xref: /openbmc/linux/kernel/module/main.c (revision 3703bd54)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2002 Richard Henderson
4  * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5  */
6 
7 #define INCLUDE_VERMAGIC
8 
9 #include <linux/export.h>
10 #include <linux/extable.h>
11 #include <linux/moduleloader.h>
12 #include <linux/module_signature.h>
13 #include <linux/trace_events.h>
14 #include <linux/init.h>
15 #include <linux/kallsyms.h>
16 #include <linux/buildid.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/kstrtox.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/elf.h>
24 #include <linux/seq_file.h>
25 #include <linux/syscalls.h>
26 #include <linux/fcntl.h>
27 #include <linux/rcupdate.h>
28 #include <linux/capability.h>
29 #include <linux/cpu.h>
30 #include <linux/moduleparam.h>
31 #include <linux/errno.h>
32 #include <linux/err.h>
33 #include <linux/vermagic.h>
34 #include <linux/notifier.h>
35 #include <linux/sched.h>
36 #include <linux/device.h>
37 #include <linux/string.h>
38 #include <linux/mutex.h>
39 #include <linux/rculist.h>
40 #include <linux/uaccess.h>
41 #include <asm/cacheflush.h>
42 #include <linux/set_memory.h>
43 #include <asm/mmu_context.h>
44 #include <linux/license.h>
45 #include <asm/sections.h>
46 #include <linux/tracepoint.h>
47 #include <linux/ftrace.h>
48 #include <linux/livepatch.h>
49 #include <linux/async.h>
50 #include <linux/percpu.h>
51 #include <linux/kmemleak.h>
52 #include <linux/jump_label.h>
53 #include <linux/pfn.h>
54 #include <linux/bsearch.h>
55 #include <linux/dynamic_debug.h>
56 #include <linux/audit.h>
57 #include <linux/cfi.h>
58 #include <uapi/linux/module.h>
59 #include "internal.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/module.h>
63 
64 /*
65  * Mutex protects:
66  * 1) List of modules (also safely readable with preempt_disable),
67  * 2) module_use links,
68  * 3) mod_tree.addr_min/mod_tree.addr_max.
69  * (delete and add uses RCU list operations).
70  */
71 DEFINE_MUTEX(module_mutex);
72 LIST_HEAD(modules);
73 
74 /* Work queue for freeing init sections in success case */
75 static void do_free_init(struct work_struct *w);
76 static DECLARE_WORK(init_free_wq, do_free_init);
77 static LLIST_HEAD(init_free_list);
78 
79 struct mod_tree_root mod_tree __cacheline_aligned = {
80 	.addr_min = -1UL,
81 };
82 
83 struct symsearch {
84 	const struct kernel_symbol *start, *stop;
85 	const s32 *crcs;
86 	enum mod_license license;
87 };
88 
89 /*
90  * Bounds of module memory, for speeding up __module_address.
91  * Protected by module_mutex.
92  */
93 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base,
94 				unsigned int size, struct mod_tree_root *tree)
95 {
96 	unsigned long min = (unsigned long)base;
97 	unsigned long max = min + size;
98 
99 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
100 	if (mod_mem_type_is_core_data(type)) {
101 		if (min < tree->data_addr_min)
102 			tree->data_addr_min = min;
103 		if (max > tree->data_addr_max)
104 			tree->data_addr_max = max;
105 		return;
106 	}
107 #endif
108 	if (min < tree->addr_min)
109 		tree->addr_min = min;
110 	if (max > tree->addr_max)
111 		tree->addr_max = max;
112 }
113 
114 static void mod_update_bounds(struct module *mod)
115 {
116 	for_each_mod_mem_type(type) {
117 		struct module_memory *mod_mem = &mod->mem[type];
118 
119 		if (mod_mem->size)
120 			__mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree);
121 	}
122 }
123 
124 /* Block module loading/unloading? */
125 int modules_disabled;
126 core_param(nomodule, modules_disabled, bint, 0);
127 
128 /* Waiting for a module to finish initializing? */
129 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
130 
131 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
132 
133 int register_module_notifier(struct notifier_block *nb)
134 {
135 	return blocking_notifier_chain_register(&module_notify_list, nb);
136 }
137 EXPORT_SYMBOL(register_module_notifier);
138 
139 int unregister_module_notifier(struct notifier_block *nb)
140 {
141 	return blocking_notifier_chain_unregister(&module_notify_list, nb);
142 }
143 EXPORT_SYMBOL(unregister_module_notifier);
144 
145 /*
146  * We require a truly strong try_module_get(): 0 means success.
147  * Otherwise an error is returned due to ongoing or failed
148  * initialization etc.
149  */
150 static inline int strong_try_module_get(struct module *mod)
151 {
152 	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
153 	if (mod && mod->state == MODULE_STATE_COMING)
154 		return -EBUSY;
155 	if (try_module_get(mod))
156 		return 0;
157 	else
158 		return -ENOENT;
159 }
160 
161 static inline void add_taint_module(struct module *mod, unsigned flag,
162 				    enum lockdep_ok lockdep_ok)
163 {
164 	add_taint(flag, lockdep_ok);
165 	set_bit(flag, &mod->taints);
166 }
167 
168 /*
169  * A thread that wants to hold a reference to a module only while it
170  * is running can call this to safely exit.
