	return 0;
872 }
873 #endif /* CONFIG_MODULE_UNLOAD */
874 
875 size_t module_flags_taint(unsigned long taints, char *buf)
876 {
877 	size_t l = 0;
878 	int i;
879 
880 	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
881 		if (taint_flags[i].module && test_bit(i, &taints))
882 			buf[l++] = taint_flags[i].c_true;
883 	}
884 
885 	return l;
886 }
887 
888 static ssize_t show_initstate(struct module_attribute *mattr,
889 			      struct module_kobject *mk, char *buffer)
890 {
891 	const char *state = "unknown";
892 
893 	switch (mk->mod->state) {
894 	case MODULE_STATE_LIVE:
895 		state = "live";
896 		break;
897 	case MODULE_STATE_COMING:
898 		state = "coming";
899 		break;
900 	case MODULE_STATE_GOING:
901 		state = "going";
902 		break;
903 	default:
904 		BUG();
905 	}
906 	return sprintf(buffer, "%s\n", state);
907 }
908 
909 static struct module_attribute modinfo_initstate =
910 	__ATTR(initstate, 0444, show_initstate, NULL);
911 
912 static ssize_t store_uevent(struct module_attribute *mattr,
913 			    struct module_kobject *mk,
914 			    const char *buffer, size_t count)
915 {
916 	int rc;
917 
918 	rc = kobject_synth_uevent(&mk->kobj, buffer, count);
919 	return rc ? rc : count;
920 }
921 
922 struct module_attribute module_uevent =
923 	__ATTR(uevent, 0200, NULL, store_uevent);
924 
925 static ssize_t show_coresize(struct module_attribute *mattr,
926 			     struct module_kobject *mk, char *buffer)
927 {
928 	return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
929 }
930 
931 static struct module_attribute modinfo_coresize =
932 	__ATTR(coresize, 0444, show_coresize, NULL);
933 
934 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
935 static ssize_t show_datasize(struct module_attribute *mattr,
936 			     struct module_kobject *mk, char *buffer)
937 {
938 	return sprintf(buffer, "%u\n", mk->mod->data_layout.size);
939 }
940 
941 static struct module_attribute modinfo_datasize =
942 	__ATTR(datasize, 0444, show_datasize, NULL);
943 #endif
944 
945 static ssize_t show_initsize(struct module_attribute *mattr,
946 			     struct module_kobject *mk, char *buffer)
947 {
948 	return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
949 }
950 
951 static struct module_attribute modinfo_initsize =
952 	__ATTR(initsize, 0444, show_initsize, NULL);
953 
954 static ssize_t show_taint(struct module_attribute *mattr,
955 			  struct module_kobject *mk, char *buffer)
956 {
957 	size_t l;
958 
959 	l = module_flags_taint(mk->mod->taints, buffer);
960 	buffer[l++] = '\n';
961 	return l;
962 }
963 
964 static struct module_attribute modinfo_taint =
965 	__ATTR(taint, 0444, show_taint, NULL);
966 
967 struct module_attribute *modinfo_attrs[] = {
968 	&module_uevent,
969 	&modinfo_version,
970 	&modinfo_srcversion,
971 	&modinfo_initstate,
972 	&modinfo_coresize,
973 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
974 	&modinfo_datasize,
975 #endif
976 	&modinfo_initsize,
977 	&modinfo_taint,
978 #ifdef CONFIG_MODULE_UNLOAD
979 	&modinfo_refcnt,
980 #endif
981 	NULL,
982 };
983 
984 size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
985 
986 static const char vermagic[] = VERMAGIC_STRING;
987 
988 int try_to_force_load(struct module *mod, const char *reason)
989 {
990 #ifdef CONFIG_MODULE_FORCE_LOAD
991 	if (!test_taint(TAINT_FORCED_MODULE))
992 		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
993 	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
994 	return 0;
995 #else
996 	return -ENOEXEC;
997 #endif
998 }
999 
1000 static char *get_modinfo(const struct load_info *info, const char *tag);
1001 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1002 			      char *prev);
1003 
1004 static int verify_namespace_is_imported(const struct load_info *info,
1005 					const struct kernel_symbol *sym,
1006 					struct module *mod)
1007 {
1008 	const char *namespace;
1009 	char *imported_namespace;
1010 
1011 	namespace = kernel_symbol_namespace(sym);
1012 	if (namespace && namespace[0]) {
1013 		imported_namespace = get_modinfo(info, "import_ns");
1014 		while (imported_namespace) {
1015 			if (strcmp(namespace, imported_namespace) == 0)
1016 				return 0;
1017 			imported_namespace = get_next_modinfo(
1018 				info, "import_ns", imported_namespace);
1019 		}
1020 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1021 		pr_warn(
1022 #else
1023 		pr_err(
1024 #endif
1025 			"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1026 			mod->name, kernel_symbol_name(sym), namespace);
1027 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1028 		return -EINVAL;
1029 #endif
1030 	}
1031 	return 0;
1032 }
1033 
1034 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1035 {
1036 	if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1037 		return true;
1038 
1039 	if (mod->using_gplonly_symbols) {
1040 		pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1041 			mod->name, name, owner->name);
1042 		return false;
1043 	}
1044 
1045 	if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1046 		pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1047 			mod->name, name, owner->name);
1048 		set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1049 	}
1050 	return true;
1051 }
1052 
1053 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
1054 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1055 						  const struct load_info *info,
1056 						  const char *name,
1057 						  char ownername[])
1058 {
1059 	struct find_symbol_arg fsa = {
1060 		.name	= name,
1061 		.gplok	= !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1062 		.warn	= true,
1063 	};
1064 	int err;
1065 
1066 	/*
1067 	 * The module_mutex should not be a heavily contended lock;
1068 	 * if we get the occasional sleep here, we'll go an extra iteration
1069 	 * in the wait_event_interruptible(), which is harmless.
1070 	 */
1071 	sched_annotate_sleep();
1072 	mutex_lock(&module_mutex);
1073 	if (!find_symbol(&fsa))
1074 		goto unlock;
1075 
1076 	if (fsa.license == GPL_ONLY)
1077 		mod->using_gplonly_symbols = true;
1078 
1079 	if (!inherit_taint(mod, fsa.owner, name)) {
1080 		fsa.sym = NULL;
1081 		goto getname;
1082 	}
1083 
1084 	if (!check_version(info, name, mod, fsa.crc)) {
1085 		fsa.sym = ERR_PTR(-EINVAL);
1086 		goto getname;
1087 	}
1088 
1089 	err = verify_namespace_is_imported(info, fsa.sym, mod);
1090 	if (err) {
1091 		fsa.sym = ERR_PTR(err);
1092 		goto getname;
1093 	}
1094 
1095 	err = ref_module(mod, fsa.owner);
1096 	if (err) {
1097 		fsa.sym = ERR_PTR(err);
1098 		goto getname;
1099 	}
1100 
1101 getname:
1102 	/* We must make copy under the lock if we failed to get ref. */
1103 	strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1104 unlock:
1105 	mutex_unlock(&module_mutex);
1106 	return fsa.sym;
1107 }
1108 
1109 static const struct kernel_symbol *
1110 resolve_symbol_wait(struct module *mod,
1111 		    const struct load_info *info,
1112 		    const char *name)
1113 {
1114 	const struct kernel_symbol *ksym;
1115 	char owner[MODULE_NAME_LEN];
1116 
1117 	if (wait_event_interruptible_timeout(module_wq,
1118 			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1119 			|| PTR_ERR(ksym) != -EBUSY,
1120 					     30 * HZ) <= 0) {
1121 		pr_warn("%s: gave up waiting for init of module %s.\n",
1122 			mod->name, owner);
1123 	}
1124 	return ksym;
1125 }
1126 
1127 void __weak module_memfree(void *module_region)
1128 {
1129 	/*
1130 	 * This memory may be RO, and freeing RO memory in an interrupt is not
1131 	 * supported by vmalloc.
1132 	 */
1133 	WARN_ON(in_interrupt());
1134 	vfree(module_region);
1135 }
1136 
1137 void __weak module_arch_cleanup(struct module *mod)
1138 {
1139 }
1140 
1141 void __weak module_arch_freeing_init(struct module *mod)
1142 {
1143 }
1144 
1145 /* Free a module, remove from lists, etc. */
1146 static void free_module(struct module *mod)
1147 {
1148 	trace_module_free(mod);
1149 
1150 	mod_sysfs_teardown(mod);
1151 
1152 	/*
1153 	 * We leave it in list to prevent duplicate loads, but make sure
1154 	 * that noone uses it while it's being deconstructed.
