xref: /openbmc/linux/kernel/module/main.c (revision 5efb685b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2002 Richard Henderson
4  * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5  */
6 
7 #define INCLUDE_VERMAGIC
8 
9 #include <linux/export.h>
10 #include <linux/extable.h>
11 #include <linux/moduleloader.h>
12 #include <linux/module_signature.h>
13 #include <linux/trace_events.h>
14 #include <linux/init.h>
15 #include <linux/kallsyms.h>
16 #include <linux/buildid.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/kstrtox.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/elf.h>
24 #include <linux/seq_file.h>
25 #include <linux/syscalls.h>
26 #include <linux/fcntl.h>
27 #include <linux/rcupdate.h>
28 #include <linux/capability.h>
29 #include <linux/cpu.h>
30 #include <linux/moduleparam.h>
31 #include <linux/errno.h>
32 #include <linux/err.h>
33 #include <linux/vermagic.h>
34 #include <linux/notifier.h>
35 #include <linux/sched.h>
36 #include <linux/device.h>
37 #include <linux/string.h>
38 #include <linux/mutex.h>
39 #include <linux/rculist.h>
40 #include <linux/uaccess.h>
41 #include <asm/cacheflush.h>
42 #include <linux/set_memory.h>
43 #include <asm/mmu_context.h>
44 #include <linux/license.h>
45 #include <asm/sections.h>
46 #include <linux/tracepoint.h>
47 #include <linux/ftrace.h>
48 #include <linux/livepatch.h>
49 #include <linux/async.h>
50 #include <linux/percpu.h>
51 #include <linux/kmemleak.h>
52 #include <linux/jump_label.h>
53 #include <linux/pfn.h>
54 #include <linux/bsearch.h>
55 #include <linux/dynamic_debug.h>
56 #include <linux/audit.h>
57 #include <linux/cfi.h>
58 #include <uapi/linux/module.h>
59 #include "internal.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/module.h>
63 
64 /*
65  * Mutex protects:
66  * 1) List of modules (also safely readable with preempt_disable),
67  * 2) module_use links,
68  * 3) mod_tree.addr_min/mod_tree.addr_max.
69  * (delete and add uses RCU list operations).
70  */
71 DEFINE_MUTEX(module_mutex);
72 LIST_HEAD(modules);
73 
74 /* Work queue for freeing init sections in success case */
75 static void do_free_init(struct work_struct *w);
76 static DECLARE_WORK(init_free_wq, do_free_init);
77 static LLIST_HEAD(init_free_list);
78 
79 struct mod_tree_root mod_tree __cacheline_aligned = {
80 	.addr_min = -1UL,
81 };
82 
83 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
84 struct mod_tree_root mod_data_tree __cacheline_aligned = {
85 	.addr_min = -1UL,
86 };
87 #endif
88 
89 struct symsearch {
90 	const struct kernel_symbol *start, *stop;
91 	const s32 *crcs;
92 	enum mod_license license;
93 };
94 
95 /*
96  * Bounds of module text, for speeding up __module_address.
97  * Protected by module_mutex.
98  */
99 static void __mod_update_bounds(void *base, unsigned int size, struct mod_tree_root *tree)
100 {
101 	unsigned long min = (unsigned long)base;
102 	unsigned long max = min + size;
103 
104 	if (min < tree->addr_min)
105 		tree->addr_min = min;
106 	if (max > tree->addr_max)
107 		tree->addr_max = max;
108 }
109 
110 static void mod_update_bounds(struct module *mod)
111 {
112 	__mod_update_bounds(mod->core_layout.base, mod->core_layout.size, &mod_tree);
113 	if (mod->init_layout.size)
114 		__mod_update_bounds(mod->init_layout.base, mod->init_layout.size, &mod_tree);
115 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
116 	__mod_update_bounds(mod->data_layout.base, mod->data_layout.size, &mod_data_tree);
117 #endif
118 }
119 
120 /* Block module loading/unloading? */
121 int modules_disabled;
122 core_param(nomodule, modules_disabled, bint, 0);
123 
124 /* Waiting for a module to finish initializing? */
125 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
126 
127 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
128 
129 int register_module_notifier(struct notifier_block *nb)
130 {
131 	return blocking_notifier_chain_register(&module_notify_list, nb);
132 }
133 EXPORT_SYMBOL(register_module_notifier);
134 
135 int unregister_module_notifier(struct notifier_block *nb)
136 {
137 	return blocking_notifier_chain_unregister(&module_notify_list, nb);
138 }
139 EXPORT_SYMBOL(unregister_module_notifier);
140 
141 /*
142  * We require a truly strong try_module_get(): 0 means success.
143  * Otherwise an error is returned due to ongoing or failed
144  * initialization etc.
145  */
146 static inline int strong_try_module_get(struct module *mod)
147 {
148 	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
149 	if (mod && mod->state == MODULE_STATE_COMING)
150 		return -EBUSY;
151 	if (try_module_get(mod))
152 		return 0;
153 	else
154 		return -ENOENT;
155 }
156 
157 static inline void add_taint_module(struct module *mod, unsigned flag,
158 				    enum lockdep_ok lockdep_ok)
159 {
160 	add_taint(flag, lockdep_ok);
161 	set_bit(flag, &mod->taints);
162 }
163 
164 /*
165  * A thread that wants to hold a reference to a module only while it
166  * is running can call this to safely exit.
167  */
168 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
169 {
170 	module_put(mod);
171 	kthread_exit(code);
172 }
173 EXPORT_SYMBOL(__module_put_and_kthread_exit);
174 
175 /* Find a module section: 0 means not found. */
176 static unsigned int find_sec(const struct load_info *info, const char *name)
177 {
178 	unsigned int i;
179 
180 	for (i = 1; i < info->hdr->e_shnum; i++) {
181 		Elf_Shdr *shdr = &info->sechdrs[i];
182 		/* Alloc bit cleared means "ignore it." */
183 		if ((shdr->sh_flags & SHF_ALLOC)
184 		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
185 			return i;
186 	}
187 	return 0;
188 }
189 
190 /* Find a module section, or NULL. */
191 static void *section_addr(const struct load_info *info, const char *name)
192 {
193 	/* Section 0 has sh_addr 0. */
194 	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
195 }
196 
197 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
198 static void *section_objs(const struct load_info *info,
199 			  const char *name,
200 			  size_t object_size,
201 			  unsigned int *num)
202 {
203 	unsigned int sec = find_sec(info, name);
204 
205 	/* Section 0 has sh_addr 0 and sh_size 0. */
206 	*num = info->sechdrs[sec].sh_size / object_size;
207 	return (void *)info->sechdrs[sec].sh_addr;
208 }
209 
210 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
211 static unsigned int find_any_sec(const struct load_info *info, const char *name)
212 {
213 	unsigned int i;
214 
215 	for (i = 1; i < info->hdr->e_shnum; i++) {
216 		Elf_Shdr *shdr = &info->sechdrs[i];
217 		if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
218 			return i;
219 	}
220 	return 0;
221 }
222 
223 /*
224  * Find a module section, or NULL. Fill in number of "objects" in section.
225  * Ignores SHF_ALLOC flag.
226  */
227 static __maybe_unused void *any_section_objs(const struct load_info *info,
228 					     const char *name,
229 					     size_t object_size,
230 					     unsigned int *num)
231 {
232 	unsigned int sec = find_any_sec(info, name);
233 
234 	/* Section 0 has sh_addr 0 and sh_size 0. */
235 	*num = info->sechdrs[sec].sh_size / object_size;
236 	return (void *)info->sechdrs[sec].sh_addr;
237 }
238 
239 #ifndef CONFIG_MODVERSIONS
240 #define symversion(base, idx) NULL
241 #else
242 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
243 #endif
244 
245 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
246 {
247 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
248 	return offset_to_ptr(&sym->name_offset);
249 #else
250 	return sym->name;
251 #endif
252 }
253 
254 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
255 {
256 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
257 	if (!sym->namespace_offset)
258 		return NULL;
259 	return offset_to_ptr(&sym->namespace_offset);
260 #else
261 	return sym->namespace;
262 #endif
263 }
264 
265 int cmp_name(const void *name, const void *sym)
266 {
267 	return strcmp(name, kernel_symbol_name(sym));
268 }
269 
270 static bool find_exported_symbol_in_section(const struct symsearch *syms,
271 					    struct module *owner,
272 					    struct find_symbol_arg *fsa)
273 {
274 	struct kernel_symbol *sym;
275 
276 	if (!fsa->gplok && syms->license == GPL_ONLY)
277 		return false;
278 
279 	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
280 			sizeof(struct kernel_symbol), cmp_name);
281 	if (!sym)
282 		return false;
283 
284 	fsa->owner = owner;
285 	fsa->crc = symversion(syms->crcs, sym - syms->start);
286 	fsa->sym = sym;
287 	fsa->license = syms->license;
288 
289 	return true;
290 }
291 
292 /*
293  * Find an exported symbol and return it, along with, (optional) crc and
294  * (optional) module which owns it.  Needs preempt disabled or module_mutex.
295  */
296 bool find_symbol(struct find_symbol_arg *fsa)
297 {
298 	static const struct symsearch arr[] = {
299 		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
300 		  NOT_GPL_ONLY },
301 		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
302 		  __start___kcrctab_gpl,
303 		  GPL_ONLY },
304 	};
305 	struct module *mod;
306 	unsigned int i;
307 
308 	module_assert_mutex_or_preempt();
309 
310 	for (i = 0; i < ARRAY_SIZE(arr); i++)
311 		if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
312 			return true;
313 
314 	list_for_each_entry_rcu(mod, &modules, list,
315 				lockdep_is_held(&module_mutex)) {
316 		struct symsearch arr[] = {
317 			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
318 			  NOT_GPL_ONLY },
319 			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
320 			  mod->gpl_crcs,
321 			  GPL_ONLY },
322 		};
323 
324 		if (mod->state == MODULE_STATE_UNFORMED)
325 			continue;
326 
327 		for (i = 0; i < ARRAY_SIZE(arr); i++)
328 			if (find_exported_symbol_in_section(&arr[i], mod, fsa))
329 				return true;
330 	}
331 
332 	pr_debug("Failed to find symbol %s\n", fsa->name);
333 	return false;
334 }
335 
336 /*
337  * Search for module by name: must hold module_mutex (or preempt disabled
338  * for read-only access).
339  */
340 struct module *find_module_all(const char *name, size_t len,
341 			       bool even_unformed)
342 {
343 	struct module *mod;
344 
345 	module_assert_mutex_or_preempt();
346 
347 	list_for_each_entry_rcu(mod, &modules, list,
348 				lockdep_is_held(&module_mutex)) {
349 		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
350 			continue;
351 		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
352 			return mod;
353 	}
354 	return NULL;
355 }
356 
357 struct module *find_module(const char *name)
358 {
359 	return find_module_all(name, strlen(name), false);
360 }
361 
362 #ifdef CONFIG_SMP
363 
364 static inline void __percpu *mod_percpu(struct module *mod)
365 {
366 	return mod->percpu;
367 }
368 
369 static int percpu_modalloc(struct module *mod, struct load_info *info)
370 {
371 	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
372 	unsigned long align = pcpusec->sh_addralign;
373 
374 	if (!pcpusec->sh_size)
375 		return 0;
376 
377 	if (align > PAGE_SIZE) {
378 		pr_warn("%s: per-cpu alignment %li > %li\n",
379 			mod->name, align, PAGE_SIZE);
380 		align = PAGE_SIZE;
381 	}
382 
383 	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
384 	if (!mod->percpu) {
385 		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
386 			mod->name, (unsigned long)pcpusec->sh_size);
387 		return -ENOMEM;
388 	}
389 	mod->percpu_size = pcpusec->sh_size;
390 	return 0;
391 }
392 
393 static void percpu_modfree(struct module *mod)
394 {
395 	free_percpu(mod->percpu);
396 }
397 
398 static unsigned int find_pcpusec(struct load_info *info)
399 {
400 	return find_sec(info, ".data..percpu");
401 }
402 
403 static void percpu_modcopy(struct module *mod,
404 			   const void *from, unsigned long size)
405 {
406 	int cpu;
407 
408 	for_each_possible_cpu(cpu)
409 		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
410 }
411 
412 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
413 {
414 	struct module *mod;
415 	unsigned int cpu;
416 
417 	preempt_disable();
418 
419 	list_for_each_entry_rcu(mod, &modules, list) {
420 		if (mod->state == MODULE_STATE_UNFORMED)
421 			continue;
422 		if (!mod->percpu_size)
423 			continue;
424 		for_each_possible_cpu(cpu) {
425 			void *start = per_cpu_ptr(mod->percpu, cpu);
426 			void *va = (void *)addr;
427 
428 			if (va >= start && va < start + mod->percpu_size) {
429 				if (can_addr) {
430 					*can_addr = (unsigned long) (va - start);
431 					*can_addr += (unsigned long)
432 						per_cpu_ptr(mod->percpu,
433 							    get_boot_cpu_id());
434 				}
435 				preempt_enable();
436 				return true;
437 			}
438 		}
439 	}
440 
441 	preempt_enable();
442 	return false;
443 }
444 
445 /**
446  * is_module_percpu_address() - test whether address is from module static percpu
447  * @addr: address to test
448  *
449  * Test whether @addr belongs to module static percpu area.