171  */
172 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
173 {
174 	module_put(mod);
175 	kthread_exit(code);
176 }
177 EXPORT_SYMBOL(__module_put_and_kthread_exit);
178 
179 /* Find a module section: 0 means not found. */
180 static unsigned int find_sec(const struct load_info *info, const char *name)
181 {
182 	unsigned int i;
183 
184 	for (i = 1; i < info->hdr->e_shnum; i++) {
185 		Elf_Shdr *shdr = &info->sechdrs[i];
186 		/* Alloc bit cleared means "ignore it." */
187 		if ((shdr->sh_flags & SHF_ALLOC)
188 		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
189 			return i;
190 	}
191 	return 0;
192 }
193 
194 /* Find a module section, or NULL. */
195 static void *section_addr(const struct load_info *info, const char *name)
196 {
197 	/* Section 0 has sh_addr 0. */
198 	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
199 }
200 
201 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
202 static void *section_objs(const struct load_info *info,
203 			  const char *name,
204 			  size_t object_size,
205 			  unsigned int *num)
206 {
207 	unsigned int sec = find_sec(info, name);
208 
209 	/* Section 0 has sh_addr 0 and sh_size 0. */
210 	*num = info->sechdrs[sec].sh_size / object_size;
211 	return (void *)info->sechdrs[sec].sh_addr;
212 }
213 
214 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
215 static unsigned int find_any_sec(const struct load_info *info, const char *name)
216 {
217 	unsigned int i;
218 
219 	for (i = 1; i < info->hdr->e_shnum; i++) {
220 		Elf_Shdr *shdr = &info->sechdrs[i];
221 		if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
222 			return i;
223 	}
224 	return 0;
225 }
226 
227 /*
228  * Find a module section, or NULL. Fill in number of "objects" in section.
229  * Ignores SHF_ALLOC flag.
230  */
231 static __maybe_unused void *any_section_objs(const struct load_info *info,
232 					     const char *name,
233 					     size_t object_size,
234 					     unsigned int *num)
235 {
236 	unsigned int sec = find_any_sec(info, name);
237 
238 	/* Section 0 has sh_addr 0 and sh_size 0. */
239 	*num = info->sechdrs[sec].sh_size / object_size;
240 	return (void *)info->sechdrs[sec].sh_addr;
241 }
242 
243 #ifndef CONFIG_MODVERSIONS
244 #define symversion(base, idx) NULL
245 #else
246 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
247 #endif
248 
249 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
250 {
251 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
252 	return offset_to_ptr(&sym->name_offset);
253 #else
254 	return sym->name;
255 #endif
256 }
257 
258 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
259 {
260 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
261 	if (!sym->namespace_offset)
262 		return NULL;
263 	return offset_to_ptr(&sym->namespace_offset);
264 #else
265 	return sym->namespace;
266 #endif
267 }
268 
269 int cmp_name(const void *name, const void *sym)
270 {
271 	return strcmp(name, kernel_symbol_name(sym));
272 }
273 
274 static bool find_exported_symbol_in_section(const struct symsearch *syms,
275 					    struct module *owner,
276 					    struct find_symbol_arg *fsa)
277 {
278 	struct kernel_symbol *sym;
279 
280 	if (!fsa->gplok && syms->license == GPL_ONLY)
281 		return false;
282 
283 	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
284 			sizeof(struct kernel_symbol), cmp_name);
285 	if (!sym)
286 		return false;
287 
288 	fsa->owner = owner;
289 	fsa->crc = symversion(syms->crcs, sym - syms->start);
290 	fsa->sym = sym;
291 	fsa->license = syms->license;
292 
293 	return true;
294 }
295 
296 /*
297  * Find an exported symbol and return it, along with, (optional) crc and
298  * (optional) module which owns it.  Needs preempt disabled or module_mutex.
299  */
300 bool find_symbol(struct find_symbol_arg *fsa)
301 {
302 	static const struct symsearch arr[] = {
303 		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
304 		  NOT_GPL_ONLY },
305 		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
306 		  __start___kcrctab_gpl,
307 		  GPL_ONLY },
308 	};
309 	struct module *mod;
310 	unsigned int i;
311 
312 	module_assert_mutex_or_preempt();
313 
314 	for (i = 0; i < ARRAY_SIZE(arr); i++)
315 		if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
316 			return true;
317 
318 	list_for_each_entry_rcu(mod, &modules, list,
319 				lockdep_is_held(&module_mutex)) {
320 		struct symsearch arr[] = {
321 			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
322 			  NOT_GPL_ONLY },
323 			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
324 			  mod->gpl_crcs,
325 			  GPL_ONLY },
326 		};
327 
328 		if (mod->state == MODULE_STATE_UNFORMED)
329 			continue;
330 
331 		for (i = 0; i < ARRAY_SIZE(arr); i++)
332 			if (find_exported_symbol_in_section(&arr[i], mod, fsa))
333 				return true;
334 	}
335 
336 	pr_debug("Failed to find symbol %s\n", fsa->name);
337 	return false;
338 }
339 
340 /*
341  * Search for module by name: must hold module_mutex (or preempt disabled
342  * for read-only access).