1155 	 */
1156 	mutex_lock(&module_mutex);
1157 	mod->state = MODULE_STATE_UNFORMED;
1158 	mutex_unlock(&module_mutex);
1159 
1160 	/* Remove dynamic debug info */
1161 	ddebug_remove_module(mod->name);
1162 
1163 	/* Arch-specific cleanup. */
1164 	module_arch_cleanup(mod);
1165 
1166 	/* Module unload stuff */
1167 	module_unload_free(mod);
1168 
1169 	/* Free any allocated parameters. */
1170 	destroy_params(mod->kp, mod->num_kp);
1171 
1172 	if (is_livepatch_module(mod))
1173 		free_module_elf(mod);
1174 
1175 	/* Now we can delete it from the lists */
1176 	mutex_lock(&module_mutex);
1177 	/* Unlink carefully: kallsyms could be walking list. */
1178 	list_del_rcu(&mod->list);
1179 	mod_tree_remove(mod);
1180 	/* Remove this module from bug list, this uses list_del_rcu */
1181 	module_bug_cleanup(mod);
1182 	/* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
1183 	synchronize_rcu();
1184 	if (try_add_tainted_module(mod))
1185 		pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1186 		       mod->name);
1187 	mutex_unlock(&module_mutex);
1188 
1189 	/* This may be empty, but that's OK */
1190 	module_arch_freeing_init(mod);
1191 	module_memfree(mod->init_layout.base);
1192 	kfree(mod->args);
1193 	percpu_modfree(mod);
1194 
1195 	/* Free lock-classes; relies on the preceding sync_rcu(). */
1196 	lockdep_free_key_range(mod->data_layout.base, mod->data_layout.size);
1197 
1198 	/* Finally, free the core (containing the module structure) */
1199 	module_memfree(mod->core_layout.base);
1200 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
1201 	vfree(mod->data_layout.base);
1202 #endif
1203 }
1204 
1205 void *__symbol_get(const char *symbol)
1206 {
1207 	struct find_symbol_arg fsa = {
1208 		.name	= symbol,
1209 		.gplok	= true,
1210 		.warn	= true,
1211 	};
1212 
1213 	preempt_disable();
1214 	if (!find_symbol(&fsa) || strong_try_module_get(fsa.owner)) {
1215 		preempt_enable();
1216 		return NULL;
1217 	}
1218 	preempt_enable();
1219 	return (void *)kernel_symbol_value(fsa.sym);
1220 }
1221 EXPORT_SYMBOL_GPL(__symbol_get);
1222 
1223 /*
1224  * Ensure that an exported symbol [global namespace] does not already exist
1225  * in the kernel or in some other module's exported symbol table.
1226  *
1227  * You must hold the module_mutex.
1228  */
1229 static int verify_exported_symbols(struct module *mod)
1230 {
1231 	unsigned int i;
1232 	const struct kernel_symbol *s;
1233 	struct {
1234 		const struct kernel_symbol *sym;
1235 		unsigned int num;
1236 	} arr[] = {
1237 		{ mod->syms, mod->num_syms },
1238 		{ mod->gpl_syms, mod->num_gpl_syms },
1239 	};
1240 
1241 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1242 		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1243 			struct find_symbol_arg fsa = {
1244 				.name	= kernel_symbol_name(s),
1245 				.gplok	= true,
1246 			};
1247 			if (find_symbol(&fsa)) {
1248 				pr_err("%s: exports duplicate symbol %s"
1249 				       " (owned by %s)\n",
1250 				       mod->name, kernel_symbol_name(s),
1251 				       module_name(fsa.owner));
1252 				return -ENOEXEC;
1253 			}
1254 		}
1255 	}
1256 	return 0;
1257 }
1258 
1259 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1260 {
1261 	/*
1262 	 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1263 	 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1264 	 * i386 has a similar problem but may not deserve a fix.
1265 	 *
1266 	 * If we ever have to ignore many symbols, consider refactoring the code to
1267 	 * only warn if referenced by a relocation.
1268 	 */
1269 	if (emachine == EM_386 || emachine == EM_X86_64)
1270 		return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1271 	return false;
1272 }
1273 
1274 /* Change all symbols so that st_value encodes the pointer directly. */
1275 static int simplify_symbols(struct module *mod, const struct load_info *info)
1276 {
1277 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1278 	Elf_Sym *sym = (void *)symsec->sh_addr;
1279 	unsigned long secbase;
1280 	unsigned int i;
1281 	int ret = 0;
1282 	const struct kernel_symbol *ksym;
1283 
1284 	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1285 		const char *name = info->strtab + sym[i].st_name;
1286 
1287 		switch (sym[i].st_shndx) {
1288 		case SHN_COMMON:
1289 			/* Ignore common symbols */
1290 			if (!strncmp(name, "__gnu_lto", 9))
1291 				break;
1292 
1293 			/*
1294 			 * We compiled with -fno-common.  These are not
1295 			 * supposed to happen.
1296 			 */
1297 			pr_debug("Common symbol: %s\n", name);
1298 			pr_warn("%s: please compile with -fno-common\n",
1299 			       mod->name);
1300 			ret = -ENOEXEC;
1301 			break;
1302 
1303 		case SHN_ABS:
1304 			/* Don't need to do anything */
1305 			pr_debug("Absolute symbol: 0x%08lx\n",
1306 			       (long)sym[i].st_value);
1307 			break;
1308 
1309 		case SHN_LIVEPATCH:
1310 			/* Livepatch symbols are resolved by livepatch */
1311 			break;
1312 
1313 		case SHN_UNDEF:
1314 			ksym = resolve_symbol_wait(mod, info, name);
1315 			/* Ok if resolved.  */
1316 			if (ksym && !IS_ERR(ksym)) {
1317 				sym[i].st_value = kernel_symbol_value(ksym);
1318 				break;
1319 			}
1320 
1321 			/* Ok if weak or ignored.  */
1322 			if (!ksym &&
1323 			    (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1324 			     ignore_undef_symbol(info->hdr->e_machine, name)))
1325 				break;
1326 
1327 			ret = PTR_ERR(ksym) ?: -ENOENT;
1328 			pr_warn("%s: Unknown symbol %s (err %d)\n",
1329 				mod->name, name, ret);
1330 			break;
1331 
1332 		default:
1333 			/* Divert to percpu allocation if a percpu var. */
1334 			if (sym[i].st_shndx == info->index.pcpu)
1335 				secbase = (unsigned long)mod_percpu(mod);
1336 			else
1337 				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1338 			sym[i].st_value += secbase;
1339 			break;
1340 		}
1341 	}
1342 
1343 	return ret;
1344 }
1345 
1346 static int apply_relocations(struct module *mod, const struct load_info *info)
1347 {
1348 	unsigned int i;
1349 	int err = 0;
1350 
1351 	/* Now do relocations. */
1352 	for (i = 1; i < info->hdr->e_shnum; i++) {
1353 		unsigned int infosec = info->sechdrs[i].sh_info;
1354 
1355 		/* Not a valid relocation section? */
1356 		if (infosec >= info->hdr->e_shnum)
1357 			continue;
1358 
1359 		/* Don't bother with non-allocated sections */
1360 		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1361 			continue;
1362 
1363 		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1364 			err = klp_apply_section_relocs(mod, info->sechdrs,
1365 						       info->secstrings,
1366 						       info->strtab,
1367 						       info->index.sym, i,
1368 						       NULL);
1369 		else if (info->sechdrs[i].sh_type == SHT_REL)
1370 			err = apply_relocate(info->sechdrs, info->strtab,
1371 					     info->index.sym, i, mod);
1372 		else if (info->sechdrs[i].sh_type == SHT_RELA)
1373 			err = apply_relocate_add(info->sechdrs, info->strtab,
1374 						 info->index.sym, i, mod);
1375 		if (err < 0)
1376 			break;
1377 	}
1378 	return err;
1379 }
1380 
1381 /* Additional bytes needed by arch in front of individual sections */
1382 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1383 					     unsigned int section)
1384 {
1385 	/* default implementation just returns zero */
1386 	return 0;
1387 }
1388 
1389 /* Update size with this section: return offset. */
1390 long module_get_offset(struct module *mod, unsigned int *size,
1391 		       Elf_Shdr *sechdr, unsigned int section)
1392 {
1393 	long ret;
1394 
1395 	*size += arch_mod_section_prepend(mod, section);
1396 	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
1397 	*size = ret + sechdr->sh_size;
1398 	return ret;
1399 }
1400 
1401 static bool module_init_layout_section(const char *sname)
1402 {
1403 #ifndef CONFIG_MODULE_UNLOAD
1404 	if (module_exit_section(sname))
1405 		return true;
1406 #endif
1407 	return module_init_section(sname);
1408 }
1409 
1410 /*
1411  * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1412  * might -- code, read-only data, read-write data, small data.  Tally
1413  * sizes, and place the offsets into sh_entsize fields: high bit means it
1414  * belongs in init.