450  *
451  * Return: %true if @addr is from module static percpu area
452  */
453 bool is_module_percpu_address(unsigned long addr)
454 {
455 	return __is_module_percpu_address(addr, NULL);
456 }
457 
458 #else /* ... !CONFIG_SMP */
459 
460 static inline void __percpu *mod_percpu(struct module *mod)
461 {
462 	return NULL;
463 }
464 static int percpu_modalloc(struct module *mod, struct load_info *info)
465 {
466 	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
467 	if (info->sechdrs[info->index.pcpu].sh_size != 0)
468 		return -ENOMEM;
469 	return 0;
470 }
471 static inline void percpu_modfree(struct module *mod)
472 {
473 }
474 static unsigned int find_pcpusec(struct load_info *info)
475 {
476 	return 0;
477 }
478 static inline void percpu_modcopy(struct module *mod,
479 				  const void *from, unsigned long size)
480 {
481 	/* pcpusec should be 0, and size of that section should be 0. */
482 	BUG_ON(size != 0);
483 }
484 bool is_module_percpu_address(unsigned long addr)
485 {
486 	return false;
487 }
488 
489 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
490 {
491 	return false;
492 }
493 
494 #endif /* CONFIG_SMP */
495 
496 #define MODINFO_ATTR(field)	\
497 static void setup_modinfo_##field(struct module *mod, const char *s)  \
498 {                                                                     \
499 	mod->field = kstrdup(s, GFP_KERNEL);                          \
500 }                                                                     \
501 static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
502 			struct module_kobject *mk, char *buffer)      \
503 {                                                                     \
504 	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
505 }                                                                     \
506 static int modinfo_##field##_exists(struct module *mod)               \
507 {                                                                     \
508 	return mod->field != NULL;                                    \
509 }                                                                     \
510 static void free_modinfo_##field(struct module *mod)                  \
511 {                                                                     \
512 	kfree(mod->field);                                            \
513 	mod->field = NULL;                                            \
514 }                                                                     \
515 static struct module_attribute modinfo_##field = {                    \
516 	.attr = { .name = __stringify(field), .mode = 0444 },         \
517 	.show = show_modinfo_##field,                                 \
518 	.setup = setup_modinfo_##field,                               \
519 	.test = modinfo_##field##_exists,                             \
520 	.free = free_modinfo_##field,                                 \
521 };
522 
523 MODINFO_ATTR(version);
524 MODINFO_ATTR(srcversion);
525 
526 static struct {
527 	char name[MODULE_NAME_LEN + 1];
528 	char taints[MODULE_FLAGS_BUF_SIZE];
529 } last_unloaded_module;
530 
531 #ifdef CONFIG_MODULE_UNLOAD
532 
533 EXPORT_TRACEPOINT_SYMBOL(module_get);
534 
535 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
536 #define MODULE_REF_BASE	1
537 
538 /* Init the unload section of the module. */
539 static int module_unload_init(struct module *mod)
540 {
541 	/*
542 	 * Initialize reference counter to MODULE_REF_BASE.
543 	 * refcnt == 0 means module is going.
544 	 */
545 	atomic_set(&mod->refcnt, MODULE_REF_BASE);
546 
547 	INIT_LIST_HEAD(&mod->source_list);
548 	INIT_LIST_HEAD(&mod->target_list);
549 
550 	/* Hold reference count during initialization. */
551 	atomic_inc(&mod->refcnt);
552 
553 	return 0;
554 }
555 
556 /* Does a already use b? */
557 static int already_uses(struct module *a, struct module *b)
558 {
559 	struct module_use *use;
560 
561 	list_for_each_entry(use, &b->source_list, source_list) {
562 		if (use->source == a) {
563 			pr_debug("%s uses %s!\n", a->name, b->name);
564 			return 1;
565 		}
566 	}
567 	pr_debug("%s does not use %s!\n", a->name, b->name);
568 	return 0;
569 }
570 
571 /*
572  * Module a uses b
573  *  - we add 'a' as a "source", 'b' as a "target" of module use
574  *  - the module_use is added to the list of 'b' sources (so
575  *    'b' can walk the list to see who sourced them), and of 'a'
576  *    targets (so 'a' can see what modules it targets).
577  */
578 static int add_module_usage(struct module *a, struct module *b)
579 {
580 	struct module_use *use;
581 
582 	pr_debug("Allocating new usage for %s.\n", a->name);
583 	use = kmalloc(sizeof(*use), GFP_ATOMIC);
584 	if (!use)
585 		return -ENOMEM;
586 
587 	use->source = a;
588 	use->target = b;
589 	list_add(&use->source_list, &b->source_list);
590 	list_add(&use->target_list, &a->target_list);
591 	return 0;
592 }
593 
594 /* Module a uses b: caller needs module_mutex() */
595 static int ref_module(struct module *a, struct module *b)
596 {
597 	int err;
598 
599 	if (b == NULL || already_uses(a, b))
600 		return 0;
601 
602 	/* If module isn't available, we fail. */
603 	err = strong_try_module_get(b);
604 	if (err)
605 		return err;
606 
607 	err = add_module_usage(a, b);
608 	if (err) {
609 		module_put(b);
610 		return err;
611 	}
612 	return 0;
613 }
614 
615 /* Clear the unload stuff of the module. */
616 static void module_unload_free(struct module *mod)
617 {
618 	struct module_use *use, *tmp;
619 
620 	mutex_lock(&module_mutex);
621 	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
622 		struct module *i = use->target;
623 		pr_debug("%s unusing %s\n", mod->name, i->name);
624 		module_put(i);
625 		list_del(&use->source_list);
626 		list_del(&use->target_list);
627 		kfree(use);
628 	}
629 	mutex_unlock(&module_mutex);
630 }
631 
632 #ifdef CONFIG_MODULE_FORCE_UNLOAD
633 static inline int try_force_unload(unsigned int flags)
634 {
635 	int ret = (flags & O_TRUNC);
636 	if (ret)
637 		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
638 	return ret;
639 }
640 #else
641 static inline int try_force_unload(unsigned int flags)
642 {
643 	return 0;
644 }
645 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
646 
647 /* Try to release refcount of module, 0 means success. */
648 static int try_release_module_ref(struct module *mod)
649 {
650 	int ret;
651 
652 	/* Try to decrement refcnt which we set at loading */
653 	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
654 	BUG_ON(ret < 0);
655 	if (ret)
656 		/* Someone can put this right now, recover with checking */
657 		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
658 
659 	return ret;
660 }
661 
662 static int try_stop_module(struct module *mod, int flags, int *forced)
663 {
664 	/* If it's not unused, quit unless we're forcing. */
665 	if (try_release_module_ref(mod) != 0) {
666 		*forced = try_force_unload(flags);
667 		if (!(*forced))
668 			return -EWOULDBLOCK;
669 	}
670 
671 	/* Mark it as dying. */
672 	mod->state = MODULE_STATE_GOING;
673 
674 	return 0;
675 }
676 
677 /**
678  * module_refcount() - return the refcount or -1 if unloading
679  * @mod:	the module we're checking
680  *
681  * Return:
682  *	-1 if the module is in the process of unloading
683  *	otherwise the number of references in the kernel to the module
684  */
685 int module_refcount(struct module *mod)
686 {
687 	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
688 }
689 EXPORT_SYMBOL(module_refcount);
690 
691 /* This exists whether we can unload or not */
692 static void free_module(struct module *mod);
693 
694 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
695 		unsigned int, flags)
696 {
697 	struct module *mod;
698 	char name[MODULE_NAME_LEN];
699 	char buf[MODULE_FLAGS_BUF_SIZE];
700 	int ret, forced = 0;
701 
702 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
703 		return -EPERM;
704 
705 	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
706 		return -EFAULT;
707 	name[MODULE_NAME_LEN-1] = '\0';
708 
709 	audit_log_kern_module(name);
710 
711 	if (mutex_lock_interruptible(&module_mutex) != 0)
712 		return -EINTR;
713 
714 	mod = find_module(name);
715 	if (!mod) {
716 		ret = -ENOENT;
717 		goto out;
718 	}
719 
720 	if (!list_empty(&mod->source_list)) {
721 		/* Other modules depend on us: get rid of them first. */
722 		ret = -EWOULDBLOCK;
723 		goto out;
724 	}
725 
726 	/* Doing init or already dying? */
727 	if (mod->state != MODULE_STATE_LIVE) {
728 		/* FIXME: if (force), slam module count damn the torpedoes */
729 		pr_debug("%s already dying\n", mod->name);
730 		ret = -EBUSY;
731 		goto out;
732 	}
733 
734 	/* If it has an init func, it must have an exit func to unload */
735 	if (mod->init && !mod->exit) {
736 		forced = try_force_unload(flags);
737 		if (!forced) {
738 			/* This module can't be removed */
739 			ret = -EBUSY;
740 			goto out;
741 		}
742 	}
743 
744 	ret = try_stop_module(mod, flags, &forced);
745 	if (ret != 0)
746 		goto out;
747 
748 	mutex_unlock(&module_mutex);
749 	/* Final destruction now no one is using it. */
750 	if (mod->exit != NULL)
751 		mod->exit();
752 	blocking_notifier_call_chain(&module_notify_list,
753 				     MODULE_STATE_GOING, mod);
754 	klp_module_going(mod);
755 	ftrace_release_mod(mod);
756 
757 	async_synchronize_full();
758 
759 	/* Store the name and taints of the last unloaded module for diagnostic purposes */
760 	strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name));
761 	strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints));
762 
763 	free_module(mod);
764 	/* someone could wait for the module in add_unformed_module() */
765 	wake_up_all(&module_wq);
766 	return 0;
767 out:
768 	mutex_unlock(&module_mutex);
769 	return ret;
770 }
771 
772 void __symbol_put(const char *symbol)
773 {
774 	struct find_symbol_arg fsa = {
775 		.name	= symbol,
776 		.gplok	= true,
777 	};
778 
779 	preempt_disable();
780 	BUG_ON(!find_symbol(&fsa));
781 	module_put(fsa.owner);
782 	preempt_enable();
783 }
784 EXPORT_SYMBOL(__symbol_put);
785 
786 /* Note this assumes addr is a function, which it currently always is. */
787 void symbol_put_addr(void *addr)
788 {
789 	struct module *modaddr;
790 	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
791 
792 	if (core_kernel_text(a))
793 		return;
794 
795 	/*
796 	 * Even though we hold a reference on the module; we still need to
797 	 * disable preemption in order to safely traverse the data structure.