343  */
344 struct module *find_module_all(const char *name, size_t len,
345 			       bool even_unformed)
346 {
347 	struct module *mod;
348 
349 	module_assert_mutex_or_preempt();
350 
351 	list_for_each_entry_rcu(mod, &modules, list,
352 				lockdep_is_held(&module_mutex)) {
353 		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
354 			continue;
355 		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
356 			return mod;
357 	}
358 	return NULL;
359 }
360 
361 struct module *find_module(const char *name)
362 {
363 	return find_module_all(name, strlen(name), false);
364 }
365 
366 #ifdef CONFIG_SMP
367 
368 static inline void __percpu *mod_percpu(struct module *mod)
369 {
370 	return mod->percpu;
371 }
372 
373 static int percpu_modalloc(struct module *mod, struct load_info *info)
374 {
375 	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
376 	unsigned long align = pcpusec->sh_addralign;
377 
378 	if (!pcpusec->sh_size)
379 		return 0;
380 
381 	if (align > PAGE_SIZE) {
382 		pr_warn("%s: per-cpu alignment %li > %li\n",
383 			mod->name, align, PAGE_SIZE);
384 		align = PAGE_SIZE;
385 	}
386 
387 	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
388 	if (!mod->percpu) {
389 		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
390 			mod->name, (unsigned long)pcpusec->sh_size);
391 		return -ENOMEM;
392 	}
393 	mod->percpu_size = pcpusec->sh_size;
394 	return 0;
395 }
396 
397 static void percpu_modfree(struct module *mod)
398 {
399 	free_percpu(mod->percpu);
400 }
401 
402 static unsigned int find_pcpusec(struct load_info *info)
403 {
404 	return find_sec(info, ".data..percpu");
405 }
406 
407 static void percpu_modcopy(struct module *mod,
408 			   const void *from, unsigned long size)
409 {
410 	int cpu;
411 
412 	for_each_possible_cpu(cpu)
413 		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
414 }
415 
416 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
417 {
418 	struct module *mod;
419 	unsigned int cpu;
420 
421 	preempt_disable();
422 
423 	list_for_each_entry_rcu(mod, &modules, list) {
424 		if (mod->state == MODULE_STATE_UNFORMED)
425 			continue;
426 		if (!mod->percpu_size)
427 			continue;
428 		for_each_possible_cpu(cpu) {
429 			void *start = per_cpu_ptr(mod->percpu, cpu);
430 			void *va = (void *)addr;
431 
432 			if (va >= start && va < start + mod->percpu_size) {
433 				if (can_addr) {
434 					*can_addr = (unsigned long) (va - start);
435 					*can_addr += (unsigned long)
436 						per_cpu_ptr(mod->percpu,
437 							    get_boot_cpu_id());
438 				}
439 				preempt_enable();
440 				return true;
441 			}
442 		}
443 	}
444 
445 	preempt_enable();
446 	return false;
447 }
448 
449 /**
450  * is_module_percpu_address() - test whether address is from module static percpu
451  * @addr: address to test
452  *
453  * Test whether @addr belongs to module static percpu area.