1415  */
1416 static void layout_sections(struct module *mod, struct load_info *info)
1417 {
1418 	static unsigned long const masks[][2] = {
1419 		/*
1420 		 * NOTE: all executable code must be the first section
1421 		 * in this array; otherwise modify the text_size
1422 		 * finder in the two loops below
1423 		 */
1424 		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1425 		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1426 		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1427 		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1428 		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1429 	};
1430 	unsigned int m, i;
1431 
1432 	for (i = 0; i < info->hdr->e_shnum; i++)
1433 		info->sechdrs[i].sh_entsize = ~0UL;
1434 
1435 	pr_debug("Core section allocation order:\n");
1436 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1437 		for (i = 0; i < info->hdr->e_shnum; ++i) {
1438 			Elf_Shdr *s = &info->sechdrs[i];
1439 			const char *sname = info->secstrings + s->sh_name;
1440 			unsigned int *sizep;
1441 
1442 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
1443 			    || (s->sh_flags & masks[m][1])
1444 			    || s->sh_entsize != ~0UL
1445 			    || module_init_layout_section(sname))
1446 				continue;
1447 			sizep = m ? &mod->data_layout.size : &mod->core_layout.size;
1448 			s->sh_entsize = module_get_offset(mod, sizep, s, i);
1449 			pr_debug("\t%s\n", sname);
1450 		}
1451 		switch (m) {
1452 		case 0: /* executable */
1453 			mod->core_layout.size = strict_align(mod->core_layout.size);
1454 			mod->core_layout.text_size = mod->core_layout.size;
1455 			break;
1456 		case 1: /* RO: text and ro-data */
1457 			mod->data_layout.size = strict_align(mod->data_layout.size);
1458 			mod->data_layout.ro_size = mod->data_layout.size;
1459 			break;
1460 		case 2: /* RO after init */
1461 			mod->data_layout.size = strict_align(mod->data_layout.size);
1462 			mod->data_layout.ro_after_init_size = mod->data_layout.size;
1463 			break;
1464 		case 4: /* whole core */
1465 			mod->data_layout.size = strict_align(mod->data_layout.size);
1466 			break;
1467 		}
1468 	}
1469 
1470 	pr_debug("Init section allocation order:\n");
1471 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1472 		for (i = 0; i < info->hdr->e_shnum; ++i) {
1473 			Elf_Shdr *s = &info->sechdrs[i];
1474 			const char *sname = info->secstrings + s->sh_name;
1475 
1476 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
1477 			    || (s->sh_flags & masks[m][1])
1478 			    || s->sh_entsize != ~0UL
1479 			    || !module_init_layout_section(sname))
1480 				continue;
1481 			s->sh_entsize = (module_get_offset(mod, &mod->init_layout.size, s, i)
1482 					 | INIT_OFFSET_MASK);
1483 			pr_debug("\t%s\n", sname);
1484 		}
1485 		switch (m) {
1486 		case 0: /* executable */
1487 			mod->init_layout.size = strict_align(mod->init_layout.size);
1488 			mod->init_layout.text_size = mod->init_layout.size;
1489 			break;
1490 		case 1: /* RO: text and ro-data */
1491 			mod->init_layout.size = strict_align(mod->init_layout.size);
1492 			mod->init_layout.ro_size = mod->init_layout.size;
1493 			break;
1494 		case 2:
1495 			/*
1496 			 * RO after init doesn't apply to init_layout (only
1497 			 * core_layout), so it just takes the value of ro_size.
1498 			 */
1499 			mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
1500 			break;
1501 		case 4: /* whole init */
1502 			mod->init_layout.size = strict_align(mod->init_layout.size);
1503 			break;
1504 		}
1505 	}
1506 }
1507 
1508 static void set_license(struct module *mod, const char *license)
1509 {
1510 	if (!license)
1511 		license = "unspecified";
1512 
1513 	if (!license_is_gpl_compatible(license)) {
1514 		if (!test_taint(TAINT_PROPRIETARY_MODULE))
1515 			pr_warn("%s: module license '%s' taints kernel.\n",
1516 				mod->name, license);
1517 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1518 				 LOCKDEP_NOW_UNRELIABLE);
1519 	}
1520 }
1521 
1522 /* Parse tag=value strings from .modinfo section */
1523 static char *next_string(char *string, unsigned long *secsize)
1524 {
1525 	/* Skip non-zero chars */
1526 	while (string[0]) {
1527 		string++;
1528 		if ((*secsize)-- <= 1)
1529 			return NULL;
1530 	}
1531 
1532 	/* Skip any zero padding. */
1533 	while (!string[0]) {
1534 		string++;
1535 		if ((*secsize)-- <= 1)
1536 			return NULL;
1537 	}
1538 	return string;
1539 }
1540 
1541 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1542 			      char *prev)
1543 {
1544 	char *p;
1545 	unsigned int taglen = strlen(tag);
1546 	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1547 	unsigned long size = infosec->sh_size;
1548 
1549 	/*
1550 	 * get_modinfo() calls made before rewrite_section_headers()
1551 	 * must use sh_offset, as sh_addr isn't set!
1552 	 */
1553 	char *modinfo = (char *)info->hdr + infosec->sh_offset;
1554 
1555 	if (prev) {
1556 		size -= prev - modinfo;
1557 		modinfo = next_string(prev, &size);
1558 	}
1559 
1560 	for (p = modinfo; p; p = next_string(p, &size)) {
1561 		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1562 			return p + taglen + 1;
1563 	}
1564 	return NULL;
1565 }
1566 
1567 static char *get_modinfo(const struct load_info *info, const char *tag)
1568 {
1569 	return get_next_modinfo(info, tag, NULL);
1570 }
1571 
1572 static void setup_modinfo(struct module *mod, struct load_info *info)
1573 {
1574 	struct module_attribute *attr;
1575 	int i;
1576 
1577 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1578 		if (attr->setup)
1579 			attr->setup(mod, get_modinfo(info, attr->attr.name));
1580 	}
1581 }
1582 
1583 static void free_modinfo(struct module *mod)
1584 {
1585 	struct module_attribute *attr;
1586 	int i;
1587 
1588 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1589 		if (attr->free)
1590 			attr->free(mod);
1591 	}
1592 }
1593 
1594 static void dynamic_debug_setup(struct module *mod, struct _ddebug_info *dyndbg)
1595 {
1596 	if (!dyndbg->num_descs)
1597 		return;
1598 	ddebug_add_module(dyndbg, mod->name);
1599 }
1600 
1601 static void dynamic_debug_remove(struct module *mod, struct _ddebug_info *dyndbg)
1602 {
1603 	if (dyndbg->num_descs)
1604 		ddebug_remove_module(mod->name);
1605 }
1606 
1607 void * __weak module_alloc(unsigned long size)
1608 {
1609 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
1610 			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
1611 			NUMA_NO_NODE, __builtin_return_address(0));
1612 }
1613 
1614 bool __weak module_init_section(const char *name)
1615 {
1616 	return strstarts(name, ".init");
1617 }
1618 
1619 bool __weak module_exit_section(const char *name)
1620 {
1621 	return strstarts(name, ".exit");
1622 }
1623 
1624 static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr)
1625 {
1626 #if defined(CONFIG_64BIT)
1627 	unsigned long long secend;
1628 #else
1629 	unsigned long secend;
1630 #endif
1631 
1632 	/*
1633 	 * Check for both overflow and offset/size being
1634 	 * too large.
1635 	 */
1636 	secend = shdr->sh_offset + shdr->sh_size;
1637 	if (secend < shdr->sh_offset || secend > info->len)
1638 		return -ENOEXEC;
1639 
1640 	return 0;
1641 }
1642 
1643 /*
1644  * Sanity checks against invalid binaries, wrong arch, weird elf version.
1645  *
1646  * Also do basic validity checks against section offsets and sizes, the
1647  * section name string table, and the indices used for it (sh_name).
1648  */
1649 static int elf_validity_check(struct load_info *info)
1650 {
1651 	unsigned int i;
1652 	Elf_Shdr *shdr, *strhdr;
1653 	int err;
1654 
1655 	if (info->len < sizeof(*(info->hdr))) {
1656 		pr_err("Invalid ELF header len %lu\n", info->len);
1657 		goto no_exec;
1658 	}
1659 
1660 	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1661 		pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1662 		goto no_exec;
1663 	}
1664 	if (info->hdr->e_type != ET_REL) {
1665 		pr_err("Invalid ELF header type: %u != %u\n",
1666 		       info->hdr->e_type, ET_REL);
1667 		goto no_exec;
1668 	}
1669 	if (!elf_check_arch(info->hdr)) {
1670 		pr_err("Invalid architecture in ELF header: %u\n",
1671 		       info->hdr->e_machine);
1672 		goto no_exec;
1673 	}
1674 	if (!module_elf_check_arch(info->hdr)) {
1675 		pr_err("Invalid module architecture in ELF header: %u\n",
1676 		       info->hdr->e_machine);
1677 		goto no_exec;
1678 	}
1679 	if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1680 		pr_err("Invalid ELF section header size\n");
1681 		goto no_exec;
1682 	}
1683 
1684 	/*
1685 	 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1686 	 * known and small. So e_shnum * sizeof(Elf_Shdr)
1687 	 * will not overflow unsigned long on any platform.
1688 	 */
1689 	if (info->hdr->e_shoff >= info->len
1690 	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1691 		info->len - info->hdr->e_shoff)) {
1692 		pr_err("Invalid ELF section header overflow\n");
1693 		goto no_exec;
1694 	}
1695 
1696 	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1697 
1698 	/*
1699 	 * Verify if the section name table index is valid.
1700 	 */
1701 	if (info->hdr->e_shstrndx == SHN_UNDEF
1702 	    || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1703 		pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1704 		       info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1705 		       info->hdr->e_shnum);
1706 		goto no_exec;
1707 	}
1708 
1709 	strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1710 	err = validate_section_offset(info, strhdr);
1711 	if (err < 0) {
1712 		pr_err("Invalid ELF section hdr(type %u)\n", strhdr->sh_type);
1713 		return err;
1714 	}
1715 
1716 	/*
1717 	 * The section name table must be NUL-terminated, as required
1718 	 * by the spec. This makes strcmp and pr_* calls that access
1719 	 * strings in the section safe.
1720 	 */
1721 	info->secstrings = (void *)info->hdr + strhdr->sh_offset;
1722 	if (strhdr->sh_size == 0) {
1723 		pr_err("empty section name table\n");
1724 		goto no_exec;
1725 	}
1726 	if (info->secstrings[strhdr->sh_size - 1] != '\0') {
1727 		pr_err("ELF Spec violation: section name table isn't null terminated\n");
1728 		goto no_exec;
1729 	}
1730 
1731 	/*
1732 	 * The code assumes that section 0 has a length of zero and
1733 	 * an addr of zero, so check for it.