798 	 */
799 	preempt_disable();
800 	modaddr = __module_text_address(a);
801 	BUG_ON(!modaddr);
802 	module_put(modaddr);
803 	preempt_enable();
804 }
805 EXPORT_SYMBOL_GPL(symbol_put_addr);
806 
807 static ssize_t show_refcnt(struct module_attribute *mattr,
808 			   struct module_kobject *mk, char *buffer)
809 {
810 	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
811 }
812 
813 static struct module_attribute modinfo_refcnt =
814 	__ATTR(refcnt, 0444, show_refcnt, NULL);
815 
816 void __module_get(struct module *module)
817 {
818 	if (module) {
819 		preempt_disable();
820 		atomic_inc(&module->refcnt);
821 		trace_module_get(module, _RET_IP_);
822 		preempt_enable();
823 	}
824 }
825 EXPORT_SYMBOL(__module_get);
826 
827 bool try_module_get(struct module *module)
828 {
829 	bool ret = true;
830 
831 	if (module) {
832 		preempt_disable();
833 		/* Note: here, we can fail to get a reference */
834 		if (likely(module_is_live(module) &&
835 			   atomic_inc_not_zero(&module->refcnt) != 0))
836 			trace_module_get(module, _RET_IP_);
837 		else
838 			ret = false;
839 
840 		preempt_enable();
841 	}
842 	return ret;
843 }
844 EXPORT_SYMBOL(try_module_get);
845 
846 void module_put(struct module *module)
847 {
848 	int ret;
849 
850 	if (module) {
851 		preempt_disable();
852 		ret = atomic_dec_if_positive(&module->refcnt);
853 		WARN_ON(ret < 0);	/* Failed to put refcount */
854 		trace_module_put(module, _RET_IP_);
855 		preempt_enable();
856 	}
857 }
858 EXPORT_SYMBOL(module_put);
859 
860 #else /* !CONFIG_MODULE_UNLOAD */
861 static inline void module_unload_free(struct module *mod)
862 {
863 }
864 
865 static int ref_module(struct module *a, struct module *b)
866 {
867 	return strong_try_module_get(b);
868 }
869 
870 static inline int module_unload_init(struct module *mod)
871 {
872 	return 0;
873 }
874 #endif /* CONFIG_MODULE_UNLOAD */
875 
876 size_t module_flags_taint(unsigned long taints, char *buf)
877 {
878 	size_t l = 0;
879 	int i;
880 
881 	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
882 		if (taint_flags[i].module && test_bit(i, &taints))
883 			buf[l++] = taint_flags[i].c_true;
884 	}
885 
886 	return l;
887 }
888 
889 static ssize_t show_initstate(struct module_attribute *mattr,
890 			      struct module_kobject *mk, char *buffer)
891 {
892 	const char *state = "unknown";
893 
894 	switch (mk->mod->state) {
895 	case MODULE_STATE_LIVE:
896 		state = "live";
897 		break;
898 	case MODULE_STATE_COMING:
899 		state = "coming";
900 		break;
901 	case MODULE_STATE_GOING:
902 		state = "going";
903 		break;
904 	default:
905 		BUG();
906 	}
907 	return sprintf(buffer, "%s\n", state);
908 }
909 
910 static struct module_attribute modinfo_initstate =
911 	__ATTR(initstate, 0444, show_initstate, NULL);
912 
913 static ssize_t store_uevent(struct module_attribute *mattr,
914 			    struct module_kobject *mk,
915 			    const char *buffer, size_t count)
916 {
917 	int rc;
918 
919 	rc = kobject_synth_uevent(&mk->kobj, buffer, count);
920 	return rc ? rc : count;
921 }
922 
923 struct module_attribute module_uevent =
924 	__ATTR(uevent, 0200, NULL, store_uevent);
925 
926 static ssize_t show_coresize(struct module_attribute *mattr,
927 			     struct module_kobject *mk, char *buffer)
928 {
929 	return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
930 }
931 
932 static struct module_attribute modinfo_coresize =
933 	__ATTR(coresize, 0444, show_coresize, NULL);
934 
935 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
936 static ssize_t show_datasize(struct module_attribute *mattr,
937 			     struct module_kobject *mk, char *buffer)
938 {
939 	return sprintf(buffer, "%u\n", mk->mod->data_layout.size);
940 }
941 
942 static struct module_attribute modinfo_datasize =
943 	__ATTR(datasize, 0444, show_datasize, NULL);
944 #endif
945 
946 static ssize_t show_initsize(struct module_attribute *mattr,
947 			     struct module_kobject *mk, char *buffer)
948 {
949 	return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
950 }
951 
952 static struct module_attribute modinfo_initsize =
953 	__ATTR(initsize, 0444, show_initsize, NULL);
954 
955 static ssize_t show_taint(struct module_attribute *mattr,
956 			  struct module_kobject *mk, char *buffer)
957 {
958 	size_t l;
959 
960 	l = module_flags_taint(mk->mod->taints, buffer);
961 	buffer[l++] = '\n';
962 	return l;
963 }
964 
965 static struct module_attribute modinfo_taint =
966 	__ATTR(taint, 0444, show_taint, NULL);
967 
968 struct module_attribute *modinfo_attrs[] = {
969 	&module_uevent,
970 	&modinfo_version,
971 	&modinfo_srcversion,
972 	&modinfo_initstate,
973 	&modinfo_coresize,
974 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
975 	&modinfo_datasize,
976 #endif
977 	&modinfo_initsize,
978 	&modinfo_taint,
979 #ifdef CONFIG_MODULE_UNLOAD
980 	&modinfo_refcnt,
981 #endif
982 	NULL,
983 };
984 
985 size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
986 
987 static const char vermagic[] = VERMAGIC_STRING;
988 
989 int try_to_force_load(struct module *mod, const char *reason)
990 {
991 #ifdef CONFIG_MODULE_FORCE_LOAD
992 	if (!test_taint(TAINT_FORCED_MODULE))
993 		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
994 	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
995 	return 0;
996 #else
997 	return -ENOEXEC;
998 #endif
999 }
1000 
1001 static char *get_modinfo(const struct load_info *info, const char *tag);
1002 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1003 			      char *prev);
1004 
1005 static int verify_namespace_is_imported(const struct load_info *info,
1006 					const struct kernel_symbol *sym,
1007 					struct module *mod)
1008 {
1009 	const char *namespace;
1010 	char *imported_namespace;
1011 
1012 	namespace = kernel_symbol_namespace(sym);
1013 	if (namespace && namespace[0]) {
1014 		imported_namespace = get_modinfo(info, "import_ns");
1015 		while (imported_namespace) {
1016 			if (strcmp(namespace, imported_namespace) == 0)
1017 				return 0;
1018 			imported_namespace = get_next_modinfo(
1019 				info, "import_ns", imported_namespace);
1020 		}
1021 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1022 		pr_warn(
1023 #else
1024 		pr_err(
1025 #endif
1026 			"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1027 			mod->name, kernel_symbol_name(sym), namespace);
1028 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1029 		return -EINVAL;
1030 #endif
1031 	}
1032 	return 0;
1033 }
1034 
1035 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1036 {
1037 	if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1038 		return true;
1039 
1040 	if (mod->using_gplonly_symbols) {
1041 		pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1042 			mod->name, name, owner->name);
1043 		return false;
1044 	}
1045 
1046 	if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1047 		pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1048 			mod->name, name, owner->name);
1049 		set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1050 	}
1051 	return true;
1052 }
1053 
1054 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
1055 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1056 						  const struct load_info *info,
1057 						  const char *name,
1058 						  char ownername[])
1059 {
1060 	struct find_symbol_arg fsa = {
1061 		.name	= name,
1062 		.gplok	= !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1063 		.warn	= true,
1064 	};
1065 	int err;
1066 
1067 	/*
1068 	 * The module_mutex should not be a heavily contended lock;
1069 	 * if we get the occasional sleep here, we'll go an extra iteration
1070 	 * in the wait_event_interruptible(), which is harmless.
1071 	 */
1072 	sched_annotate_sleep();
1073 	mutex_lock(&module_mutex);
1074 	if (!find_symbol(&fsa))
1075 		goto unlock;
1076 
1077 	if (fsa.license == GPL_ONLY)
1078 		mod->using_gplonly_symbols = true;
1079 
1080 	if (!inherit_taint(mod, fsa.owner, name)) {
1081 		fsa.sym = NULL;
1082 		goto getname;
1083 	}
1084 
1085 	if (!check_version(info, name, mod, fsa.crc)) {
1086 		fsa.sym = ERR_PTR(-EINVAL);
1087 		goto getname;
1088 	}
1089 
1090 	err = verify_namespace_is_imported(info, fsa.sym, mod);
1091 	if (err) {
1092 		fsa.sym = ERR_PTR(err);
1093 		goto getname;
1094 	}
1095 
1096 	err = ref_module(mod, fsa.owner);
1097 	if (err) {
1098 		fsa.sym = ERR_PTR(err);
1099 		goto getname;
1100 	}
1101 
1102 getname:
1103 	/* We must make copy under the lock if we failed to get ref. */
1104 	strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1105 unlock:
1106 	mutex_unlock(&module_mutex);
1107 	return fsa.sym;
1108 }
1109 
1110 static const struct kernel_symbol *
1111 resolve_symbol_wait(struct module *mod,
1112 		    const struct load_info *info,
1113 		    const char *name)
1114 {
1115 	const struct kernel_symbol *ksym;
1116 	char owner[MODULE_NAME_LEN];
1117 
1118 	if (wait_event_interruptible_timeout(module_wq,
1119 			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1120 			|| PTR_ERR(ksym) != -EBUSY,
1121 					     30 * HZ) <= 0) {
1122 		pr_warn("%s: gave up waiting for init of module %s.\n",
1123 			mod->name, owner);
1124 	}
1125 	return ksym;
1126 }
1127 
1128 void __weak module_memfree(void *module_region)
1129 {
1130 	/*
1131 	 * This memory may be RO, and freeing RO memory in an interrupt is not
1132 	 * supported by vmalloc.
1133 	 */
1134 	WARN_ON(in_interrupt());
1135 	vfree(module_region);
1136 }
1137 
1138 void __weak module_arch_cleanup(struct module *mod)
1139 {
1140 }
1141 
1142 void __weak module_arch_freeing_init(struct module *mod)
1143 {
1144 }
1145 
1146 /* Free a module, remove from lists, etc. */
1147 static void free_module(struct module *mod)
1148 {
1149 	trace_module_free(mod);
1150 
1151 	mod_sysfs_teardown(mod);
1152 
1153 	/*
1154 	 * We leave it in list to prevent duplicate loads, but make sure
1155 	 * that noone uses it while it's being deconstructed.
1156 	 */
1157 	mutex_lock(&module_mutex);
1158 	mod->state = MODULE_STATE_UNFORMED;
1159 	mutex_unlock(&module_mutex);
1160 
1161 	/* Remove dynamic debug info */
1162 	ddebug_remove_module(mod->name);
1163 
1164 	/* Arch-specific cleanup. */
1165 	module_arch_cleanup(mod);
1166 
1167 	/* Module unload stuff */
1168 	module_unload_free(mod);
1169 
1170 	/* Free any allocated parameters. */
1171 	destroy_params(mod->kp, mod->num_kp);
1172 
1173 	if (is_livepatch_module(mod))
1174 		free_module_elf(mod);
1175 
1176 	/* Now we can delete it from the lists */
1177 	mutex_lock(&module_mutex);
1178 	/* Unlink carefully: kallsyms could be walking list. */
1179 	list_del_rcu(&mod->list);
1180 	mod_tree_remove(mod);
1181 	/* Remove this module from bug list, this uses list_del_rcu */
1182 	module_bug_cleanup(mod);
1183 	/* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
1184 	synchronize_rcu();
1185 	if (try_add_tainted_module(mod))
1186 		pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1187 		       mod->name);
1188 	mutex_unlock(&module_mutex);
1189 
1190 	/* This may be empty, but that's OK */
1191 	module_arch_freeing_init(mod);
1192 	module_memfree(mod->init_layout.base);
1193 	kfree(mod->args);
1194 	percpu_modfree(mod);
1195 
1196 	/* Free lock-classes; relies on the preceding sync_rcu(). */
1197 	lockdep_free_key_range(mod->data_layout.base, mod->data_layout.size);
1198 
1199 	/* Finally, free the core (containing the module structure) */
1200 	module_memfree(mod->core_layout.base);
1201 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
1202 	vfree(mod->data_layout.base);
1203 #endif
1204 }
1205 
1206 void *__symbol_get(const char *symbol)
1207 {
1208 	struct find_symbol_arg fsa = {
1209 		.name	= symbol,
1210 		.gplok	= true,
1211 		.warn	= true,
1212 	};
1213 
1214 	preempt_disable();
1215 	if (!find_symbol(&fsa) || strong_try_module_get(fsa.owner)) {
1216 		preempt_enable();
1217 		return NULL;
1218 	}
1219 	preempt_enable();
1220 	return (void *)kernel_symbol_value(fsa.sym);
1221 }
1222 EXPORT_SYMBOL_GPL(__symbol_get);
1223 
1224 /*
1225  * Ensure that an exported symbol [global namespace] does not already exist
1226  * in the kernel or in some other module's exported symbol table.
1227  *
1228  * You must hold the module_mutex.
1229  */
1230 static int verify_exported_symbols(struct module *mod)
1231 {
1232 	unsigned int i;
1233 	const struct kernel_symbol *s;
1234 	struct {
1235 		const struct kernel_symbol *sym;
1236 		unsigned int num;
1237 	} arr[] = {
1238 		{ mod->syms, mod->num_syms },
1239 		{ mod->gpl_syms, mod->num_gpl_syms },
1240 	};
1241 
1242 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1243 		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1244 			struct find_symbol_arg fsa = {
1245 				.name	= kernel_symbol_name(s),
1246 				.gplok	= true,
1247 			};
1248 			if (find_symbol(&fsa)) {
1249 				pr_err("%s: exports duplicate symbol %s"
1250 				       " (owned by %s)\n",
1251 				       mod->name, kernel_symbol_name(s),
1252 				       module_name(fsa.owner));
1253 				return -ENOEXEC;
1254 			}
1255 		}
1256 	}
1257 	return 0;
1258 }
1259 
1260 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1261 {
1262 	/*
1263 	 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1264 	 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1265 	 * i386 has a similar problem but may not deserve a fix.