454  *
455  * Return: %true if @addr is from module static percpu area
456  */
457 bool is_module_percpu_address(unsigned long addr)
458 {
459 	return __is_module_percpu_address(addr, NULL);
460 }
461 
462 #else /* ... !CONFIG_SMP */
463 
464 static inline void __percpu *mod_percpu(struct module *mod)
465 {
466 	return NULL;
467 }
468 static int percpu_modalloc(struct module *mod, struct load_info *info)
469 {
470 	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
471 	if (info->sechdrs[info->index.pcpu].sh_size != 0)
472 		return -ENOMEM;
473 	return 0;
474 }
475 static inline void percpu_modfree(struct module *mod)
476 {
477 }
478 static unsigned int find_pcpusec(struct load_info *info)
479 {
480 	return 0;
481 }
482 static inline void percpu_modcopy(struct module *mod,
483 				  const void *from, unsigned long size)
484 {
485 	/* pcpusec should be 0, and size of that section should be 0. */
486 	BUG_ON(size != 0);
487 }
488 bool is_module_percpu_address(unsigned long addr)
489 {
490 	return false;
491 }
492 
493 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
494 {
495 	return false;
496 }
497 
498 #endif /* CONFIG_SMP */
499 
500 #define MODINFO_ATTR(field)	\
501 static void setup_modinfo_##field(struct module *mod, const char *s)  \
502 {                                                                     \
503 	mod->field = kstrdup(s, GFP_KERNEL);                          \
504 }                                                                     \
505 static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
506 			struct module_kobject *mk, char *buffer)      \
507 {                                                                     \
508 	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
509 }                                                                     \
510 static int modinfo_##field##_exists(struct module *mod)               \
511 {                                                                     \
512 	return mod->field != NULL;                                    \
513 }                                                                     \
514 static void free_modinfo_##field(struct module *mod)                  \
515 {                                                                     \
516 	kfree(mod->field);                                            \
517 	mod->field = NULL;                                            \
518 }                                                                     \
519 static struct module_attribute modinfo_##field = {                    \
520 	.attr = { .name = __stringify(field), .mode = 0444 },         \
521 	.show = show_modinfo_##field,                                 \
522 	.setup = setup_modinfo_##field,                               \
523 	.test = modinfo_##field##_exists,                             \
524 	.free = free_modinfo_##field,                                 \
525 };
526 
527 MODINFO_ATTR(version);
528 MODINFO_ATTR(srcversion);
529 
530 static struct {
531 	char name[MODULE_NAME_LEN + 1];
532 	char taints[MODULE_FLAGS_BUF_SIZE];
533 } last_unloaded_module;
534 
535 #ifdef CONFIG_MODULE_UNLOAD
536 
537 EXPORT_TRACEPOINT_SYMBOL(module_get);
538 
539 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
540 #define MODULE_REF_BASE	1
541 
542 /* Init the unload section of the module. */
543 static int module_unload_init(struct module *mod)
544 {
545 	/*
546 	 * Initialize reference counter to MODULE_REF_BASE.
547 	 * refcnt == 0 means module is going.
548 	 */
549 	atomic_set(&mod->refcnt, MODULE_REF_BASE);
550 
551 	INIT_LIST_HEAD(&mod->source_list);
552 	INIT_LIST_HEAD(&mod->target_list);
553 
554 	/* Hold reference count during initialization. */
555 	atomic_inc(&mod->refcnt);
556 
557 	return 0;
558 }
559 
560 /* Does a already use b? */
561 static int already_uses(struct module *a, struct module *b)
562 {
563 	struct module_use *use;
564 
565 	list_for_each_entry(use, &b->source_list, source_list) {
566 		if (use->source == a) {
567 			pr_debug("%s uses %s!\n", a->name, b->name);
568 			return 1;
569 		}
570 	}
571 	pr_debug("%s does not use %s!\n", a->name, b->name);
572 	return 0;
573 }
574 
575 /*
576  * Module a uses b
577  *  - we add 'a' as a "source", 'b' as a "target" of module use
578  *  - the module_use is added to the list of 'b' sources (so
579  *    'b' can walk the list to see who sourced them), and of 'a'
580  *    targets (so 'a' can see what modules it targets).
581  */
582 static int add_module_usage(struct module *a, struct module *b)
583 {
584 	struct module_use *use;
585 
586 	pr_debug("Allocating new usage for %s.\n", a->name);
587 	use = kmalloc(sizeof(*use), GFP_ATOMIC);
588 	if (!use)
589 		return -ENOMEM;
590 
591 	use->source = a;
592 	use->target = b;
593 	list_add(&use->source_list, &b->source_list);
594 	list_add(&use->target_list, &a->target_list);
595 	return 0;
596 }
597 
598 /* Module a uses b: caller needs module_mutex() */
599 static int ref_module(struct module *a, struct module *b)
600 {
601 	int err;
602 
603 	if (b == NULL || already_uses(a, b))
604 		return 0;
605 
606 	/* If module isn't available, we fail. */
607 	err = strong_try_module_get(b);
608 	if (err)
609 		return err;
610 
611 	err = add_module_usage(a, b);