1734 	 */
1735 	if (info->sechdrs[0].sh_type != SHT_NULL
1736 	    || info->sechdrs[0].sh_size != 0
1737 	    || info->sechdrs[0].sh_addr != 0) {
1738 		pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1739 		       info->sechdrs[0].sh_type);
1740 		goto no_exec;
1741 	}
1742 
1743 	for (i = 1; i < info->hdr->e_shnum; i++) {
1744 		shdr = &info->sechdrs[i];
1745 		switch (shdr->sh_type) {
1746 		case SHT_NULL:
1747 		case SHT_NOBITS:
1748 			continue;
1749 		case SHT_SYMTAB:
1750 			if (shdr->sh_link == SHN_UNDEF
1751 			    || shdr->sh_link >= info->hdr->e_shnum) {
1752 				pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
1753 				       shdr->sh_link, shdr->sh_link,
1754 				       info->hdr->e_shnum);
1755 				goto no_exec;
1756 			}
1757 			fallthrough;
1758 		default:
1759 			err = validate_section_offset(info, shdr);
1760 			if (err < 0) {
1761 				pr_err("Invalid ELF section in module (section %u type %u)\n",
1762 					i, shdr->sh_type);
1763 				return err;
1764 			}
1765 
1766 			if (shdr->sh_flags & SHF_ALLOC) {
1767 				if (shdr->sh_name >= strhdr->sh_size) {
1768 					pr_err("Invalid ELF section name in module (section %u type %u)\n",
1769 					       i, shdr->sh_type);
1770 					return -ENOEXEC;
1771 				}
1772 			}
1773 			break;
1774 		}
1775 	}
1776 
1777 	return 0;
1778 
1779 no_exec:
1780 	return -ENOEXEC;
1781 }
1782 
1783 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
1784 
1785 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
1786 {
1787 	do {
1788 		unsigned long n = min(len, COPY_CHUNK_SIZE);
1789 
1790 		if (copy_from_user(dst, usrc, n) != 0)
1791 			return -EFAULT;
1792 		cond_resched();
1793 		dst += n;
1794 		usrc += n;
1795 		len -= n;
1796 	} while (len);
1797 	return 0;
1798 }
1799 
1800 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
1801 {
1802 	if (!get_modinfo(info, "livepatch"))
1803 		/* Nothing more to do */
1804 		return 0;
1805 
1806 	if (set_livepatch_module(mod)) {
1807 		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
1808 		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
1809 				mod->name);
1810 		return 0;
1811 	}
1812 
1813 	pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
1814 	       mod->name);
1815 	return -ENOEXEC;
1816 }
1817 
1818 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
1819 {
1820 	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
1821 		return;
1822 
1823 	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
1824 		mod->name);
1825 }
1826 
1827 /* Sets info->hdr and info->len. */
1828 static int copy_module_from_user(const void __user *umod, unsigned long len,
1829 				  struct load_info *info)
1830 {
1831 	int err;
1832 
1833 	info->len = len;
1834 	if (info->len < sizeof(*(info->hdr)))
1835 		return -ENOEXEC;
1836 
1837 	err = security_kernel_load_data(LOADING_MODULE, true);
1838 	if (err)
1839 		return err;
1840 
1841 	/* Suck in entire file: we'll want most of it. */
1842 	info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
1843 	if (!info->hdr)
1844 		return -ENOMEM;
1845 
1846 	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
1847 		err = -EFAULT;
1848 		goto out;
1849 	}
1850 
1851 	err = security_kernel_post_load_data((char *)info->hdr, info->len,
1852 					     LOADING_MODULE, "init_module");
1853 out:
1854 	if (err)
1855 		vfree(info->hdr);
1856 
1857 	return err;
1858 }
1859 
1860 static void free_copy(struct load_info *info, int flags)
1861 {
1862 	if (flags & MODULE_INIT_COMPRESSED_FILE)
1863 		module_decompress_cleanup(info);
1864 	else
1865 		vfree(info->hdr);
1866 }
1867 
1868 static int rewrite_section_headers(struct load_info *info, int flags)
1869 {
1870 	unsigned int i;
1871 
1872 	/* This should always be true, but let's be sure. */
1873 	info->sechdrs[0].sh_addr = 0;
1874 
1875 	for (i = 1; i < info->hdr->e_shnum; i++) {
1876 		Elf_Shdr *shdr = &info->sechdrs[i];
1877 
1878 		/*
1879 		 * Mark all sections sh_addr with their address in the
1880 		 * temporary image.
1881 		 */
1882 		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
1883 
1884 	}
1885 
1886 	/* Track but don't keep modinfo and version sections. */
1887 	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
1888 	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
1889 
1890 	return 0;
1891 }
1892 
1893 /*
1894  * Set up our basic convenience variables (pointers to section headers,
1895  * search for module section index etc), and do some basic section
1896  * verification.
1897  *
1898  * Set info->mod to the temporary copy of the module in info->hdr. The final one
1899  * will be allocated in move_module().
1900  */
1901 static int setup_load_info(struct load_info *info, int flags)
1902 {
1903 	unsigned int i;
1904 
1905 	/* Try to find a name early so we can log errors with a module name */
1906 	info->index.info = find_sec(info, ".modinfo");
1907 	if (info->index.info)
1908 		info->name = get_modinfo(info, "name");
1909 
1910 	/* Find internal symbols and strings. */
1911 	for (i = 1; i < info->hdr->e_shnum; i++) {
1912 		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
1913 			info->index.sym = i;
1914 			info->index.str = info->sechdrs[i].sh_link;
1915 			info->strtab = (char *)info->hdr
1916 				+ info->sechdrs[info->index.str].sh_offset;
1917 			break;
1918 		}
1919 	}
1920 
1921 	if (info->index.sym == 0) {
1922 		pr_warn("%s: module has no symbols (stripped?)\n",
1923 			info->name ?: "(missing .modinfo section or name field)");
1924 		return -ENOEXEC;
1925 	}
1926 
1927 	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
1928 	if (!info->index.mod) {
1929 		pr_warn("%s: No module found in object\n",
1930 			info->name ?: "(missing .modinfo section or name field)");
1931 		return -ENOEXEC;
1932 	}
1933 	/* This is temporary: point mod into copy of data. */
1934 	info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
1935 
1936 	/*
1937 	 * If we didn't load the .modinfo 'name' field earlier, fall back to
1938 	 * on-disk struct mod 'name' field.
1939 	 */
1940 	if (!info->name)
1941 		info->name = info->mod->name;
1942 
1943 	if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
1944 		info->index.vers = 0; /* Pretend no __versions section! */
1945 	else
1946 		info->index.vers = find_sec(info, "__versions");
1947 
1948 	info->index.pcpu = find_pcpusec(info);
1949 
1950 	return 0;
1951 }
1952 
1953 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
1954 {
1955 	const char *modmagic = get_modinfo(info, "vermagic");
1956 	int err;
1957 
1958 	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
1959 		modmagic = NULL;
1960 
1961 	/* This is allowed: modprobe --force will invalidate it. */
1962 	if (!modmagic) {
1963 		err = try_to_force_load(mod, "bad vermagic");
1964 		if (err)
1965 			return err;
1966 	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
1967 		pr_err("%s: version magic '%s' should be '%s'\n",
1968 		       info->name, modmagic, vermagic);
1969 		return -ENOEXEC;
1970 	}
1971 
1972 	if (!get_modinfo(info, "intree")) {
1973 		if (!test_taint(TAINT_OOT_MODULE))
1974 			pr_warn("%s: loading out-of-tree module taints kernel.\n",
1975 				mod->name);
1976 		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
1977 	}
1978 
1979 	check_modinfo_retpoline(mod, info);
1980 
1981 	if (get_modinfo(info, "staging")) {
1982 		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
1983 		pr_warn("%s: module is from the staging directory, the quality "
1984 			"is unknown, you have been warned.\n", mod->name);
1985 	}
1986 
1987 	err = check_modinfo_livepatch(mod, info);
1988 	if (err)
1989 		return err;
1990 
1991 	/* Set up license info based on the info section */
1992 	set_license(mod, get_modinfo(info, "license"));
1993 
1994 	if (get_modinfo(info, "test")) {
1995 		if (!test_taint(TAINT_TEST))
1996 			pr_warn("%s: loading test module taints kernel.\n",
1997 				mod->name);
1998 		add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
1999 	}
2000 
2001 	return 0;
2002 }
2003 
2004 static int find_module_sections(struct module *mod, struct load_info *info)
2005 {
2006 	mod->kp = section_objs(info, "__param",
2007 			       sizeof(*mod->kp), &mod->num_kp);
2008 	mod->syms = section_objs(info, "__ksymtab",
2009 				 sizeof(*mod->syms), &mod->num_syms);
2010 	mod->crcs = section_addr(info, "__kcrctab");
2011 	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2012 				     sizeof(*mod->gpl_syms),
2013 				     &mod->num_gpl_syms);
2014 	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2015 
2016 #ifdef CONFIG_CONSTRUCTORS
2017 	mod->ctors = section_objs(info, ".ctors",
2018 				  sizeof(*mod->ctors), &mod->num_ctors);
2019 	if (!mod->ctors)
2020 		mod->ctors = section_objs(info, ".init_array",
2021 				sizeof(*mod->ctors), &mod->num_ctors);
2022 	else if (find_sec(info, ".init_array")) {
2023 		/*
2024 		 * This shouldn't happen with same compiler and binutils
2025 		 * building all parts of the module.