1266 	 *
1267 	 * If we ever have to ignore many symbols, consider refactoring the code to
1268 	 * only warn if referenced by a relocation.
1269 	 */
1270 	if (emachine == EM_386 || emachine == EM_X86_64)
1271 		return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1272 	return false;
1273 }
1274 
1275 /* Change all symbols so that st_value encodes the pointer directly. */
1276 static int simplify_symbols(struct module *mod, const struct load_info *info)
1277 {
1278 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1279 	Elf_Sym *sym = (void *)symsec->sh_addr;
1280 	unsigned long secbase;
1281 	unsigned int i;
1282 	int ret = 0;
1283 	const struct kernel_symbol *ksym;
1284 
1285 	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1286 		const char *name = info->strtab + sym[i].st_name;
1287 
1288 		switch (sym[i].st_shndx) {
1289 		case SHN_COMMON:
1290 			/* Ignore common symbols */
1291 			if (!strncmp(name, "__gnu_lto", 9))
1292 				break;
1293 
1294 			/*
1295 			 * We compiled with -fno-common.  These are not
1296 			 * supposed to happen.
1297 			 */
1298 			pr_debug("Common symbol: %s\n", name);
1299 			pr_warn("%s: please compile with -fno-common\n",
1300 			       mod->name);
1301 			ret = -ENOEXEC;
1302 			break;
1303 
1304 		case SHN_ABS:
1305 			/* Don't need to do anything */
1306 			pr_debug("Absolute symbol: 0x%08lx\n",
1307 			       (long)sym[i].st_value);
1308 			break;
1309 
1310 		case SHN_LIVEPATCH:
1311 			/* Livepatch symbols are resolved by livepatch */
1312 			break;
1313 
1314 		case SHN_UNDEF:
1315 			ksym = resolve_symbol_wait(mod, info, name);
1316 			/* Ok if resolved.  */
1317 			if (ksym && !IS_ERR(ksym)) {
1318 				sym[i].st_value = kernel_symbol_value(ksym);
1319 				break;
1320 			}
1321 
1322 			/* Ok if weak or ignored.  */
1323 			if (!ksym &&
1324 			    (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1325 			     ignore_undef_symbol(info->hdr->e_machine, name)))
1326 				break;
1327 
1328 			ret = PTR_ERR(ksym) ?: -ENOENT;
1329 			pr_warn("%s: Unknown symbol %s (err %d)\n",
1330 				mod->name, name, ret);
1331 			break;
1332 
1333 		default:
1334 			/* Divert to percpu allocation if a percpu var. */
1335 			if (sym[i].st_shndx == info->index.pcpu)
1336 				secbase = (unsigned long)mod_percpu(mod);
1337 			else
1338 				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1339 			sym[i].st_value += secbase;
1340 			break;
1341 		}
1342 	}
1343 
1344 	return ret;
1345 }
1346 
1347 static int apply_relocations(struct module *mod, const struct load_info *info)
1348 {
1349 	unsigned int i;
1350 	int err = 0;
1351 
1352 	/* Now do relocations. */
1353 	for (i = 1; i < info->hdr->e_shnum; i++) {
1354 		unsigned int infosec = info->sechdrs[i].sh_info;
1355 
1356 		/* Not a valid relocation section? */
1357 		if (infosec >= info->hdr->e_shnum)
1358 			continue;
1359 
1360 		/* Don't bother with non-allocated sections */
1361 		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1362 			continue;
1363 
1364 		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1365 			err = klp_apply_section_relocs(mod, info->sechdrs,
1366 						       info->secstrings,
1367 						       info->strtab,
1368 						       info->index.sym, i,
1369 						       NULL);
1370 		else if (info->sechdrs[i].sh_type == SHT_REL)
1371 			err = apply_relocate(info->sechdrs, info->strtab,
1372 					     info->index.sym, i, mod);
1373 		else if (info->sechdrs[i].sh_type == SHT_RELA)
1374 			err = apply_relocate_add(info->sechdrs, info->strtab,
1375 						 info->index.sym, i, mod);
1376 		if (err < 0)
1377 			break;
1378 	}
1379 	return err;
1380 }
1381 
1382 /* Additional bytes needed by arch in front of individual sections */
1383 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1384 					     unsigned int section)
1385 {
1386 	/* default implementation just returns zero */
1387 	return 0;
1388 }
1389 
1390 /* Update size with this section: return offset. */
1391 long module_get_offset(struct module *mod, unsigned int *size,
1392 		       Elf_Shdr *sechdr, unsigned int section)
1393 {
1394 	long ret;
1395 
1396 	*size += arch_mod_section_prepend(mod, section);
1397 	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
1398 	*size = ret + sechdr->sh_size;
1399 	return ret;
1400 }
1401 
1402 static bool module_init_layout_section(const char *sname)
1403 {
1404 #ifndef CONFIG_MODULE_UNLOAD
1405 	if (module_exit_section(sname))
1406 		return true;
1407 #endif
1408 	return module_init_section(sname);
1409 }
1410 
1411 /*
1412  * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1413  * might -- code, read-only data, read-write data, small data.  Tally
1414  * sizes, and place the offsets into sh_entsize fields: high bit means it
1415  * belongs in init.
1416  */
1417 static void layout_sections(struct module *mod, struct load_info *info)
1418 {
1419 	static unsigned long const masks[][2] = {
1420 		/*
1421 		 * NOTE: all executable code must be the first section
1422 		 * in this array; otherwise modify the text_size
1423 		 * finder in the two loops below
1424 		 */
1425 		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1426 		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1427 		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1428 		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1429 		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1430 	};
1431 	unsigned int m, i;
1432 
1433 	for (i = 0; i < info->hdr->e_shnum; i++)
1434 		info->sechdrs[i].sh_entsize = ~0UL;
1435 
1436 	pr_debug("Core section allocation order:\n");
1437 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1438 		for (i = 0; i < info->hdr->e_shnum; ++i) {
1439 			Elf_Shdr *s = &info->sechdrs[i];
1440 			const char *sname = info->secstrings + s->sh_name;
1441 			unsigned int *sizep;
1442 
1443 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
1444 			    || (s->sh_flags & masks[m][1])
1445 			    || s->sh_entsize != ~0UL
1446 			    || module_init_layout_section(sname))
1447 				continue;
1448 			sizep = m ? &mod->data_layout.size : &mod->core_layout.size;
1449 			s->sh_entsize = module_get_offset(mod, sizep, s, i);
1450 			pr_debug("\t%s\n", sname);
1451 		}
1452 		switch (m) {
1453 		case 0: /* executable */
1454 			mod->core_layout.size = strict_align(mod->core_layout.size);
1455 			mod->core_layout.text_size = mod->core_layout.size;
1456 			break;
1457 		case 1: /* RO: text and ro-data */
1458 			mod->data_layout.size = strict_align(mod->data_layout.size);
1459 			mod->data_layout.ro_size = mod->data_layout.size;
1460 			break;
1461 		case 2: /* RO after init */
1462 			mod->data_layout.size = strict_align(mod->data_layout.size);
1463 			mod->data_layout.ro_after_init_size = mod->data_layout.size;
1464 			break;
1465 		case 4: /* whole core */
1466 			mod->data_layout.size = strict_align(mod->data_layout.size);
1467 			break;
1468 		}
1469 	}
1470 
1471 	pr_debug("Init section allocation order:\n");
1472 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1473 		for (i = 0; i < info->hdr->e_shnum; ++i) {
1474 			Elf_Shdr *s = &info->sechdrs[i];
1475 			const char *sname = info->secstrings + s->sh_name;
1476 
1477 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
1478 			    || (s->sh_flags & masks[m][1])
1479 			    || s->sh_entsize != ~0UL
1480 			    || !module_init_layout_section(sname))
1481 				continue;
1482 			s->sh_entsize = (module_get_offset(mod, &mod->init_layout.size, s, i)
1483 					 | INIT_OFFSET_MASK);
1484 			pr_debug("\t%s\n", sname);
1485 		}
1486 		switch (m) {
1487 		case 0: /* executable */
1488 			mod->init_layout.size = strict_align(mod->init_layout.size);
1489 			mod->init_layout.text_size = mod->init_layout.size;
1490 			break;
1491 		case 1: /* RO: text and ro-data */
1492 			mod->init_layout.size = strict_align(mod->init_layout.size);
1493 			mod->init_layout.ro_size = mod->init_layout.size;
1494 			break;
1495 		case 2:
1496 			/*
1497 			 * RO after init doesn't apply to init_layout (only
1498 			 * core_layout), so it just takes the value of ro_size.
1499 			 */
1500 			mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
1501 			break;
1502 		case 4: /* whole init */
1503 			mod->init_layout.size = strict_align(mod->init_layout.size);
1504 			break;
1505 		}
1506 	}
1507 }
1508 
1509 static void set_license(struct module *mod, const char *license)
1510 {
1511 	if (!license)
1512 		license = "unspecified";
1513 
1514 	if (!license_is_gpl_compatible(license)) {
1515 		if (!test_taint(TAINT_PROPRIETARY_MODULE))
1516 			pr_warn("%s: module license '%s' taints kernel.\n",
1517 				mod->name, license);
1518 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1519 				 LOCKDEP_NOW_UNRELIABLE);
1520 	}
1521 }
1522 
1523 /* Parse tag=value strings from .modinfo section */
1524 static char *next_string(char *string, unsigned long *secsize)
1525 {
1526 	/* Skip non-zero chars */
1527 	while (string[0]) {
1528 		string++;
1529 		if ((*secsize)-- <= 1)
1530 			return NULL;
1531 	}
1532 
1533 	/* Skip any zero padding. */
1534 	while (!string[0]) {
1535 		string++;
1536 		if ((*secsize)-- <= 1)
1537 			return NULL;
1538 	}
1539 	return string;
1540 }
1541 
1542 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1543 			      char *prev)
1544 {
1545 	char *p;
1546 	unsigned int taglen = strlen(tag);
1547 	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1548 	unsigned long size = infosec->sh_size;
1549 
1550 	/*
1551 	 * get_modinfo() calls made before rewrite_section_headers()
1552 	 * must use sh_offset, as sh_addr isn't set!
1553 	 */
1554 	char *modinfo = (char *)info->hdr + infosec->sh_offset;
1555 
1556 	if (prev) {
1557 		size -= prev - modinfo;
1558 		modinfo = next_string(prev, &size);
1559 	}
1560 
1561 	for (p = modinfo; p; p = next_string(p, &size)) {
1562 		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1563 			return p + taglen + 1;
1564 	}
1565 	return NULL;
1566 }
1567 
1568 static char *get_modinfo(const struct load_info *info, const char *tag)
1569 {
1570 	return get_next_modinfo(info, tag, NULL);
1571 }
1572 
1573 static void setup_modinfo(struct module *mod, struct load_info *info)
1574 {
1575 	struct module_attribute *attr;
1576 	int i;
1577 
1578 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1579 		if (attr->setup)
1580 			attr->setup(mod, get_modinfo(info, attr->attr.name));
1581 	}
1582 }
1583 
1584 static void free_modinfo(struct module *mod)
1585 {
1586 	struct module_attribute *attr;
1587 	int i;
1588 
1589 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1590 		if (attr->free)
1591 			attr->free(mod);
1592 	}
1593 }
1594 
1595 static void dynamic_debug_setup(struct module *mod, struct _ddebug_info *dyndbg)
1596 {
1597 	if (!dyndbg->num_descs)
1598 		return;
1599 	ddebug_add_module(dyndbg, mod->name);
1600 }
1601 
1602 static void dynamic_debug_remove(struct module *mod, struct _ddebug_info *dyndbg)
1603 {
1604 	if (dyndbg->num_descs)
1605 		ddebug_remove_module(mod->name);
1606 }
1607 
1608 void * __weak module_alloc(unsigned long size)
1609 {
1610 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
1611 			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
1612 			NUMA_NO_NODE, __builtin_return_address(0));
1613 }
1614 
1615 bool __weak module_init_section(const char *name)
1616 {
1617 	return strstarts(name, ".init");
1618 }
1619 
1620 bool __weak module_exit_section(const char *name)
1621 {
1622 	return strstarts(name, ".exit");
1623 }
1624 
1625 static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr)
1626 {
1627 #if defined(CONFIG_64BIT)
1628 	unsigned long long secend;
1629 #else
1630 	unsigned long secend;
1631 #endif
1632 
1633 	/*
1634 	 * Check for both overflow and offset/size being
1635 	 * too large.