612 	if (err) {
613 		module_put(b);
614 		return err;
615 	}
616 	return 0;
617 }
618 
619 /* Clear the unload stuff of the module. */
620 static void module_unload_free(struct module *mod)
621 {
622 	struct module_use *use, *tmp;
623 
624 	mutex_lock(&module_mutex);
625 	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
626 		struct module *i = use->target;
627 		pr_debug("%s unusing %s\n", mod->name, i->name);
628 		module_put(i);
629 		list_del(&use->source_list);
630 		list_del(&use->target_list);
631 		kfree(use);
632 	}
633 	mutex_unlock(&module_mutex);
634 }
635 
636 #ifdef CONFIG_MODULE_FORCE_UNLOAD
637 static inline int try_force_unload(unsigned int flags)
638 {
639 	int ret = (flags & O_TRUNC);
640 	if (ret)
641 		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
642 	return ret;
643 }
644 #else
645 static inline int try_force_unload(unsigned int flags)
646 {
647 	return 0;
648 }
649 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
650 
651 /* Try to release refcount of module, 0 means success. */
652 static int try_release_module_ref(struct module *mod)
653 {
654 	int ret;
655 
656 	/* Try to decrement refcnt which we set at loading */
657 	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
658 	BUG_ON(ret < 0);
659 	if (ret)
660 		/* Someone can put this right now, recover with checking */
661 		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
662 
663 	return ret;
664 }
665 
666 static int try_stop_module(struct module *mod, int flags, int *forced)
667 {
668 	/* If it's not unused, quit unless we're forcing. */
669 	if (try_release_module_ref(mod) != 0) {
670 		*forced = try_force_unload(flags);
671 		if (!(*forced))
672 			return -EWOULDBLOCK;
673 	}
674 
675 	/* Mark it as dying. */
676 	mod->state = MODULE_STATE_GOING;
677 
678 	return 0;
679 }
680 
681 /**
682  * module_refcount() - return the refcount or -1 if unloading
683  * @mod:	the module we're checking
684  *
685  * Return:
686  *	-1 if the module is in the process of unloading
687  *	otherwise the number of references in the kernel to the module
688  */
689 int module_refcount(struct module *mod)
690 {
691 	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
692 }
693 EXPORT_SYMBOL(module_refcount);
694 
695 /* This exists whether we can unload or not */
696 static void free_module(struct module *mod);
697 
698 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
699 		unsigned int, flags)
700 {
701 	struct module *mod;
702 	char name[MODULE_NAME_LEN];
703 	char buf[MODULE_FLAGS_BUF_SIZE];
704 	int ret, forced = 0;
705 
706 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
707 		return -EPERM;
708 
709 	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
710 		return -EFAULT;
711 	name[MODULE_NAME_LEN-1] = '\0';
712 
713 	audit_log_kern_module(name);
714 
715 	if (mutex_lock_interruptible(&module_mutex) != 0)
716 		return -EINTR;
717 
718 	mod = find_module(name);
719 	if (!mod) {
720 		ret = -ENOENT;
721 		goto out;
722 	}
723 
724 	if (!list_empty(&mod->source_list)) {
725 		/* Other modules depend on us: get rid of them first. */
726 		ret = -EWOULDBLOCK;
727 		goto out;
728 	}
729 
730 	/* Doing init or already dying? */
731 	if (mod->state != MODULE_STATE_LIVE) {
732 		/* FIXME: if (force), slam module count damn the torpedoes */
733 		pr_debug("%s already dying\n", mod->name);
734 		ret = -EBUSY;
735 		goto out;
736 	}
737 
738 	/* If it has an init func, it must have an exit func to unload */
739 	if (mod->init && !mod->exit) {
740 		forced = try_force_unload(flags);
741 		if (!forced) {
742 			/* This module can't be removed */
743 			ret = -EBUSY;
744 			goto out;
745 		}
746 	}
747 
748 	ret = try_stop_module(mod, flags, &forced);
749 	if (ret != 0)
750 		goto out;
751 
752 	mutex_unlock(&module_mutex);
753 	/* Final destruction now no one is using it. */
754 	if (mod->exit != NULL)
755 		mod->exit();
756 	blocking_notifier_call_chain(&module_notify_list,
757 				     MODULE_STATE_GOING, mod);
758 	klp_module_going(mod);
759 	ftrace_release_mod(mod);
760 
761 	async_synchronize_full();
762 
763 	/* Store the name and taints of the last unloaded module for diagnostic purposes */
764 	strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name));
765 	strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints));
766 
767 	free_module(mod);
768 	/* someone could wait for the module in add_unformed_module() */
769 	wake_up_all(&module_wq);
770 	return 0;
771 out:
772 	mutex_unlock(&module_mutex);
773 	return ret;
774 }
775 
776 void __symbol_put(const char *symbol)
777 {
778 	struct find_symbol_arg fsa = {
779 		.name	= symbol,
780 		.gplok	= true,
781 	};
782 
783 	preempt_disable();
784 	BUG_ON(!find_symbol(&fsa));
785 	module_put(fsa.owner);
786 	preempt_enable();
787 }
788 EXPORT_SYMBOL(__symbol_put);
789 
790 /* Note this assumes addr is a function, which it currently always is. */
791 void symbol_put_addr(void *addr)
792 {
793 	struct module *modaddr;
794 	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
795 
796 	if (core_kernel_text(a))
797 		return;
798 
799 	/*
800 	 * Even though we hold a reference on the module; we still need to
801 	 * disable preemption in order to safely traverse the data structure.