2026 		 */
2027 		pr_warn("%s: has both .ctors and .init_array.\n",
2028 		       mod->name);
2029 		return -EINVAL;
2030 	}
2031 #endif
2032 
2033 	mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2034 						&mod->noinstr_text_size);
2035 
2036 #ifdef CONFIG_TRACEPOINTS
2037 	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2038 					     sizeof(*mod->tracepoints_ptrs),
2039 					     &mod->num_tracepoints);
2040 #endif
2041 #ifdef CONFIG_TREE_SRCU
2042 	mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2043 					     sizeof(*mod->srcu_struct_ptrs),
2044 					     &mod->num_srcu_structs);
2045 #endif
2046 #ifdef CONFIG_BPF_EVENTS
2047 	mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2048 					   sizeof(*mod->bpf_raw_events),
2049 					   &mod->num_bpf_raw_events);
2050 #endif
2051 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2052 	mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2053 #endif
2054 #ifdef CONFIG_JUMP_LABEL
2055 	mod->jump_entries = section_objs(info, "__jump_table",
2056 					sizeof(*mod->jump_entries),
2057 					&mod->num_jump_entries);
2058 #endif
2059 #ifdef CONFIG_EVENT_TRACING
2060 	mod->trace_events = section_objs(info, "_ftrace_events",
2061 					 sizeof(*mod->trace_events),
2062 					 &mod->num_trace_events);
2063 	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2064 					sizeof(*mod->trace_evals),
2065 					&mod->num_trace_evals);
2066 #endif
2067 #ifdef CONFIG_TRACING
2068 	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2069 					 sizeof(*mod->trace_bprintk_fmt_start),
2070 					 &mod->num_trace_bprintk_fmt);
2071 #endif
2072 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2073 	/* sechdrs[0].sh_size is always zero */
2074 	mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2075 					     sizeof(*mod->ftrace_callsites),
2076 					     &mod->num_ftrace_callsites);
2077 #endif
2078 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2079 	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2080 					    sizeof(*mod->ei_funcs),
2081 					    &mod->num_ei_funcs);
2082 #endif
2083 #ifdef CONFIG_KPROBES
2084 	mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2085 						&mod->kprobes_text_size);
2086 	mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2087 						sizeof(unsigned long),
2088 						&mod->num_kprobe_blacklist);
2089 #endif
2090 #ifdef CONFIG_PRINTK_INDEX
2091 	mod->printk_index_start = section_objs(info, ".printk_index",
2092 					       sizeof(*mod->printk_index_start),
2093 					       &mod->printk_index_size);
2094 #endif
2095 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2096 	mod->static_call_sites = section_objs(info, ".static_call_sites",
2097 					      sizeof(*mod->static_call_sites),
2098 					      &mod->num_static_call_sites);
2099 #endif
2100 #if IS_ENABLED(CONFIG_KUNIT)
2101 	mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2102 					      sizeof(*mod->kunit_suites),
2103 					      &mod->num_kunit_suites);
2104 #endif
2105 
2106 	mod->extable = section_objs(info, "__ex_table",
2107 				    sizeof(*mod->extable), &mod->num_exentries);
2108 
2109 	if (section_addr(info, "__obsparm"))
2110 		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2111 
2112 	info->dyndbg.descs = section_objs(info, "__dyndbg",
2113 					sizeof(*info->dyndbg.descs), &info->dyndbg.num_descs);
2114 	info->dyndbg.classes = section_objs(info, "__dyndbg_classes",
2115 					sizeof(*info->dyndbg.classes), &info->dyndbg.num_classes);
2116 
2117 	return 0;
2118 }
2119 
2120 static int move_module(struct module *mod, struct load_info *info)
2121 {
2122 	int i;
2123 	void *ptr;
2124 
2125 	/* Do the allocs. */
2126 	ptr = module_alloc(mod->core_layout.size);
2127 	/*
2128 	 * The pointer to this block is stored in the module structure
2129 	 * which is inside the block. Just mark it as not being a
2130 	 * leak.
2131 	 */
2132 	kmemleak_not_leak(ptr);
2133 	if (!ptr)
2134 		return -ENOMEM;
2135 
2136 	memset(ptr, 0, mod->core_layout.size);
2137 	mod->core_layout.base = ptr;
2138 
2139 	if (mod->init_layout.size) {
2140 		ptr = module_alloc(mod->init_layout.size);
2141 		/*
2142 		 * The pointer to this block is stored in the module structure
2143 		 * which is inside the block. This block doesn't need to be
2144 		 * scanned as it contains data and code that will be freed
2145 		 * after the module is initialized.
2146 		 */
2147 		kmemleak_ignore(ptr);
2148 		if (!ptr) {
2149 			module_memfree(mod->core_layout.base);
2150 			return -ENOMEM;
2151 		}
2152 		memset(ptr, 0, mod->init_layout.size);
2153 		mod->init_layout.base = ptr;
2154 	} else
2155 		mod->init_layout.base = NULL;
2156 
2157 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
2158 	/* Do the allocs. */
2159 	ptr = vzalloc(mod->data_layout.size);
2160 	/*
2161 	 * The pointer to this block is stored in the module structure
2162 	 * which is inside the block. Just mark it as not being a
2163 	 * leak.
2164 	 */
2165 	kmemleak_not_leak(ptr);
2166 	if (!ptr) {
2167 		module_memfree(mod->core_layout.base);
2168 		module_memfree(mod->init_layout.base);
2169 		return -ENOMEM;
2170 	}
2171 
2172 	mod->data_layout.base = ptr;
2173 #endif
2174 	/* Transfer each section which specifies SHF_ALLOC */
2175 	pr_debug("final section addresses:\n");
2176 	for (i = 0; i < info->hdr->e_shnum; i++) {
2177 		void *dest;
2178 		Elf_Shdr *shdr = &info->sechdrs[i];
2179 
2180 		if (!(shdr->sh_flags & SHF_ALLOC))
2181 			continue;
2182 
2183 		if (shdr->sh_entsize & INIT_OFFSET_MASK)
2184 			dest = mod->init_layout.base
2185 				+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
2186 		else if (!(shdr->sh_flags & SHF_EXECINSTR))
2187 			dest = mod->data_layout.base + shdr->sh_entsize;
2188 		else
2189 			dest = mod->core_layout.base + shdr->sh_entsize;
2190 
2191 		if (shdr->sh_type != SHT_NOBITS)
2192 			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2193 		/* Update sh_addr to point to copy in image. */
2194 		shdr->sh_addr = (unsigned long)dest;
2195 		pr_debug("\t0x%lx %s\n",
2196 			 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
2197 	}
2198 
2199 	return 0;
2200 }
2201 
2202 static int check_module_license_and_versions(struct module *mod)
2203 {
2204 	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2205 
2206 	/*
2207 	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2208 	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2209 	 * using GPL-only symbols it needs.
2210 	 */
2211 	if (strcmp(mod->name, "ndiswrapper") == 0)
2212 		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2213 
2214 	/* driverloader was caught wrongly pretending to be under GPL */
2215 	if (strcmp(mod->name, "driverloader") == 0)
2216 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2217 				 LOCKDEP_NOW_UNRELIABLE);
2218 
2219 	/* lve claims to be GPL but upstream won't provide source */
2220 	if (strcmp(mod->name, "lve") == 0)
2221 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2222 				 LOCKDEP_NOW_UNRELIABLE);
2223 
2224 	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2225 		pr_warn("%s: module license taints kernel.\n", mod->name);
2226 
2227 #ifdef CONFIG_MODVERSIONS
2228 	if ((mod->num_syms && !mod->crcs) ||
2229 	    (mod->num_gpl_syms && !mod->gpl_crcs)) {
2230 		return try_to_force_load(mod,
2231 					 "no versions for exported symbols");
2232 	}
2233 #endif
2234 	return 0;
2235 }
2236 
2237 static void flush_module_icache(const struct module *mod)
2238 {
2239 	/*
2240 	 * Flush the instruction cache, since we've played with text.
2241 	 * Do it before processing of module parameters, so the module
2242 	 * can provide parameter accessor functions of its own.
2243 	 */
2244 	if (mod->init_layout.base)
2245 		flush_icache_range((unsigned long)mod->init_layout.base,
2246 				   (unsigned long)mod->init_layout.base
2247 				   + mod->init_layout.size);
2248 	flush_icache_range((unsigned long)mod->core_layout.base,
2249 			   (unsigned long)mod->core_layout.base + mod->core_layout.size);
2250 }
2251 
2252 bool __weak module_elf_check_arch(Elf_Ehdr *hdr)
2253 {
2254 	return true;
2255 }
2256 
2257 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2258 				     Elf_Shdr *sechdrs,
2259 				     char *secstrings,
2260 				     struct module *mod)
2261 {
2262 	return 0;
2263 }
2264 
2265 /* module_blacklist is a comma-separated list of module names */
2266 static char *module_blacklist;
2267 static bool blacklisted(const char *module_name)
2268 {
2269 	const char *p;
2270 	size_t len;
2271 
2272 	if (!module_blacklist)
2273 		return false;
2274 
2275 	for (p = module_blacklist; *p; p += len) {
2276 		len = strcspn(p, ",");
2277 		if (strlen(module_name) == len && !memcmp(module_name, p, len))
2278 			return true;
2279 		if (p[len] == ',')
2280 			len++;
2281 	}
2282 	return false;
2283 }
2284 core_param(module_blacklist, module_blacklist, charp, 0400);
2285 
2286 static struct module *layout_and_allocate(struct load_info *info, int flags)
2287 {
2288 	struct module *mod;
2289 	unsigned int ndx;
2290 	int err;
2291 
2292 	err = check_modinfo(info->mod, info, flags);
2293 	if (err)
2294 		return ERR_PTR(err);
2295 
2296 	/* Allow arches to frob section contents and sizes.  */
2297 	err = module_frob_arch_sections(info->hdr, info->sechdrs,
2298 					info->secstrings, info->mod);
2299 	if (err < 0)
2300 		return ERR_PTR(err);
2301 
2302 	err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2303 					  info->secstrings, info->mod);
2304 	if (err < 0)
2305 		return ERR_PTR(err);
2306 
2307 	/* We will do a special allocation for per-cpu sections later. */
2308 	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2309 
2310 	/*
2311 	 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
2312 	 * layout_sections() can put it in the right place.