1636 	 */
1637 	secend = shdr->sh_offset + shdr->sh_size;
1638 	if (secend < shdr->sh_offset || secend > info->len)
1639 		return -ENOEXEC;
1640 
1641 	return 0;
1642 }
1643 
1644 /*
1645  * Sanity checks against invalid binaries, wrong arch, weird elf version.
1646  *
1647  * Also do basic validity checks against section offsets and sizes, the
1648  * section name string table, and the indices used for it (sh_name).
1649  */
1650 static int elf_validity_check(struct load_info *info)
1651 {
1652 	unsigned int i;
1653 	Elf_Shdr *shdr, *strhdr;
1654 	int err;
1655 
1656 	if (info->len < sizeof(*(info->hdr))) {
1657 		pr_err("Invalid ELF header len %lu\n", info->len);
1658 		goto no_exec;
1659 	}
1660 
1661 	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1662 		pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1663 		goto no_exec;
1664 	}
1665 	if (info->hdr->e_type != ET_REL) {
1666 		pr_err("Invalid ELF header type: %u != %u\n",
1667 		       info->hdr->e_type, ET_REL);
1668 		goto no_exec;
1669 	}
1670 	if (!elf_check_arch(info->hdr)) {
1671 		pr_err("Invalid architecture in ELF header: %u\n",
1672 		       info->hdr->e_machine);
1673 		goto no_exec;
1674 	}
1675 	if (!module_elf_check_arch(info->hdr)) {
1676 		pr_err("Invalid module architecture in ELF header: %u\n",
1677 		       info->hdr->e_machine);
1678 		goto no_exec;
1679 	}
1680 	if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1681 		pr_err("Invalid ELF section header size\n");
1682 		goto no_exec;
1683 	}
1684 
1685 	/*
1686 	 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1687 	 * known and small. So e_shnum * sizeof(Elf_Shdr)
1688 	 * will not overflow unsigned long on any platform.
1689 	 */
1690 	if (info->hdr->e_shoff >= info->len
1691 	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1692 		info->len - info->hdr->e_shoff)) {
1693 		pr_err("Invalid ELF section header overflow\n");
1694 		goto no_exec;
1695 	}
1696 
1697 	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1698 
1699 	/*
1700 	 * Verify if the section name table index is valid.
1701 	 */
1702 	if (info->hdr->e_shstrndx == SHN_UNDEF
1703 	    || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1704 		pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1705 		       info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1706 		       info->hdr->e_shnum);
1707 		goto no_exec;
1708 	}
1709 
1710 	strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1711 	err = validate_section_offset(info, strhdr);
1712 	if (err < 0) {
1713 		pr_err("Invalid ELF section hdr(type %u)\n", strhdr->sh_type);
1714 		return err;
1715 	}
1716 
1717 	/*
1718 	 * The section name table must be NUL-terminated, as required
1719 	 * by the spec. This makes strcmp and pr_* calls that access
1720 	 * strings in the section safe.
1721 	 */
1722 	info->secstrings = (void *)info->hdr + strhdr->sh_offset;
1723 	if (strhdr->sh_size == 0) {
1724 		pr_err("empty section name table\n");
1725 		goto no_exec;
1726 	}
1727 	if (info->secstrings[strhdr->sh_size - 1] != '\0') {
1728 		pr_err("ELF Spec violation: section name table isn't null terminated\n");
1729 		goto no_exec;
1730 	}
1731 
1732 	/*
1733 	 * The code assumes that section 0 has a length of zero and
1734 	 * an addr of zero, so check for it.
1735 	 */
1736 	if (info->sechdrs[0].sh_type != SHT_NULL
1737 	    || info->sechdrs[0].sh_size != 0
1738 	    || info->sechdrs[0].sh_addr != 0) {
1739 		pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1740 		       info->sechdrs[0].sh_type);
1741 		goto no_exec;
1742 	}
1743 
1744 	for (i = 1; i < info->hdr->e_shnum; i++) {
1745 		shdr = &info->sechdrs[i];
1746 		switch (shdr->sh_type) {
1747 		case SHT_NULL:
1748 		case SHT_NOBITS:
1749 			continue;
1750 		case SHT_SYMTAB:
1751 			if (shdr->sh_link == SHN_UNDEF
1752 			    || shdr->sh_link >= info->hdr->e_shnum) {
1753 				pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
1754 				       shdr->sh_link, shdr->sh_link,
1755 				       info->hdr->e_shnum);
1756 				goto no_exec;
1757 			}
1758 			fallthrough;
1759 		default:
1760 			err = validate_section_offset(info, shdr);
1761 			if (err < 0) {
1762 				pr_err("Invalid ELF section in module (section %u type %u)\n",
1763 					i, shdr->sh_type);
1764 				return err;
1765 			}
1766 
1767 			if (shdr->sh_flags & SHF_ALLOC) {
1768 				if (shdr->sh_name >= strhdr->sh_size) {
1769 					pr_err("Invalid ELF section name in module (section %u type %u)\n",
1770 					       i, shdr->sh_type);
1771 					return -ENOEXEC;
1772 				}
1773 			}
1774 			break;
1775 		}
1776 	}
1777 
1778 	return 0;
1779 
1780 no_exec:
1781 	return -ENOEXEC;
1782 }
1783 
1784 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
1785 
1786 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
1787 {
1788 	do {
1789 		unsigned long n = min(len, COPY_CHUNK_SIZE);
1790 
1791 		if (copy_from_user(dst, usrc, n) != 0)
1792 			return -EFAULT;
1793 		cond_resched();
1794 		dst += n;
1795 		usrc += n;
1796 		len -= n;
1797 	} while (len);
1798 	return 0;
1799 }
1800 
1801 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
1802 {
1803 	if (!get_modinfo(info, "livepatch"))
1804 		/* Nothing more to do */
1805 		return 0;
1806 
1807 	if (set_livepatch_module(mod)) {
1808 		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
1809 		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
1810 				mod->name);
1811 		return 0;
1812 	}
1813 
1814 	pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
1815 	       mod->name);
1816 	return -ENOEXEC;
1817 }
1818 
1819 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
1820 {
1821 	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
1822 		return;
1823 
1824 	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
1825 		mod->name);
1826 }
1827 
1828 /* Sets info->hdr and info->len. */
1829 static int copy_module_from_user(const void __user *umod, unsigned long len,
1830 				  struct load_info *info)
1831 {
1832 	int err;
1833 
1834 	info->len = len;
1835 	if (info->len < sizeof(*(info->hdr)))
1836 		return -ENOEXEC;
1837 
1838 	err = security_kernel_load_data(LOADING_MODULE, true);
1839 	if (err)
1840 		return err;
1841 
1842 	/* Suck in entire file: we'll want most of it. */
1843 	info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
1844 	if (!info->hdr)
1845 		return -ENOMEM;
1846 
1847 	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
1848 		err = -EFAULT;
1849 		goto out;
1850 	}
1851 
1852 	err = security_kernel_post_load_data((char *)info->hdr, info->len,
1853 					     LOADING_MODULE, "init_module");
1854 out:
1855 	if (err)
1856 		vfree(info->hdr);
1857 
1858 	return err;
1859 }
1860 
1861 static void free_copy(struct load_info *info, int flags)
1862 {
1863 	if (flags & MODULE_INIT_COMPRESSED_FILE)
1864 		module_decompress_cleanup(info);
1865 	else
1866 		vfree(info->hdr);
1867 }
1868 
1869 static int rewrite_section_headers(struct load_info *info, int flags)
1870 {
1871 	unsigned int i;
1872 
1873 	/* This should always be true, but let's be sure. */
1874 	info->sechdrs[0].sh_addr = 0;
1875 
1876 	for (i = 1; i < info->hdr->e_shnum; i++) {
1877 		Elf_Shdr *shdr = &info->sechdrs[i];
1878 
1879 		/*
1880 		 * Mark all sections sh_addr with their address in the
1881 		 * temporary image.
1882 		 */
1883 		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
1884 
1885 	}
1886 
1887 	/* Track but don't keep modinfo and version sections. */
1888 	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
1889 	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
1890 
1891 	return 0;
1892 }
1893 
1894 /*
1895  * Set up our basic convenience variables (pointers to section headers,
1896  * search for module section index etc), and do some basic section
1897  * verification.
1898  *
1899  * Set info->mod to the temporary copy of the module in info->hdr. The final one
1900  * will be allocated in move_module().
1901  */
1902 static int setup_load_info(struct load_info *info, int flags)
1903 {
1904 	unsigned int i;
1905 
1906 	/* Try to find a name early so we can log errors with a module name */
1907 	info->index.info = find_sec(info, ".modinfo");
1908 	if (info->index.info)
1909 		info->name = get_modinfo(info, "name");
1910 
1911 	/* Find internal symbols and strings. */
1912 	for (i = 1; i < info->hdr->e_shnum; i++) {
1913 		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
1914 			info->index.sym = i;
1915 			info->index.str = info->sechdrs[i].sh_link;
1916 			info->strtab = (char *)info->hdr
1917 				+ info->sechdrs[info->index.str].sh_offset;
1918 			break;
1919 		}
1920 	}
1921 
1922 	if (info->index.sym == 0) {
1923 		pr_warn("%s: module has no symbols (stripped?)\n",
1924 			info->name ?: "(missing .modinfo section or name field)");
1925 		return -ENOEXEC;
1926 	}
1927 
1928 	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
1929 	if (!info->index.mod) {
1930 		pr_warn("%s: No module found in object\n",
1931 			info->name ?: "(missing .modinfo section or name field)");
1932 		return -ENOEXEC;
1933 	}
1934 	/* This is temporary: point mod into copy of data. */
1935 	info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
1936 
1937 	/*
1938 	 * If we didn't load the .modinfo 'name' field earlier, fall back to
1939 	 * on-disk struct mod 'name' field.
1940 	 */
1941 	if (!info->name)
1942 		info->name = info->mod->name;
1943 
1944 	if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
1945 		info->index.vers = 0; /* Pretend no __versions section! */
1946 	else
1947 		info->index.vers = find_sec(info, "__versions");
1948 
1949 	info->index.pcpu = find_pcpusec(info);
1950 
1951 	return 0;
1952 }
1953 
1954 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
1955 {
1956 	const char *modmagic = get_modinfo(info, "vermagic");
1957 	int err;
1958 
1959 	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
1960 		modmagic = NULL;
1961 
1962 	/* This is allowed: modprobe --force will invalidate it. */
1963 	if (!modmagic) {
1964 		err = try_to_force_load(mod, "bad vermagic");
1965 		if (err)
1966 			return err;
1967 	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
1968 		pr_err("%s: version magic '%s' should be '%s'\n",
1969 		       info->name, modmagic, vermagic);
1970 		return -ENOEXEC;
1971 	}
1972 
1973 	if (!get_modinfo(info, "intree")) {
1974 		if (!test_taint(TAINT_OOT_MODULE))
1975 			pr_warn("%s: loading out-of-tree module taints kernel.\n",
1976 				mod->name);
1977 		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
1978 	}
1979 
1980 	check_modinfo_retpoline(mod, info);
1981 
1982 	if (get_modinfo(info, "staging")) {
1983 		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
1984 		pr_warn("%s: module is from the staging directory, the quality "
1985 			"is unknown, you have been warned.\n", mod->name);
1986 	}
1987 
1988 	err = check_modinfo_livepatch(mod, info);
1989 	if (err)
1990 		return err;
1991 
1992 	/* Set up license info based on the info section */
1993 	set_license(mod, get_modinfo(info, "license"));
1994 
1995 	if (get_modinfo(info, "test")) {
1996 		if (!test_taint(TAINT_TEST))
1997 			pr_warn("%s: loading test module taints kernel.\n",
1998 				mod->name);
1999 		add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
2000 	}
2001 
2002 	return 0;
2003 }
2004 
2005 static int find_module_sections(struct module *mod, struct load_info *info)
2006 {
2007 	mod->kp = section_objs(info, "__param",
2008 			       sizeof(*mod->kp), &mod->num_kp);
2009 	mod->syms = section_objs(info, "__ksymtab",
2010 				 sizeof(*mod->syms), &mod->num_syms);
2011 	mod->crcs = section_addr(info, "__kcrctab");
2012 	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2013 				     sizeof(*mod->gpl_syms),
2014 				     &mod->num_gpl_syms);
2015 	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2016 
2017 #ifdef CONFIG_CONSTRUCTORS
2018 	mod->ctors = section_objs(info, ".ctors",
2019 				  sizeof(*mod->ctors), &mod->num_ctors);
2020 	if (!mod->ctors)
2021 		mod->ctors = section_objs(info, ".init_array",
2022 				sizeof(*mod->ctors), &mod->num_ctors);
2023 	else if (find_sec(info, ".init_array")) {
2024 		/*
2025 		 * This shouldn't happen with same compiler and binutils
2026 		 * building all parts of the module.