802 	 */
803 	preempt_disable();
804 	modaddr = __module_text_address(a);
805 	BUG_ON(!modaddr);
806 	module_put(modaddr);
807 	preempt_enable();
808 }
809 EXPORT_SYMBOL_GPL(symbol_put_addr);
810 
811 static ssize_t show_refcnt(struct module_attribute *mattr,
812 			   struct module_kobject *mk, char *buffer)
813 {
814 	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
815 }
816 
817 static struct module_attribute modinfo_refcnt =
818 	__ATTR(refcnt, 0444, show_refcnt, NULL);
819 
820 void __module_get(struct module *module)
821 {
822 	if (module) {
823 		preempt_disable();
824 		atomic_inc(&module->refcnt);
825 		trace_module_get(module, _RET_IP_);
826 		preempt_enable();
827 	}
828 }
829 EXPORT_SYMBOL(__module_get);
830 
831 bool try_module_get(struct module *module)
832 {
833 	bool ret = true;
834 
835 	if (module) {
836 		preempt_disable();
837 		/* Note: here, we can fail to get a reference */
838 		if (likely(module_is_live(module) &&
839 			   atomic_inc_not_zero(&module->refcnt) != 0))
840 			trace_module_get(module, _RET_IP_);
841 		else
842 			ret = false;
843 
844 		preempt_enable();
845 	}
846 	return ret;
847 }
848 EXPORT_SYMBOL(try_module_get);
849 
850 void module_put(struct module *module)
851 {
852 	int ret;
853 
854 	if (module) {
855 		preempt_disable();
856 		ret = atomic_dec_if_positive(&module->refcnt);
857 		WARN_ON(ret < 0);	/* Failed to put refcount */
858 		trace_module_put(module, _RET_IP_);
859 		preempt_enable();
860 	}
861 }
862 EXPORT_SYMBOL(module_put);
863 
864 #else /* !CONFIG_MODULE_UNLOAD */
865 static inline void module_unload_free(struct module *mod)
866 {
867 }
868 
869 static int ref_module(struct module *a, struct module *b)
870 {
871 	return strong_try_module_get(b);
872 }
873 
874 static inline int module_unload_init(struct module *mod)
875 {
876 	return 0;
877 }
878 #endif /* CONFIG_MODULE_UNLOAD */
879 
880 size_t module_flags_taint(unsigned long taints, char *buf)
881 {
882 	size_t l = 0;
883 	int i;
884 
885 	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
886 		if (taint_flags[i].module && test_bit(i, &taints))
887 			buf[l++] = taint_flags[i].c_true;
888 	}
889 
890 	return l;
891 }
892 
893 static ssize_t show_initstate(struct module_attribute *mattr,
894 			      struct module_kobject *mk, char *buffer)
895 {
896 	const char *state = "unknown";
897 
898 	switch (mk->mod->state) {
899 	case MODULE_STATE_LIVE:
900 		state = "live";
901 		break;
902 	case MODULE_STATE_COMING:
903 		state = "coming";
904 		break;
905 	case MODULE_STATE_GOING:
906 		state = "going";
907 		break;
908 	default:
909 		BUG();
910 	}
911 	return sprintf(buffer, "%s\n", state);
912 }
913 
914 static struct module_attribute modinfo_initstate =
915 	__ATTR(initstate, 0444, show_initstate, NULL);
916 
917 static ssize_t store_uevent(struct module_attribute *mattr,
918 			    struct module_kobject *mk,
919 			    const char *buffer, size_t count)
920 {
921 	int rc;
922 
923 	rc = kobject_synth_uevent(&mk->kobj, buffer, count);
924 	return rc ? rc : count;
925 }
926 
927 struct module_attribute module_uevent =
928 	__ATTR(uevent, 0200, NULL, store_uevent);
929 
930 static ssize_t show_coresize(struct module_attribute *mattr,
931 			     struct module_kobject *mk, char *buffer)
932 {
933 	unsigned int size = mk->mod->mem[MOD_TEXT].size;
934 
935 	if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) {
936 		for_class_mod_mem_type(type, core_data)
937 			size += mk->mod->mem[type].size;
938 	}
939 	return sprintf(buffer, "%u\n", size);
940 }
941 
942 static struct module_attribute modinfo_coresize =
943 	__ATTR(coresize, 0444, show_coresize, NULL);
944 
945 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
946 static ssize_t show_datasize(struct module_attribute *mattr,
947 			     struct module_kobject *mk, char *buffer)
948 {
949 	unsigned int size = 0;
950 
951 	for_class_mod_mem_type(type, core_data)
952 		size += mk->mod->mem[type].size;
953 	return sprintf(buffer, "%u\n", size);
954 }
955 
956 static struct module_attribute modinfo_datasize =
957 	__ATTR(datasize, 0444, show_datasize, NULL);
958 #endif
959 
960 static ssize_t show_initsize(struct module_attribute *mattr,
961 			     struct module_kobject *mk, char *buffer)
962 {
963 	unsigned int size = 0;
964 
965 	for_class_mod_mem_type(type, init)
966 		size += mk->mod->mem[type].size;
967 	return sprintf(buffer, "%u\n", size);
968 }
969 
970 static struct module_attribute modinfo_initsize =
971 	__ATTR(initsize, 0444, show_initsize, NULL);
972 
973 static ssize_t show_taint(struct module_attribute *mattr,
974 			  struct module_kobject *mk, char *buffer)
975 {
976 	size_t l;
977 
978 	l = module_flags_taint(mk->mod->taints, buffer);
979 	buffer[l++] = '\n';
980 	return l;
981 }
982 
983 static struct module_attribute modinfo_taint =
984 	__ATTR(taint, 0444, show_taint, NULL);
985 