2313 	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2314 	 */
2315 	ndx = find_sec(info, ".data..ro_after_init");
2316 	if (ndx)
2317 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2318 	/*
2319 	 * Mark the __jump_table section as ro_after_init as well: these data
2320 	 * structures are never modified, with the exception of entries that
2321 	 * refer to code in the __init section, which are annotated as such
2322 	 * at module load time.
2323 	 */
2324 	ndx = find_sec(info, "__jump_table");
2325 	if (ndx)
2326 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2327 
2328 	/*
2329 	 * Determine total sizes, and put offsets in sh_entsize.  For now
2330 	 * this is done generically; there doesn't appear to be any
2331 	 * special cases for the architectures.
2332 	 */
2333 	layout_sections(info->mod, info);
2334 	layout_symtab(info->mod, info);
2335 
2336 	/* Allocate and move to the final place */
2337 	err = move_module(info->mod, info);
2338 	if (err)
2339 		return ERR_PTR(err);
2340 
2341 	/* Module has been copied to its final place now: return it. */
2342 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2343 	kmemleak_load_module(mod, info);
2344 	return mod;
2345 }
2346 
2347 /* mod is no longer valid after this! */
2348 static void module_deallocate(struct module *mod, struct load_info *info)
2349 {
2350 	percpu_modfree(mod);
2351 	module_arch_freeing_init(mod);
2352 	module_memfree(mod->init_layout.base);
2353 	module_memfree(mod->core_layout.base);
2354 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
2355 	vfree(mod->data_layout.base);
2356 #endif
2357 }
2358 
2359 int __weak module_finalize(const Elf_Ehdr *hdr,
2360 			   const Elf_Shdr *sechdrs,
2361 			   struct module *me)
2362 {
2363 	return 0;
2364 }
2365 
2366 static int post_relocation(struct module *mod, const struct load_info *info)
2367 {
2368 	/* Sort exception table now relocations are done. */
2369 	sort_extable(mod->extable, mod->extable + mod->num_exentries);
2370 
2371 	/* Copy relocated percpu area over. */
2372 	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2373 		       info->sechdrs[info->index.pcpu].sh_size);
2374 
2375 	/* Setup kallsyms-specific fields. */
2376 	add_kallsyms(mod, info);
2377 
2378 	/* Arch-specific module finalizing. */
2379 	return module_finalize(info->hdr, info->sechdrs, mod);
2380 }
2381 
2382 /* Is this module of this name done loading?  No locks held. */
2383 static bool finished_loading(const char *name)
2384 {
2385 	struct module *mod;
2386 	bool ret;
2387 
2388 	/*
2389 	 * The module_mutex should not be a heavily contended lock;
2390 	 * if we get the occasional sleep here, we'll go an extra iteration
2391 	 * in the wait_event_interruptible(), which is harmless.
2392 	 */
2393 	sched_annotate_sleep();
2394 	mutex_lock(&module_mutex);
2395 	mod = find_module_all(name, strlen(name), true);
2396 	ret = !mod || mod->state == MODULE_STATE_LIVE
2397 		|| mod->state == MODULE_STATE_GOING;
2398 	mutex_unlock(&module_mutex);
2399 
2400 	return ret;
2401 }
2402 
2403 /* Call module constructors. */
2404 static void do_mod_ctors(struct module *mod)
2405 {
2406 #ifdef CONFIG_CONSTRUCTORS
2407 	unsigned long i;
2408 
2409 	for (i = 0; i < mod->num_ctors; i++)
2410 		mod->ctors[i]();
2411 #endif
2412 }
2413 
2414 /* For freeing module_init on success, in case kallsyms traversing */
2415 struct mod_initfree {
2416 	struct llist_node node;
2417 	void *module_init;
2418 };
2419 
2420 static void do_free_init(struct work_struct *w)
2421 {
2422 	struct llist_node *pos, *n, *list;
2423 	struct mod_initfree *initfree;
2424 
2425 	list = llist_del_all(&init_free_list);
2426 
2427 	synchronize_rcu();
2428 
2429 	llist_for_each_safe(pos, n, list) {
2430 		initfree = container_of(pos, struct mod_initfree, node);
2431 		module_memfree(initfree->module_init);
2432 		kfree(initfree);
2433 	}
2434 }
2435 
2436 #undef MODULE_PARAM_PREFIX
2437 #define MODULE_PARAM_PREFIX "module."
2438 /* Default value for module->async_probe_requested */
2439 static bool async_probe;
2440 module_param(async_probe, bool, 0644);
2441 
2442 /*
2443  * This is where the real work happens.
2444  *
2445  * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
2446  * helper command 'lx-symbols'.
2447  */
2448 static noinline int do_init_module(struct module *mod)
2449 {
2450 	int ret = 0;
2451 	struct mod_initfree *freeinit;
2452 
2453 	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
2454 	if (!freeinit) {
2455 		ret = -ENOMEM;
2456 		goto fail;
2457 	}
2458 	freeinit->module_init = mod->init_layout.base;
2459 
2460 	do_mod_ctors(mod);
2461 	/* Start the module */
2462 	if (mod->init != NULL)
2463 		ret = do_one_initcall(mod->init);
2464 	if (ret < 0) {
2465 		goto fail_free_freeinit;
2466 	}
2467 	if (ret > 0) {
2468 		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
2469 			"follow 0/-E convention\n"
2470 			"%s: loading module anyway...\n",
2471 			__func__, mod->name, ret, __func__);
2472 		dump_stack();
2473 	}
2474 
2475 	/* Now it's a first class citizen! */
2476 	mod->state = MODULE_STATE_LIVE;
2477 	blocking_notifier_call_chain(&module_notify_list,
2478 				     MODULE_STATE_LIVE, mod);
2479 
2480 	/* Delay uevent until module has finished its init routine */
2481 	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
2482 
2483 	/*
2484 	 * We need to finish all async code before the module init sequence
2485 	 * is done. This has potential to deadlock if synchronous module
2486 	 * loading is requested from async (which is not allowed!).
2487 	 *
2488 	 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
2489 	 * request_module() from async workers") for more details.
2490 	 */
2491 	if (!mod->async_probe_requested)
2492 		async_synchronize_full();
2493 
2494 	ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
2495 			mod->init_layout.size);
2496 	mutex_lock(&module_mutex);
2497 	/* Drop initial reference. */
2498 	module_put(mod);
2499 	trim_init_extable(mod);
2500 #ifdef CONFIG_KALLSYMS
2501 	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
2502 	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
2503 #endif
2504 	module_enable_ro(mod, true);
2505 	mod_tree_remove_init(mod);
2506 	module_arch_freeing_init(mod);
2507 	mod->init_layout.base = NULL;
2508 	mod->init_layout.size = 0;
2509 	mod->init_layout.ro_size = 0;
2510 	mod->init_layout.ro_after_init_size = 0;
2511 	mod->init_layout.text_size = 0;
2512 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2513 	/* .BTF is not SHF_ALLOC and will get removed, so sanitize pointer */
2514 	mod->btf_data = NULL;
2515 #endif
2516 	/*
2517 	 * We want to free module_init, but be aware that kallsyms may be
2518 	 * walking this with preempt disabled.  In all the failure paths, we
2519 	 * call synchronize_rcu(), but we don't want to slow down the success
2520 	 * path. module_memfree() cannot be called in an interrupt, so do the
2521 	 * work and call synchronize_rcu() in a work queue.
2522 	 *
2523 	 * Note that module_alloc() on most architectures creates W+X page
2524 	 * mappings which won't be cleaned up until do_free_init() runs.  Any
2525 	 * code such as mark_rodata_ro() which depends on those mappings to
2526 	 * be cleaned up needs to sync with the queued work - ie
2527 	 * rcu_barrier()
2528 	 */
2529 	if (llist_add(&freeinit->node, &init_free_list))
2530 		schedule_work(&init_free_wq);
2531 
2532 	mutex_unlock(&module_mutex);
2533 	wake_up_all(&module_wq);
2534 
2535 	return 0;
2536 
2537 fail_free_freeinit:
2538 	kfree(freeinit);
2539 fail:
2540 	/* Try to protect us from buggy refcounters. */
2541 	mod->state = MODULE_STATE_GOING;
2542 	synchronize_rcu();
2543 	module_put(mod);
2544 	blocking_notifier_call_chain(&module_notify_list,
2545 				     MODULE_STATE_GOING, mod);
2546 	klp_module_going(mod);
2547 	ftrace_release_mod(mod);
2548 	free_module(mod);
2549 	wake_up_all(&module_wq);
2550 	return ret;
2551 }
2552 
2553 static int may_init_module(void)
2554 {
2555 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
2556 		return -EPERM;
2557 
2558 	return 0;
2559 }
2560 
2561 /*
2562  * We try to place it in the list now to make sure it's unique before
2563  * we dedicate too many resources.  In particular, temporary percpu
2564  * memory exhaustion.