2027 		 */
2028 		pr_warn("%s: has both .ctors and .init_array.\n",
2029 		       mod->name);
2030 		return -EINVAL;
2031 	}
2032 #endif
2033 
2034 	mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2035 						&mod->noinstr_text_size);
2036 
2037 #ifdef CONFIG_TRACEPOINTS
2038 	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2039 					     sizeof(*mod->tracepoints_ptrs),
2040 					     &mod->num_tracepoints);
2041 #endif
2042 #ifdef CONFIG_TREE_SRCU
2043 	mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2044 					     sizeof(*mod->srcu_struct_ptrs),
2045 					     &mod->num_srcu_structs);
2046 #endif
2047 #ifdef CONFIG_BPF_EVENTS
2048 	mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2049 					   sizeof(*mod->bpf_raw_events),
2050 					   &mod->num_bpf_raw_events);
2051 #endif
2052 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2053 	mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2054 #endif
2055 #ifdef CONFIG_JUMP_LABEL
2056 	mod->jump_entries = section_objs(info, "__jump_table",
2057 					sizeof(*mod->jump_entries),
2058 					&mod->num_jump_entries);
2059 #endif
2060 #ifdef CONFIG_EVENT_TRACING
2061 	mod->trace_events = section_objs(info, "_ftrace_events",
2062 					 sizeof(*mod->trace_events),
2063 					 &mod->num_trace_events);
2064 	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2065 					sizeof(*mod->trace_evals),
2066 					&mod->num_trace_evals);
2067 #endif
2068 #ifdef CONFIG_TRACING
2069 	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2070 					 sizeof(*mod->trace_bprintk_fmt_start),
2071 					 &mod->num_trace_bprintk_fmt);
2072 #endif
2073 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2074 	/* sechdrs[0].sh_size is always zero */
2075 	mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2076 					     sizeof(*mod->ftrace_callsites),
2077 					     &mod->num_ftrace_callsites);
2078 #endif
2079 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2080 	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2081 					    sizeof(*mod->ei_funcs),
2082 					    &mod->num_ei_funcs);
2083 #endif
2084 #ifdef CONFIG_KPROBES
2085 	mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2086 						&mod->kprobes_text_size);
2087 	mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2088 						sizeof(unsigned long),
2089 						&mod->num_kprobe_blacklist);
2090 #endif
2091 #ifdef CONFIG_PRINTK_INDEX
2092 	mod->printk_index_start = section_objs(info, ".printk_index",
2093 					       sizeof(*mod->printk_index_start),
2094 					       &mod->printk_index_size);
2095 #endif
2096 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2097 	mod->static_call_sites = section_objs(info, ".static_call_sites",
2098 					      sizeof(*mod->static_call_sites),
2099 					      &mod->num_static_call_sites);
2100 #endif
2101 #if IS_ENABLED(CONFIG_KUNIT)
2102 	mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2103 					      sizeof(*mod->kunit_suites),
2104 					      &mod->num_kunit_suites);
2105 #endif
2106 
2107 	mod->extable = section_objs(info, "__ex_table",
2108 				    sizeof(*mod->extable), &mod->num_exentries);
2109 
2110 	if (section_addr(info, "__obsparm"))
2111 		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2112 
2113 	info->dyndbg.descs = section_objs(info, "__dyndbg",
2114 					sizeof(*info->dyndbg.descs), &info->dyndbg.num_descs);
2115 	info->dyndbg.classes = section_objs(info, "__dyndbg_classes",
2116 					sizeof(*info->dyndbg.classes), &info->dyndbg.num_classes);
2117 
2118 	return 0;
2119 }
2120 
2121 static int move_module(struct module *mod, struct load_info *info)
2122 {
2123 	int i;
2124 	void *ptr;
2125 
2126 	/* Do the allocs. */
2127 	ptr = module_alloc(mod->core_layout.size);
2128 	/*
2129 	 * The pointer to this block is stored in the module structure
2130 	 * which is inside the block. Just mark it as not being a
2131 	 * leak.
2132 	 */
2133 	kmemleak_not_leak(ptr);
2134 	if (!ptr)
2135 		return -ENOMEM;
2136 
2137 	memset(ptr, 0, mod->core_layout.size);
2138 	mod->core_layout.base = ptr;
2139 
2140 	if (mod->init_layout.size) {
2141 		ptr = module_alloc(mod->init_layout.size);
2142 		/*
2143 		 * The pointer to this block is stored in the module structure
2144 		 * which is inside the block. This block doesn't need to be
2145 		 * scanned as it contains data and code that will be freed
2146 		 * after the module is initialized.
2147 		 */
2148 		kmemleak_ignore(ptr);
2149 		if (!ptr) {
2150 			module_memfree(mod->core_layout.base);
2151 			return -ENOMEM;
2152 		}
2153 		memset(ptr, 0, mod->init_layout.size);
2154 		mod->init_layout.base = ptr;
2155 	} else
2156 		mod->init_layout.base = NULL;
2157 
2158 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
2159 	/* Do the allocs. */
2160 	ptr = vzalloc(mod->data_layout.size);
2161 	/*
2162 	 * The pointer to this block is stored in the module structure
2163 	 * which is inside the block. Just mark it as not being a
2164 	 * leak.
2165 	 */
2166 	kmemleak_not_leak(ptr);
2167 	if (!ptr) {
2168 		module_memfree(mod->core_layout.base);
2169 		module_memfree(mod->init_layout.base);
2170 		return -ENOMEM;
2171 	}
2172 
2173 	mod->data_layout.base = ptr;
2174 #endif
2175 	/* Transfer each section which specifies SHF_ALLOC */
2176 	pr_debug("final section addresses:\n");
2177 	for (i = 0; i < info->hdr->e_shnum; i++) {
2178 		void *dest;
2179 		Elf_Shdr *shdr = &info->sechdrs[i];
2180 
2181 		if (!(shdr->sh_flags & SHF_ALLOC))
2182 			continue;
2183 
2184 		if (shdr->sh_entsize & INIT_OFFSET_MASK)
2185 			dest = mod->init_layout.base
2186 				+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
2187 		else if (!(shdr->sh_flags & SHF_EXECINSTR))
2188 			dest = mod->data_layout.base + shdr->sh_entsize;
2189 		else
2190 			dest = mod->core_layout.base + shdr->sh_entsize;
2191 
2192 		if (shdr->sh_type != SHT_NOBITS)
2193 			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2194 		/* Update sh_addr to point to copy in image. */
2195 		shdr->sh_addr = (unsigned long)dest;
2196 		pr_debug("\t0x%lx %s\n",
2197 			 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
2198 	}
2199 
2200 	return 0;
2201 }
2202 
2203 static int check_module_license_and_versions(struct module *mod)
2204 {
2205 	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2206 
2207 	/*
2208 	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2209 	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2210 	 * using GPL-only symbols it needs.
2211 	 */
2212 	if (strcmp(mod->name, "ndiswrapper") == 0)
2213 		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2214 
2215 	/* driverloader was caught wrongly pretending to be under GPL */
2216 	if (strcmp(mod->name, "driverloader") == 0)
2217 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2218 				 LOCKDEP_NOW_UNRELIABLE);
2219 
2220 	/* lve claims to be GPL but upstream won't provide source */
2221 	if (strcmp(mod->name, "lve") == 0)
2222 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2223 				 LOCKDEP_NOW_UNRELIABLE);
2224 
2225 	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2226 		pr_warn("%s: module license taints kernel.\n", mod->name);
2227 
2228 #ifdef CONFIG_MODVERSIONS
2229 	if ((mod->num_syms && !mod->crcs) ||
2230 	    (mod->num_gpl_syms && !mod->gpl_crcs)) {
2231 		return try_to_force_load(mod,
2232 					 "no versions for exported symbols");
2233 	}
2234 #endif
2235 	return 0;
2236 }
2237 
2238 static void flush_module_icache(const struct module *mod)
2239 {
2240 	/*
2241 	 * Flush the instruction cache, since we've played with text.
2242 	 * Do it before processing of module parameters, so the module
2243 	 * can provide parameter accessor functions of its own.
2244 	 */
2245 	if (mod->init_layout.base)
2246 		flush_icache_range((unsigned long)mod->init_layout.base,
2247 				   (unsigned long)mod->init_layout.base
2248 				   + mod->init_layout.size);
2249 	flush_icache_range((unsigned long)mod->core_layout.base,
2250 			   (unsigned long)mod->core_layout.base + mod->core_layout.size);
2251 }
2252 
2253 bool __weak module_elf_check_arch(Elf_Ehdr *hdr)
2254 {
2255 	return true;
2256 }
2257 
2258 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2259 				     Elf_Shdr *sechdrs,
2260 				     char *secstrings,
2261 				     struct module *mod)
2262 {
2263 	return 0;
2264 }
2265 
2266 /* module_blacklist is a comma-separated list of module names */
2267 static char *module_blacklist;
2268 static bool blacklisted(const char *module_name)
2269 {
2270 	const char *p;
2271 	size_t len;
2272 
2273 	if (!module_blacklist)
2274 		return false;
2275 
2276 	for (p = module_blacklist; *p; p += len) {
2277 		len = strcspn(p, ",");
2278 		if (strlen(module_name) == len && !memcmp(module_name, p, len))
2279 			return true;
2280 		if (p[len] == ',')
2281 			len++;
2282 	}
2283 	return false;
2284 }
2285 core_param(module_blacklist, module_blacklist, charp, 0400);
2286 
2287 static struct module *layout_and_allocate(struct load_info *info, int flags)
2288 {
2289 	struct module *mod;
2290 	unsigned int ndx;
2291 	int err;
2292 
2293 	err = check_modinfo(info->mod, info, flags);
2294 	if (err)
2295 		return ERR_PTR(err);
2296 
2297 	/* Allow arches to frob section contents and sizes.  */
2298 	err = module_frob_arch_sections(info->hdr, info->sechdrs,
2299 					info->secstrings, info->mod);
2300 	if (err < 0)
2301 		return ERR_PTR(err);
2302 
2303 	err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2304 					  info->secstrings, info->mod);
2305 	if (err < 0)
2306 		return ERR_PTR(err);
2307 
2308 	/* We will do a special allocation for per-cpu sections later. */
2309 	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2310 
2311 	/*
2312 	 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
2313 	 * layout_sections() can put it in the right place.
2314 	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2315 	 */
2316 	ndx = find_sec(info, ".data..ro_after_init");
2317 	if (ndx)
2318 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2319 	/*
2320 	 * Mark the __jump_table section as ro_after_init as well: these data
2321 	 * structures are never modified, with the exception of entries that
2322 	 * refer to code in the __init section, which are annotated as such
2323 	 * at module load time.
2324 	 */
2325 	ndx = find_sec(info, "__jump_table");
2326 	if (ndx)
2327 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2328 
2329 	/*
2330 	 * Determine total sizes, and put offsets in sh_entsize.  For now
2331 	 * this is done generically; there doesn't appear to be any
2332 	 * special cases for the architectures.
2333 	 */
2334 	layout_sections(info->mod, info);
2335 	layout_symtab(info->mod, info);
2336 
2337 	/* Allocate and move to the final place */
2338 	err = move_module(info->mod, info);
2339 	if (err)
2340 		return ERR_PTR(err);
2341 
2342 	/* Module has been copied to its final place now: return it. */
2343 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2344 	kmemleak_load_module(mod, info);
2345 	return mod;
2346 }
2347 
2348 /* mod is no longer valid after this! */
2349 static void module_deallocate(struct module *mod, struct load_info *info)
2350 {
2351 	percpu_modfree(mod);
2352 	module_arch_freeing_init(mod);
2353 	module_memfree(mod->init_layout.base);
2354 	module_memfree(mod->core_layout.base);
2355 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
2356 	vfree(mod->data_layout.base);
2357 #endif
2358 }
2359 
2360 int __weak module_finalize(const Elf_Ehdr *hdr,
2361 			   const Elf_Shdr *sechdrs,
2362 			   struct module *me)
2363 {
2364 	return 0;
2365 }
2366 
2367 static int post_relocation(struct module *mod, const struct load_info *info)
2368 {
2369 	/* Sort exception table now relocations are done. */
2370 	sort_extable(mod->extable, mod->extable + mod->num_exentries);
2371 
2372 	/* Copy relocated percpu area over. */
2373 	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2374 		       info->sechdrs[info->index.pcpu].sh_size);
2375 
2376 	/* Setup kallsyms-specific fields. */
2377 	add_kallsyms(mod, info);
2378 
2379 	/* Arch-specific module finalizing. */
2380 	return module_finalize(info->hdr, info->sechdrs, mod);
2381 }
2382 
2383 /* Is this module of this name done loading?  No locks held. */
2384 static bool finished_loading(const char *name)
2385 {
2386 	struct module *mod;
2387 	bool ret;
2388 
2389 	/*
2390 	 * The module_mutex should not be a heavily contended lock;
2391 	 * if we get the occasional sleep here, we'll go an extra iteration
2392 	 * in the wait_event_interruptible(), which is harmless.