986 struct module_attribute *modinfo_attrs[] = {
987 	&module_uevent,
988 	&modinfo_version,
989 	&modinfo_srcversion,
990 	&modinfo_initstate,
991 	&modinfo_coresize,
992 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
993 	&modinfo_datasize,
994 #endif
995 	&modinfo_initsize,
996 	&modinfo_taint,
997 #ifdef CONFIG_MODULE_UNLOAD
998 	&modinfo_refcnt,
999 #endif
1000 	NULL,
1001 };
1002 
1003 size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
1004 
1005 static const char vermagic[] = VERMAGIC_STRING;
1006 
1007 int try_to_force_load(struct module *mod, const char *reason)
1008 {
1009 #ifdef CONFIG_MODULE_FORCE_LOAD
1010 	if (!test_taint(TAINT_FORCED_MODULE))
1011 		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1012 	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1013 	return 0;
1014 #else
1015 	return -ENOEXEC;
1016 #endif
1017 }
1018 
1019 static char *get_modinfo(const struct load_info *info, const char *tag);
1020 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1021 			      char *prev);
1022 
1023 static int verify_namespace_is_imported(const struct load_info *info,
1024 					const struct kernel_symbol *sym,
1025 					struct module *mod)
1026 {
1027 	const char *namespace;
1028 	char *imported_namespace;
1029 
1030 	namespace = kernel_symbol_namespace(sym);
1031 	if (namespace && namespace[0]) {
1032 		imported_namespace = get_modinfo(info, "import_ns");
1033 		while (imported_namespace) {
1034 			if (strcmp(namespace, imported_namespace) == 0)
1035 				return 0;
1036 			imported_namespace = get_next_modinfo(
1037 				info, "import_ns", imported_namespace);
1038 		}
1039 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1040 		pr_warn(
1041 #else
1042 		pr_err(
1043 #endif
1044 			"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1045 			mod->name, kernel_symbol_name(sym), namespace);
1046 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1047 		return -EINVAL;
1048 #endif
1049 	}
1050 	return 0;
1051 }
1052 
1053 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1054 {
1055 	if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1056 		return true;
1057 
1058 	if (mod->using_gplonly_symbols) {
1059 		pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1060 			mod->name, name, owner->name);
1061 		return false;
1062 	}
1063 
1064 	if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1065 		pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1066 			mod->name, name, owner->name);
1067 		set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1068 	}
1069 	return true;
1070 }
1071 
1072 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
1073 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1074 						  const struct load_info *info,
1075 						  const char *name,
1076 						  char ownername[])
1077 {
1078 	struct find_symbol_arg fsa = {
1079 		.name	= name,
1080 		.gplok	= !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1081 		.warn	= true,
1082 	};
1083 	int err;
1084 
1085 	/*
1086 	 * The module_mutex should not be a heavily contended lock;
1087 	 * if we get the occasional sleep here, we'll go an extra iteration
1088 	 * in the wait_event_interruptible(), which is harmless.
1089 	 */
1090 	sched_annotate_sleep();
1091 	mutex_lock(&module_mutex);
1092 	if (!find_symbol(&fsa))
1093 		goto unlock;
1094 
1095 	if (fsa.license == GPL_ONLY)
1096 		mod->using_gplonly_symbols = true;
1097 
1098 	if (!inherit_taint(mod, fsa.owner, name)) {
1099 		fsa.sym = NULL;
1100 		goto getname;
1101 	}
1102 
1103 	if (!check_version(info, name, mod, fsa.crc)) {
1104 		fsa.sym = ERR_PTR(-EINVAL);
1105 		goto getname;
1106 	}
1107 
1108 	err = verify_namespace_is_imported(info, fsa.sym, mod);
1109 	if (err) {
1110 		fsa.sym = ERR_PTR(err);
1111 		goto getname;
1112 	}
1113 
1114 	err = ref_module(mod, fsa.owner);
1115 	if (err) {
1116 		fsa.sym = ERR_PTR(err);
1117 		goto getname;
1118 	}
1119 
1120 getname:
1121 	/* We must make copy under the lock if we failed to get ref. */
1122 	strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1123 unlock:
1124 	mutex_unlock(&module_mutex);
1125 	return fsa.sym;
1126 }
1127 
1128 static const struct kernel_symbol *
1129 resolve_symbol_wait(struct module *mod,
1130 		    const struct load_info *info,
1131 		    const char *name)
1132 {
1133 	const struct kernel_symbol *ksym;
1134 	char owner[MODULE_NAME_LEN];
1135 
1136 	if (wait_event_interruptible_timeout(module_wq,
1137 			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1138 			|| PTR_ERR(ksym) != -EBUSY,
1139 					     30 * HZ) <= 0) {
1140 		pr_warn("%s: gave up waiting for init of module %s.\n",
1141 			mod->name, owner);
1142 	}
1143 	return ksym;
1144 }
1145 
1146 void __weak module_memfree(void *module_region)
1147 {
1148 	/*
1149 	 * This memory may be RO, and freeing RO memory in an interrupt is not
1150 	 * supported by vmalloc.