2565  */
2566 static int add_unformed_module(struct module *mod)
2567 {
2568 	int err;
2569 	struct module *old;
2570 
2571 	mod->state = MODULE_STATE_UNFORMED;
2572 
2573 	mutex_lock(&module_mutex);
2574 	old = find_module_all(mod->name, strlen(mod->name), true);
2575 	if (old != NULL) {
2576 		if (old->state == MODULE_STATE_COMING
2577 		    || old->state == MODULE_STATE_UNFORMED) {
2578 			/* Wait in case it fails to load. */
2579 			mutex_unlock(&module_mutex);
2580 			err = wait_event_interruptible(module_wq,
2581 					       finished_loading(mod->name));
2582 			if (err)
2583 				goto out_unlocked;
2584 
2585 			/* The module might have gone in the meantime. */
2586 			mutex_lock(&module_mutex);
2587 			old = find_module_all(mod->name, strlen(mod->name),
2588 					      true);
2589 		}
2590 
2591 		/*
2592 		 * We are here only when the same module was being loaded. Do
2593 		 * not try to load it again right now. It prevents long delays
2594 		 * caused by serialized module load failures. It might happen
2595 		 * when more devices of the same type trigger load of
2596 		 * a particular module.
2597 		 */
2598 		if (old && old->state == MODULE_STATE_LIVE)
2599 			err = -EEXIST;
2600 		else
2601 			err = -EBUSY;
2602 		goto out;
2603 	}
2604 	mod_update_bounds(mod);
2605 	list_add_rcu(&mod->list, &modules);
2606 	mod_tree_insert(mod);
2607 	err = 0;
2608 
2609 out:
2610 	mutex_unlock(&module_mutex);
2611 out_unlocked:
2612 	return err;
2613 }
2614 
2615 static int complete_formation(struct module *mod, struct load_info *info)
2616 {
2617 	int err;
2618 
2619 	mutex_lock(&module_mutex);
2620 
2621 	/* Find duplicate symbols (must be called under lock). */
2622 	err = verify_exported_symbols(mod);
2623 	if (err < 0)
2624 		goto out;
2625 
2626 	/* These rely on module_mutex for list integrity. */
2627 	module_bug_finalize(info->hdr, info->sechdrs, mod);
2628 	module_cfi_finalize(info->hdr, info->sechdrs, mod);
2629 
2630 	if (module_check_misalignment(mod))
2631 		goto out_misaligned;
2632 
2633 	module_enable_ro(mod, false);
2634 	module_enable_nx(mod);
2635 	module_enable_x(mod);
2636 
2637 	/*
2638 	 * Mark state as coming so strong_try_module_get() ignores us,
2639 	 * but kallsyms etc. can see us.
2640 	 */
2641 	mod->state = MODULE_STATE_COMING;
2642 	mutex_unlock(&module_mutex);
2643 
2644 	return 0;
2645 
2646 out_misaligned:
2647 	err = -EINVAL;
2648 out:
2649 	mutex_unlock(&module_mutex);
2650 	return err;
2651 }
2652 
2653 static int prepare_coming_module(struct module *mod)
2654 {
2655 	int err;
2656 
2657 	ftrace_module_enable(mod);
2658 	err = klp_module_coming(mod);
2659 	if (err)
2660 		return err;
2661 
2662 	err = blocking_notifier_call_chain_robust(&module_notify_list,
2663 			MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
2664 	err = notifier_to_errno(err);
2665 	if (err)
2666 		klp_module_going(mod);
2667 
2668 	return err;
2669 }
2670 
2671 static int unknown_module_param_cb(char *param, char *val, const char *modname,
2672 				   void *arg)
2673 {
2674 	struct module *mod = arg;
2675 	int ret;
2676 
2677 	if (strcmp(param, "async_probe") == 0) {
2678 		if (strtobool(val, &mod->async_probe_requested))
2679 			mod->async_probe_requested = true;
2680 		return 0;
2681 	}
2682 
2683 	/* Check for magic 'dyndbg' arg */
2684 	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
2685 	if (ret != 0)
2686 		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
2687 	return 0;
2688 }
2689 
2690 /*
2691  * Allocate and load the module: note that size of section 0 is always
2692  * zero, and we rely on this for optional sections.
2693  */
2694 static int load_module(struct load_info *info, const char __user *uargs,
2695 		       int flags)
2696 {
2697 	struct module *mod;
2698 	long err = 0;
2699 	char *after_dashes;
2700 
2701 	/*
2702 	 * Do the signature check (if any) first. All that
2703 	 * the signature check needs is info->len, it does
2704 	 * not need any of the section info. That can be
2705 	 * set up later. This will minimize the chances
2706 	 * of a corrupt module causing problems before
2707 	 * we even get to the signature check.
2708 	 *
2709 	 * The check will also adjust info->len by stripping
2710 	 * off the sig length at the end of the module, making
2711 	 * checks against info->len more correct.
2712 	 */
2713 	err = module_sig_check(info, flags);
2714 	if (err)
2715 		goto free_copy;
2716 
2717 	/*
2718 	 * Do basic sanity checks against the ELF header and
2719 	 * sections.
2720 	 */
2721 	err = elf_validity_check(info);
2722 	if (err)
2723 		goto free_copy;
2724 
2725 	/*
2726 	 * Everything checks out, so set up the section info
2727 	 * in the info structure.
2728 	 */
2729 	err = setup_load_info(info, flags);
2730 	if (err)
2731 		goto free_copy;
2732 
2733 	/*
2734 	 * Now that we know we have the correct module name, check
2735 	 * if it's blacklisted.
2736 	 */
2737 	if (blacklisted(info->name)) {
2738 		err = -EPERM;
2739 		pr_err("Module %s is blacklisted\n", info->name);
2740 		goto free_copy;
2741 	}
2742 
2743 	err = rewrite_section_headers(info, flags);
2744 	if (err)
2745 		goto free_copy;
2746 
2747 	/* Check module struct version now, before we try to use module. */
2748 	if (!check_modstruct_version(info, info->mod)) {
2749 		err = -ENOEXEC;
2750 		goto free_copy;
2751 	}
2752 
2753 	/* Figure out module layout, and allocate all the memory. */
2754 	mod = layout_and_allocate(info, flags);
2755 	if (IS_ERR(mod)) {
2756 		err = PTR_ERR(mod);
2757 		goto free_copy;
2758 	}
2759 
2760 	audit_log_kern_module(mod->name);
2761 
2762 	/* Reserve our place in the list. */
2763 	err = add_unformed_module(mod);
2764 	if (err)
2765 		goto free_module;
2766 
2767 #ifdef CONFIG_MODULE_SIG
2768 	mod->sig_ok = info->sig_ok;
2769 	if (!mod->sig_ok) {
2770 		pr_notice_once("%s: module verification failed: signature "
2771 			       "and/or required key missing - tainting "
2772 			       "kernel\n", mod->name);
2773 		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2774 	}
2775 #endif
2776 
2777 	/* To avoid stressing percpu allocator, do this once we're unique. */
2778 	err = percpu_modalloc(mod, info);
2779 	if (err)
2780 		goto unlink_mod;
2781 
2782 	/* Now module is in final location, initialize linked lists, etc. */
2783 	err = module_unload_init(mod);
2784 	if (err)
2785 		goto unlink_mod;
2786 
2787 	init_param_lock(mod);
2788 
2789 	/*
2790 	 * Now we've got everything in the final locations, we can
2791 	 * find optional sections.