2393 	 */
2394 	sched_annotate_sleep();
2395 	mutex_lock(&module_mutex);
2396 	mod = find_module_all(name, strlen(name), true);
2397 	ret = !mod || mod->state == MODULE_STATE_LIVE
2398 		|| mod->state == MODULE_STATE_GOING;
2399 	mutex_unlock(&module_mutex);
2400 
2401 	return ret;
2402 }
2403 
2404 /* Call module constructors. */
2405 static void do_mod_ctors(struct module *mod)
2406 {
2407 #ifdef CONFIG_CONSTRUCTORS
2408 	unsigned long i;
2409 
2410 	for (i = 0; i < mod->num_ctors; i++)
2411 		mod->ctors[i]();
2412 #endif
2413 }
2414 
2415 /* For freeing module_init on success, in case kallsyms traversing */
2416 struct mod_initfree {
2417 	struct llist_node node;
2418 	void *module_init;
2419 };
2420 
2421 static void do_free_init(struct work_struct *w)
2422 {
2423 	struct llist_node *pos, *n, *list;
2424 	struct mod_initfree *initfree;
2425 
2426 	list = llist_del_all(&init_free_list);
2427 
2428 	synchronize_rcu();
2429 
2430 	llist_for_each_safe(pos, n, list) {
2431 		initfree = container_of(pos, struct mod_initfree, node);
2432 		module_memfree(initfree->module_init);
2433 		kfree(initfree);
2434 	}
2435 }
2436 
2437 #undef MODULE_PARAM_PREFIX
2438 #define MODULE_PARAM_PREFIX "module."
2439 /* Default value for module->async_probe_requested */
2440 static bool async_probe;
2441 module_param(async_probe, bool, 0644);
2442 
2443 /*
2444  * This is where the real work happens.
2445  *
2446  * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
2447  * helper command 'lx-symbols'.
2448  */
2449 static noinline int do_init_module(struct module *mod)
2450 {
2451 	int ret = 0;
2452 	struct mod_initfree *freeinit;
2453 
2454 	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
2455 	if (!freeinit) {
2456 		ret = -ENOMEM;
2457 		goto fail;
2458 	}
2459 	freeinit->module_init = mod->init_layout.base;
2460 
2461 	do_mod_ctors(mod);
2462 	/* Start the module */
2463 	if (mod->init != NULL)
2464 		ret = do_one_initcall(mod->init);
2465 	if (ret < 0) {
2466 		goto fail_free_freeinit;
2467 	}
2468 	if (ret > 0) {
2469 		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
2470 			"follow 0/-E convention\n"
2471 			"%s: loading module anyway...\n",
2472 			__func__, mod->name, ret, __func__);
2473 		dump_stack();
2474 	}
2475 
2476 	/* Now it's a first class citizen! */
2477 	mod->state = MODULE_STATE_LIVE;
2478 	blocking_notifier_call_chain(&module_notify_list,
2479 				     MODULE_STATE_LIVE, mod);
2480 
2481 	/* Delay uevent until module has finished its init routine */
2482 	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
2483 
2484 	/*
2485 	 * We need to finish all async code before the module init sequence
2486 	 * is done. This has potential to deadlock if synchronous module
2487 	 * loading is requested from async (which is not allowed!).
2488 	 *
2489 	 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
2490 	 * request_module() from async workers") for more details.
2491 	 */
2492 	if (!mod->async_probe_requested)
2493 		async_synchronize_full();
2494 
2495 	ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
2496 			mod->init_layout.size);
2497 	mutex_lock(&module_mutex);
2498 	/* Drop initial reference. */
2499 	module_put(mod);
2500 	trim_init_extable(mod);
2501 #ifdef CONFIG_KALLSYMS
2502 	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
2503 	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
2504 #endif
2505 	module_enable_ro(mod, true);
2506 	mod_tree_remove_init(mod);
2507 	module_arch_freeing_init(mod);
2508 	mod->init_layout.base = NULL;
2509 	mod->init_layout.size = 0;
2510 	mod->init_layout.ro_size = 0;
2511 	mod->init_layout.ro_after_init_size = 0;
2512 	mod->init_layout.text_size = 0;
2513 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2514 	/* .BTF is not SHF_ALLOC and will get removed, so sanitize pointer */
2515 	mod->btf_data = NULL;
2516 #endif
2517 	/*
2518 	 * We want to free module_init, but be aware that kallsyms may be
2519 	 * walking this with preempt disabled.  In all the failure paths, we
2520 	 * call synchronize_rcu(), but we don't want to slow down the success
2521 	 * path. module_memfree() cannot be called in an interrupt, so do the
2522 	 * work and call synchronize_rcu() in a work queue.
2523 	 *
2524 	 * Note that module_alloc() on most architectures creates W+X page
2525 	 * mappings which won't be cleaned up until do_free_init() runs.  Any
2526 	 * code such as mark_rodata_ro() which depends on those mappings to
2527 	 * be cleaned up needs to sync with the queued work - ie
2528 	 * rcu_barrier()
2529 	 */
2530 	if (llist_add(&freeinit->node, &init_free_list))
2531 		schedule_work(&init_free_wq);
2532 
2533 	mutex_unlock(&module_mutex);
2534 	wake_up_all(&module_wq);
2535 
2536 	return 0;
2537 
2538 fail_free_freeinit:
2539 	kfree(freeinit);
2540 fail:
2541 	/* Try to protect us from buggy refcounters. */
2542 	mod->state = MODULE_STATE_GOING;
2543 	synchronize_rcu();
2544 	module_put(mod);
2545 	blocking_notifier_call_chain(&module_notify_list,
2546 				     MODULE_STATE_GOING, mod);
2547 	klp_module_going(mod);
2548 	ftrace_release_mod(mod);
2549 	free_module(mod);
2550 	wake_up_all(&module_wq);
2551 	return ret;
2552 }
2553 
2554 static int may_init_module(void)
2555 {
2556 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
2557 		return -EPERM;
2558 
2559 	return 0;
2560 }
2561 
2562 /*
2563  * We try to place it in the list now to make sure it's unique before
2564  * we dedicate too many resources.  In particular, temporary percpu
2565  * memory exhaustion.
2566  */
2567 static int add_unformed_module(struct module *mod)
2568 {
2569 	int err;
2570 	struct module *old;
2571 
2572 	mod->state = MODULE_STATE_UNFORMED;
2573 
2574 	mutex_lock(&module_mutex);
2575 	old = find_module_all(mod->name, strlen(mod->name), true);
2576 	if (old != NULL) {
2577 		if (old->state == MODULE_STATE_COMING
2578 		    || old->state == MODULE_STATE_UNFORMED) {
2579 			/* Wait in case it fails to load. */
2580 			mutex_unlock(&module_mutex);
2581 			err = wait_event_interruptible(module_wq,
2582 					       finished_loading(mod->name));
2583 			if (err)
2584 				goto out_unlocked;
2585 
2586 			/* The module might have gone in the meantime. */
2587 			mutex_lock(&module_mutex);
2588 			old = find_module_all(mod->name, strlen(mod->name),
2589 					      true);
2590 		}
2591 
2592 		/*
2593 		 * We are here only when the same module was being loaded. Do
2594 		 * not try to load it again right now. It prevents long delays
2595 		 * caused by serialized module load failures. It might happen
2596 		 * when more devices of the same type trigger load of
2597 		 * a particular module.
2598 		 */
2599 		if (old && old->state == MODULE_STATE_LIVE)
2600 			err = -EEXIST;
2601 		else
2602 			err = -EBUSY;
2603 		goto out;
2604 	}
2605 	mod_update_bounds(mod);
2606 	list_add_rcu(&mod->list, &modules);
2607 	mod_tree_insert(mod);
2608 	err = 0;
2609 
2610 out:
2611 	mutex_unlock(&module_mutex);
2612 out_unlocked:
2613 	return err;
2614 }
2615 
2616 static int complete_formation(struct module *mod, struct load_info *info)
2617 {
2618 	int err;
2619 
2620 	mutex_lock(&module_mutex);
2621 
2622 	/* Find duplicate symbols (must be called under lock). */
2623 	err = verify_exported_symbols(mod);
2624 	if (err < 0)
2625 		goto out;
2626 
2627 	/* These rely on module_mutex for list integrity. */
2628 	module_bug_finalize(info->hdr, info->sechdrs, mod);
2629 	module_cfi_finalize(info->hdr, info->sechdrs, mod);
2630 
2631 	if (module_check_misalignment(mod))
2632 		goto out_misaligned;
2633 
2634 	module_enable_ro(mod, false);
2635 	module_enable_nx(mod);
2636 	module_enable_x(mod);
2637 
2638 	/*
2639 	 * Mark state as coming so strong_try_module_get() ignores us,
2640 	 * but kallsyms etc. can see us.
2641 	 */
2642 	mod->state = MODULE_STATE_COMING;
2643 	mutex_unlock(&module_mutex);
2644 
2645 	return 0;
2646 
2647 out_misaligned:
2648 	err = -EINVAL;
2649 out:
2650 	mutex_unlock(&module_mutex);
2651 	return err;
2652 }
2653 
2654 static int prepare_coming_module(struct module *mod)
2655 {
2656 	int err;
2657 
2658 	ftrace_module_enable(mod);
2659 	err = klp_module_coming(mod);
2660 	if (err)
2661 		return err;
2662 
2663 	err = blocking_notifier_call_chain_robust(&module_notify_list,
2664 			MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
2665 	err = notifier_to_errno(err);
2666 	if (err)
2667 		klp_module_going(mod);
2668 
2669 	return err;
2670 }
2671 
2672 static int unknown_module_param_cb(char *param, char *val, const char *modname,
2673 				   void *arg)
2674 {
2675 	struct module *mod = arg;
2676 	int ret;
2677 
2678 	if (strcmp(param, "async_probe") == 0) {
2679 		if (kstrtobool(val, &mod->async_probe_requested))
2680 			mod->async_probe_requested = true;
2681 		return 0;
2682 	}
2683 
2684 	/* Check for magic 'dyndbg' arg */
2685 	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
2686 	if (ret != 0)
2687 		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
2688 	return 0;
2689 }
2690 
2691 /*
2692  * Allocate and load the module: note that size of section 0 is always
2693  * zero, and we rely on this for optional sections.
2694  */
2695 static int load_module(struct load_info *info, const char __user *uargs,
2696 		       int flags)
2697 {
2698 	struct module *mod;
2699 	long err = 0;
2700 	char *after_dashes;
2701 
2702 	/*
2703 	 * Do the signature check (if any) first. All that
2704 	 * the signature check needs is info->len, it does
2705 	 * not need any of the section info. That can be
2706 	 * set up later. This will minimize the chances
2707 	 * of a corrupt module causing problems before
2708 	 * we even get to the signature check.
2709 	 *
2710 	 * The check will also adjust info->len by stripping
2711 	 * off the sig length at the end of the module, making
2712 	 * checks against info->len more correct.
2713 	 */
2714 	err = module_sig_check(info, flags);
2715 	if (err)
2716 		goto free_copy;
2717 
2718 	/*
2719 	 * Do basic sanity checks against the ELF header and
2720 	 * sections.
2721 	 */
2722 	err = elf_validity_check(info);
2723 	if (err)
2724 		goto free_copy;
2725 
2726 	/*
2727 	 * Everything checks out, so set up the section info
2728 	 * in the info structure.
2729 	 */
2730 	err = setup_load_info(info, flags);
2731 	if (err)
2732 		goto free_copy;
2733 
2734 	/*
2735 	 * Now that we know we have the correct module name, check
2736 	 * if it's blacklisted.
2737 	 */
2738 	if (blacklisted(info->name)) {
2739 		err = -EPERM;
2740 		pr_err("Module %s is blacklisted\n", info->name);
2741 		goto free_copy;
2742 	}
2743 
2744 	err = rewrite_section_headers(info, flags);
2745 	if (err)
2746 		goto free_copy;
2747 
2748 	/* Check module struct version now, before we try to use module. */
2749 	if (!check_modstruct_version(info, info->mod)) {
2750 		err = -ENOEXEC;
2751 		goto free_copy;
2752 	}
2753 
2754 	/* Figure out module layout, and allocate all the memory. */
2755 	mod = layout_and_allocate(info, flags);
2756 	if (IS_ERR(mod)) {
2757 		err = PTR_ERR(mod);
2758 		goto free_copy;
2759 	}
2760 
2761 	audit_log_kern_module(mod->name);
2762 
2763 	/* Reserve our place in the list. */
2764 	err = add_unformed_module(mod);
2765 	if (err)
2766 		goto free_module;
2767 
2768 #ifdef CONFIG_MODULE_SIG
2769 	mod->sig_ok = info->sig_ok;
2770 	if (!mod->sig_ok) {
2771 		pr_notice_once("%s: module verification failed: signature "
2772 			       "and/or required key missing - tainting "
2773 			       "kernel\n", mod->name);
2774 		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2775 	}
2776 #endif
2777 
2778 	/* To avoid stressing percpu allocator, do this once we're unique. */
2779 	err = percpu_modalloc(mod, info);
2780 	if (err)
2781 		goto unlink_mod;
2782 
2783 	/* Now module is in final location, initialize linked lists, etc. */
2784 	err = module_unload_init(mod);
2785 	if (err)
2786 		goto unlink_mod;
2787 
2788 	init_param_lock(mod);
2789 
2790 	/*
2791 	 * Now we've got everything in the final locations, we can
2792 	 * find optional sections.
2793 	 */
2794 	err = find_module_sections(mod, info);
2795 	if (err)
2796 		goto free_unload;
2797 
2798 	err = check_module_license_and_versions(mod);
2799 	if (err)
2800 		goto free_unload;
2801 
2802 	/* Set up MODINFO_ATTR fields */
2803 	setup_modinfo(mod, info);
2804 
2805 	/* Fix up syms, so that st_value is a pointer to location. */
2806 	err = simplify_symbols(mod, info);
2807 	if (err < 0)
2808 		goto free_modinfo;
2809 
2810 	err = apply_relocations(mod, info);
2811 	if (err < 0)
2812 		goto free_modinfo;
2813 
2814 	err = post_relocation(mod, info);
2815 	if (err < 0)
2816 		goto free_modinfo;
2817 
2818 	flush_module_icache(mod);
2819 
2820 	/* Now copy in args */
2821 	mod->args = strndup_user(uargs, ~0UL >> 1);
2822 	if (IS_ERR(mod->args)) {
2823 		err = PTR_ERR(mod->args);
2824 		goto free_arch_cleanup;
2825 	}
2826 
2827 	init_build_id(mod, info);
2828 	dynamic_debug_setup(mod, &info->dyndbg);
2829 
2830 	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
2831 	ftrace_module_init(mod);
2832 
2833 	/* Finally it's fully formed, ready to start executing. */
2834 	err = complete_formation(mod, info);
2835 	if (err)
2836 		goto ddebug_cleanup;
2837 
2838 	err = prepare_coming_module(mod);
2839 	if (err)
2840 		goto bug_cleanup;
2841 
2842 	mod->async_probe_requested = async_probe;
2843 
2844 	/* Module is ready to execute: parsing args may do that. */
2845 	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
2846 				  -32768, 32767, mod,
2847 				  unknown_module_param_cb);
2848 	if (IS_ERR(after_dashes)) {
2849 		err = PTR_ERR(after_dashes);
2850 		goto coming_cleanup;
2851 	} else if (after_dashes) {
2852 		pr_warn("%s: parameters '%s' after `--' ignored\n",
2853 		       mod->name, after_dashes);
2854 	}
2855 
2856 	/* Link in to sysfs. */
2857 	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
2858 	if (err < 0)
2859 		goto coming_cleanup;
2860 
2861 	if (is_livepatch_module(mod)) {
2862 		err = copy_module_elf(mod, info);
2863 		if (err < 0)
2864 			goto sysfs_cleanup;
2865 	}
2866 
2867 	/* Get rid of temporary copy. */
2868 	free_copy(info, flags);
2869 
2870 	/* Done! */
2871 	trace_module_load(mod);
2872 
2873 	return do_init_module(mod);
2874 
2875  sysfs_cleanup:
2876 	mod_sysfs_teardown(mod);
2877  coming_cleanup:
2878 	mod->state = MODULE_STATE_GOING;
2879 	destroy_params(mod->kp, mod->num_kp);
2880 	blocking_notifier_call_chain(&module_notify_list,
2881 				     MODULE_STATE_GOING, mod);
2882 	klp_module_going(mod);
2883  bug_cleanup:
2884 	mod->state = MODULE_STATE_GOING;
2885 	/* module_bug_cleanup needs module_mutex protection */
2886 	mutex_lock(&module_mutex);
2887 	module_bug_cleanup(mod);
2888 	mutex_unlock(&module_mutex);
2889 
2890  ddebug_cleanup:
2891 	ftrace_release_mod(mod);
2892 	dynamic_debug_remove(mod, &info->dyndbg);
2893 	synchronize_rcu();
2894 	kfree(mod->args);
2895  free_arch_cleanup:
2896 	module_arch_cleanup(mod);
2897  free_modinfo:
2898 	free_modinfo(mod);
2899  free_unload:
2900 	module_unload_free(mod);
2901  unlink_mod:
2902 	mutex_lock(&module_mutex);
2903 	/* Unlink carefully: kallsyms could be walking list. */
2904 	list_del_rcu(&mod->list);
2905 	mod_tree_remove(mod);
2906 	wake_up_all(&module_wq);
2907 	/* Wait for RCU-sched synchronizing before releasing mod->list. */
2908 	synchronize_rcu();
2909 	mutex_unlock(&module_mutex);
2910  free_module:
2911 	/* Free lock-classes; relies on the preceding sync_rcu() */
2912 	lockdep_free_key_range(mod->data_layout.base, mod->data_layout.size);
2913 
2914 	module_deallocate(mod, info);
2915  free_copy:
2916 	free_copy(info, flags);
2917 	return err;
2918 }
2919 
2920 SYSCALL_DEFINE3(init_module, void __user *, umod,
2921 		unsigned long, len, const char __user *, uargs)
2922 {
2923 	int err;
2924 	struct load_info info = { };
2925 
2926 	err = may_init_module();
2927 	if (err)
2928 		return err;
2929 
2930 	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
2931 	       umod, len, uargs);
2932 
2933 	err = copy_module_from_user(umod, len, &info);
2934 	if (err)
2935 		return err;
2936 
2937 	return load_module(&info, uargs, 0);
2938 }
2939 
2940 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
2941 {
2942 	struct load_info info = { };
2943 	void *buf = NULL;
2944 	int len;
2945 	int err;
2946 
2947 	err = may_init_module();
2948 	if (err)
2949 		return err;
2950 
2951 	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
2952 
2953 	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
2954 		      |MODULE_INIT_IGNORE_VERMAGIC
2955 		      |MODULE_INIT_COMPRESSED_FILE))
2956 		return -EINVAL;
2957 
2958 	len = kernel_read_file_from_fd(fd, 0, &buf, INT_MAX, NULL,
2959 				       READING_MODULE);
2960 	if (len < 0)
2961 		return len;
2962 
2963 	if (flags & MODULE_INIT_COMPRESSED_FILE) {
2964 		err = module_decompress(&info, buf, len);
2965 		vfree(buf); /* compressed data is no longer needed */
2966 		if (err)
2967 			return err;
2968 	} else {
2969 		info.hdr = buf;
2970 		info.len = len;
2971 	}
2972 
2973 	return load_module(&info, uargs, flags);
2974 }
2975 
2976 static inline int within(unsigned long addr, void *start, unsigned long size)
2977 {
2978 	return ((void *)addr >= start && (void *)addr < start + size);
2979 }
2980 
2981 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
2982 char *module_flags(struct module *mod, char *buf, bool show_state)
2983 {
2984 	int bx = 0;
2985 
2986 	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
2987 	if (!mod->taints && !show_state)
2988 		goto out;
2989 	if (mod->taints ||
2990 	    mod->state == MODULE_STATE_GOING ||
2991 	    mod->state == MODULE_STATE_COMING) {
2992 		buf[bx++] = '(';
2993 		bx += module_flags_taint(mod->taints, buf + bx);
2994 		/* Show a - for module-is-being-unloaded */
2995 		if (mod->state == MODULE_STATE_GOING && show_state)
2996 			buf[bx++] = '-';
2997 		/* Show a + for module-is-being-loaded */
2998 		if (mod->state == MODULE_STATE_COMING && show_state)
2999 			buf[bx++] = '+';
3000 		buf[bx++] = ')';
3001 	}
3002 out:
3003 	buf[bx] = '\0';
3004 
3005 	return buf;
3006 }
3007 
3008 /* Given an address, look for it in the module exception tables. */
3009 const struct exception_table_entry *search_module_extables(unsigned long addr)
3010 {
3011 	const struct exception_table_entry *e = NULL;
3012 	struct module *mod;
3013 
3014 	preempt_disable();
3015 	mod = __module_address(addr);
3016 	if (!mod)
3017 		goto out;
3018 
3019 	if (!mod->num_exentries)
3020 		goto out;
3021 
3022 	e = search_extable(mod->extable,
3023 			   mod->num_exentries,
3024 			   addr);
3025 out:
3026 	preempt_enable();
3027 
3028 	/*
3029 	 * Now, if we found one, we are running inside it now, hence
3030 	 * we cannot unload the module, hence no refcnt needed.
3031 	 */
3032 	return e;
3033 }
3034 
3035 /**
3036  * is_module_address() - is this address inside a module?
3037  * @addr: the address to check.
3038  *
3039  * See is_module_text_address() if you simply want to see if the address
3040  * is code (not data).
3041  */
3042 bool is_module_address(unsigned long addr)
3043 {
3044 	bool ret;
3045 
3046 	preempt_disable();
3047 	ret = __module_address(addr) != NULL;
3048 	preempt_enable();
3049 
3050 	return ret;
3051 }
3052 
3053 /**
3054  * __module_address() - get the module which contains an address.
3055  * @addr: the address.
3056  *
3057  * Must be called with preempt disabled or module mutex held so that
3058  * module doesn't get freed during this.
3059  */
3060 struct module *__module_address(unsigned long addr)
3061 {
3062 	struct module *mod;
3063 	struct mod_tree_root *tree;
3064 
3065 	if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3066 		tree = &mod_tree;
3067 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3068 	else if (addr >= mod_data_tree.addr_min && addr <= mod_data_tree.addr_max)
3069 		tree = &mod_data_tree;
3070 #endif
3071 	else
3072 		return NULL;
3073 
3074 	module_assert_mutex_or_preempt();
3075 
3076 	mod = mod_find(addr, tree);
3077 	if (mod) {
3078 		BUG_ON(!within_module(addr, mod));
3079 		if (mod->state == MODULE_STATE_UNFORMED)
3080 			mod = NULL;
3081 	}
3082 	return mod;
3083 }
3084 
3085 /**
3086  * is_module_text_address() - is this address inside module code?
3087  * @addr: the address to check.
3088  *
3089  * See is_module_address() if you simply want to see if the address is
3090  * anywhere in a module.  See kernel_text_address() for testing if an
3091  * address corresponds to kernel or module code.
3092  */
3093 bool is_module_text_address(unsigned long addr)
3094 {
3095 	bool ret;
3096 
3097 	preempt_disable();
3098 	ret = __module_text_address(addr) != NULL;
3099 	preempt_enable();
3100 
3101 	return ret;
3102 }
3103 
3104 /**
3105  * __module_text_address() - get the module whose code contains an address.
3106  * @addr: the address.
3107  *
3108  * Must be called with preempt disabled or module mutex held so that
3109  * module doesn't get freed during this.
3110  */
3111 struct module *__module_text_address(unsigned long addr)
3112 {
3113 	struct module *mod = __module_address(addr);
3114 	if (mod) {
3115 		/* Make sure it's within the text section. */
3116 		if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
3117 		    && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
3118 			mod = NULL;
3119 	}
3120 	return mod;
3121 }
3122 
3123 /* Don't grab lock, we're oopsing. */
3124 void print_modules(void)
3125 {
3126 	struct module *mod;
3127 	char buf[MODULE_FLAGS_BUF_SIZE];
3128 
3129 	printk(KERN_DEFAULT "Modules linked in:");
3130 	/* Most callers should already have preempt disabled, but make sure */
3131 	preempt_disable();
3132 	list_for_each_entry_rcu(mod, &modules, list) {
3133 		if (mod->state == MODULE_STATE_UNFORMED)
3134 			continue;
3135 		pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3136 	}
3137 
3138 	print_unloaded_tainted_modules();
3139 	preempt_enable();
3140 	if (last_unloaded_module.name[0])
3141 		pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3142 			last_unloaded_module.taints);
3143 	pr_cont("\n");
3144 }
3145