2792 	 */
2793 	err = find_module_sections(mod, info);
2794 	if (err)
2795 		goto free_unload;
2796 
2797 	err = check_module_license_and_versions(mod);
2798 	if (err)
2799 		goto free_unload;
2800 
2801 	/* Set up MODINFO_ATTR fields */
2802 	setup_modinfo(mod, info);
2803 
2804 	/* Fix up syms, so that st_value is a pointer to location. */
2805 	err = simplify_symbols(mod, info);
2806 	if (err < 0)
2807 		goto free_modinfo;
2808 
2809 	err = apply_relocations(mod, info);
2810 	if (err < 0)
2811 		goto free_modinfo;
2812 
2813 	err = post_relocation(mod, info);
2814 	if (err < 0)
2815 		goto free_modinfo;
2816 
2817 	flush_module_icache(mod);
2818 
2819 	/* Now copy in args */
2820 	mod->args = strndup_user(uargs, ~0UL >> 1);
2821 	if (IS_ERR(mod->args)) {
2822 		err = PTR_ERR(mod->args);
2823 		goto free_arch_cleanup;
2824 	}
2825 
2826 	init_build_id(mod, info);
2827 	dynamic_debug_setup(mod, &info->dyndbg);
2828 
2829 	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
2830 	ftrace_module_init(mod);
2831 
2832 	/* Finally it's fully formed, ready to start executing. */
2833 	err = complete_formation(mod, info);
2834 	if (err)
2835 		goto ddebug_cleanup;
2836 
2837 	err = prepare_coming_module(mod);
2838 	if (err)
2839 		goto bug_cleanup;
2840 
2841 	mod->async_probe_requested = async_probe;
2842 
2843 	/* Module is ready to execute: parsing args may do that. */
2844 	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
2845 				  -32768, 32767, mod,
2846 				  unknown_module_param_cb);
2847 	if (IS_ERR(after_dashes)) {
2848 		err = PTR_ERR(after_dashes);
2849 		goto coming_cleanup;
2850 	} else if (after_dashes) {
2851 		pr_warn("%s: parameters '%s' after `--' ignored\n",
2852 		       mod->name, after_dashes);
2853 	}
2854 
2855 	/* Link in to sysfs. */
2856 	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
2857 	if (err < 0)
2858 		goto coming_cleanup;
2859 
2860 	if (is_livepatch_module(mod)) {
2861 		err = copy_module_elf(mod, info);
2862 		if (err < 0)
2863 			goto sysfs_cleanup;
2864 	}
2865 
2866 	/* Get rid of temporary copy. */
2867 	free_copy(info, flags);
2868 
2869 	/* Done! */
2870 	trace_module_load(mod);
2871 
2872 	return do_init_module(mod);
2873 
2874  sysfs_cleanup:
2875 	mod_sysfs_teardown(mod);
2876  coming_cleanup:
2877 	mod->state = MODULE_STATE_GOING;
2878 	destroy_params(mod->kp, mod->num_kp);
2879 	blocking_notifier_call_chain(&module_notify_list,
2880 				     MODULE_STATE_GOING, mod);
2881 	klp_module_going(mod);
2882  bug_cleanup:
2883 	mod->state = MODULE_STATE_GOING;
2884 	/* module_bug_cleanup needs module_mutex protection */
2885 	mutex_lock(&module_mutex);
2886 	module_bug_cleanup(mod);
2887 	mutex_unlock(&module_mutex);
2888 
2889  ddebug_cleanup:
2890 	ftrace_release_mod(mod);
2891 	dynamic_debug_remove(mod, &info->dyndbg);
2892 	synchronize_rcu();
2893 	kfree(mod->args);
2894  free_arch_cleanup:
2895 	module_arch_cleanup(mod);
2896  free_modinfo:
2897 	free_modinfo(mod);
2898  free_unload:
2899 	module_unload_free(mod);
2900  unlink_mod:
2901 	mutex_lock(&module_mutex);
2902 	/* Unlink carefully: kallsyms could be walking list. */
2903 	list_del_rcu(&mod->list);
2904 	mod_tree_remove(mod);
2905 	wake_up_all(&module_wq);
2906 	/* Wait for RCU-sched synchronizing before releasing mod->list. */
2907 	synchronize_rcu();
2908 	mutex_unlock(&module_mutex);
2909  free_module:
2910 	/* Free lock-classes; relies on the preceding sync_rcu() */
2911 	lockdep_free_key_range(mod->data_layout.base, mod->data_layout.size);
2912 
2913 	module_deallocate(mod, info);
2914  free_copy:
2915 	free_copy(info, flags);
2916 	return err;
2917 }
2918 
2919 SYSCALL_DEFINE3(init_module, void __user *, umod,
2920 		unsigned long, len, const char __user *, uargs)
2921 {
2922 	int err;
2923 	struct load_info info = { };
2924 
2925 	err = may_init_module();
2926 	if (err)
2927 		return err;
2928 
2929 	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
2930 	       umod, len, uargs);
2931 
2932 	err = copy_module_from_user(umod, len, &info);
2933 	if (err)
2934 		return err;
2935 
2936 	return load_module(&info, uargs, 0);
2937 }
2938 
2939 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
2940 {
2941 	struct load_info info = { };
2942 	void *buf = NULL;
2943 	int len;
2944 	int err;
2945 
2946 	err = may_init_module();
2947 	if (err)
2948 		return err;
2949 
2950 	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
2951 
2952 	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
2953 		      |MODULE_INIT_IGNORE_VERMAGIC
2954 		      |MODULE_INIT_COMPRESSED_FILE))
2955 		return -EINVAL;
2956 
2957 	len = kernel_read_file_from_fd(fd, 0, &buf, INT_MAX, NULL,
2958 				       READING_MODULE);
2959 	if (len < 0)
2960 		return len;
2961 
2962 	if (flags & MODULE_INIT_COMPRESSED_FILE) {
2963 		err = module_decompress(&info, buf, len);
2964 		vfree(buf); /* compressed data is no longer needed */
2965 		if (err)
2966 			return err;
2967 	} else {
2968 		info.hdr = buf;
2969 		info.len = len;
2970 	}
2971 
2972 	return load_module(&info, uargs, flags);
2973 }
2974 
2975 static inline int within(unsigned long addr, void *start, unsigned long size)
2976 {
2977 	return ((void *)addr >= start && (void *)addr < start + size);
2978 }
2979 
2980 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
2981 char *module_flags(struct module *mod, char *buf, bool show_state)
2982 {
2983 	int bx = 0;
2984 
2985 	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
2986 	if (!mod->taints && !show_state)
2987 		goto out;
2988 	if (mod->taints ||
2989 	    mod->state == MODULE_STATE_GOING ||
2990 	    mod->state == MODULE_STATE_COMING) {
2991 		buf[bx++] = '(';
2992 		bx += module_flags_taint(mod->taints, buf + bx);
2993 		/* Show a - for module-is-being-unloaded */
2994 		if (mod->state == MODULE_STATE_GOING && show_state)
2995 			buf[bx++] = '-';
2996 		/* Show a + for module-is-being-loaded */
2997 		if (mod->state == MODULE_STATE_COMING && show_state)
2998 			buf[bx++] = '+';
2999 		buf[bx++] = ')';
3000 	}
3001 out:
3002 	buf[bx] = '\0';
3003 
3004 	return buf;
3005 }
3006 
3007 /* Given an address, look for it in the module exception tables. */
3008 const struct exception_table_entry *search_module_extables(unsigned long addr)
3009 {
3010 	const struct exception_table_entry *e = NULL;
3011 	struct module *mod;
3012 
3013 	preempt_disable();
3014 	mod = __module_address(addr);
3015 	if (!mod)
3016 		goto out;
3017 
3018 	if (!mod->num_exentries)
3019 		goto out;
3020 
3021 	e = search_extable(mod->extable,
3022 			   mod->num_exentries,
3023 			   addr);
3024 out:
3025 	preempt_enable();
3026 
3027 	/*
3028 	 * Now, if we found one, we are running inside it now, hence
3029 	 * we cannot unload the module, hence no refcnt needed.
3030 	 */
3031 	return e;
3032 }
3033 
3034 /**
3035  * is_module_address() - is this address inside a module?
3036  * @addr: the address to check.
3037  *
3038  * See is_module_text_address() if you simply want to see if the address
3039  * is code (not data).
3040  */
3041 bool is_module_address(unsigned long addr)
3042 {
3043 	bool ret;
3044 
3045 	preempt_disable();
3046 	ret = __module_address(addr) != NULL;
3047 	preempt_enable();
3048 
3049 	return ret;
3050 }
3051 
3052 /**
3053  * __module_address() - get the module which contains an address.
3054  * @addr: the address.
3055  *
3056  * Must be called with preempt disabled or module mutex held so that
3057  * module doesn't get freed during this.
3058  */
3059 struct module *__module_address(unsigned long addr)
3060 {
3061 	struct module *mod;
3062 	struct mod_tree_root *tree;
3063 
3064 	if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3065 		tree = &mod_tree;
3066 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3067 	else if (addr >= mod_data_tree.addr_min && addr <= mod_data_tree.addr_max)
3068 		tree = &mod_data_tree;
3069 #endif
3070 	else
3071 		return NULL;
3072 
3073 	module_assert_mutex_or_preempt();
3074 
3075 	mod = mod_find(addr, tree);
3076 	if (mod) {
3077 		BUG_ON(!within_module(addr, mod));
3078 		if (mod->state == MODULE_STATE_UNFORMED)
3079 			mod = NULL;
3080 	}
3081 	return mod;
3082 }
3083 
3084 /**
3085  * is_module_text_address() - is this address inside module code?
3086  * @addr: the address to check.
3087  *
3088  * See is_module_address() if you simply want to see if the address is
3089  * anywhere in a module.  See kernel_text_address() for testing if an
3090  * address corresponds to kernel or module code.
3091  */
3092 bool is_module_text_address(unsigned long addr)
3093 {
3094 	bool ret;
3095 
3096 	preempt_disable();
3097 	ret = __module_text_address(addr) != NULL;
3098 	preempt_enable();
3099 
3100 	return ret;
3101 }
3102 
3103 /**
3104  * __module_text_address() - get the module whose code contains an address.
3105  * @addr: the address.
3106  *
3107  * Must be called with preempt disabled or module mutex held so that
3108  * module doesn't get freed during this.
3109  */
3110 struct module *__module_text_address(unsigned long addr)
3111 {
3112 	struct module *mod = __module_address(addr);
3113 	if (mod) {
3114 		/* Make sure it's within the text section. */
3115 		if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
3116 		    && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
3117 			mod = NULL;
3118 	}
3119 	return mod;
3120 }
3121 
3122 /* Don't grab lock, we're oopsing. */
3123 void print_modules(void)
3124 {
3125 	struct module *mod;
3126 	char buf[MODULE_FLAGS_BUF_SIZE];
3127 
3128 	printk(KERN_DEFAULT "Modules linked in:");
3129 	/* Most callers should already have preempt disabled, but make sure */
3130 	preempt_disable();
3131 	list_for_each_entry_rcu(mod, &modules, list) {
3132 		if (mod->state == MODULE_STATE_UNFORMED)
3133 			continue;
3134 		pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3135 	}
3136 
3137 	print_unloaded_tainted_modules();
3138 	preempt_enable();
3139 	if (last_unloaded_module.name[0])
3140 		pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3141 			last_unloaded_module.taints);
3142 	pr_cont("\n");
3143 }
3144