1151 	 */
1152 	WARN_ON(in_interrupt());
1153 	vfree(module_region);
1154 }
1155 
1156 void __weak module_arch_cleanup(struct module *mod)
1157 {
1158 }
1159 
1160 void __weak module_arch_freeing_init(struct module *mod)
1161 {
1162 }
1163 
1164 static bool mod_mem_use_vmalloc(enum mod_mem_type type)
1165 {
1166 	return IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC) &&
1167 		mod_mem_type_is_core_data(type);
1168 }
1169 
1170 static void *module_memory_alloc(unsigned int size, enum mod_mem_type type)
1171 {
1172 	if (mod_mem_use_vmalloc(type))
1173 		return vzalloc(size);
1174 	return module_alloc(size);
1175 }
1176 
1177 static void module_memory_free(void *ptr, enum mod_mem_type type)
1178 {
1179 	if (mod_mem_use_vmalloc(type))
1180 		vfree(ptr);
1181 	else
1182 		module_memfree(ptr);
1183 }
1184 
1185 static void free_mod_mem(struct module *mod)
1186 {
1187 	for_each_mod_mem_type(type) {
1188 		struct module_memory *mod_mem = &mod->mem[type];
1189 
1190 		if (type == MOD_DATA)
1191 			continue;
1192 
1193 		/* Free lock-classes; relies on the preceding sync_rcu(). */
1194 		lockdep_free_key_range(mod_mem->base, mod_mem->size);
1195 		if (mod_mem->size)
1196 			module_memory_free(mod_mem->base, type);
1197 	}
1198 
1199 	/* MOD_DATA hosts mod, so free it at last */
1200 	lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size);
1201 	module_memory_free(mod->mem[MOD_DATA].base, MOD_DATA);
1202 }
1203 
1204 /* Free a module, remove from lists, etc. */
1205 static void free_module(struct module *mod)
1206 {
1207 	trace_module_free(mod);
1208 
1209 	mod_sysfs_teardown(mod);
1210 
1211 	/*
1212 	 * We leave it in list to prevent duplicate loads, but make sure
1213 	 * that noone uses it while it's being deconstructed.
1214 	 */
1215 	mutex_lock(&module_mutex);
1216 	mod->state = MODULE_STATE_UNFORMED;
1217 	mutex_unlock(&module_mutex);
1218 
1219 	/* Arch-specific cleanup. */
1220 	module_arch_cleanup(mod);
1221 
1222 	/* Module unload stuff */
1223 	module_unload_free(mod);
1224 
1225 	/* Free any allocated parameters. */
1226 	destroy_params(mod->kp, mod->num_kp);
1227 
1228 	if (is_livepatch_module(mod))
1229 		free_module_elf(mod);
1230 
1231 	/* Now we can delete it from the lists */
1232 	mutex_lock(&module_mutex);
1233 	/* Unlink carefully: kallsyms could be walking list. */
1234 	list_del_rcu(&mod->list);
1235 	mod_tree_remove(mod);
1236 	/* Remove this module from bug list, this uses list_del_rcu */
1237 	module_bug_cleanup(mod);
1238 	/* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
1239 	synchronize_rcu();
1240 	if (try_add_tainted_module(mod))
1241 		pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1242 		       mod->name);
1243 	mutex_unlock(&module_mutex);
1244 
1245 	/* This may be empty, but that's OK */
1246 	module_arch_freeing_init(mod);
1247 	kfree(mod->args);
1248 	percpu_modfree(mod);
1249 
1250 	free_mod_mem(mod);
1251 }
1252 
1253 void *__symbol_get(const char *symbol)
1254 {
1255 	struct find_symbol_arg fsa = {
1256 		.name	= symbol,
1257 		.gplok	= true,
1258 		.warn	= true,
1259 	};
1260 
1261 	preempt_disable();
1262 	if (!find_symbol(&fsa) || strong_try_module_get(fsa.owner)) {
1263 		preempt_enable();
1264 		return NULL;
1265 	}
1266 	preempt_enable();
1267 	return (void *)kernel_symbol_value(fsa.sym);
1268 }
1269 EXPORT_SYMBOL_GPL(__symbol_get);
1270 
1271 /*
1272  * Ensure that an exported symbol [global namespace] does not already exist
1273  * in the kernel or in some other module's exported symbol table.
1274  *
1275  * You must hold the module_mutex.
1276  */
1277 static int verify_exported_symbols(struct module *mod)
1278 {
1279 	unsigned int i;
1280 	const struct kernel_symbol *s;
1281 	struct {
1282 		const struct kernel_symbol *sym;
1283 		unsigned int num;
1284 	} arr[] = {
1285 		{ mod->syms, mod->num_syms },
1286 		{ mod->gpl_syms, mod->num_gpl_syms },
1287 	};
1288 
1289 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1290 		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1291 			struct find_symbol_arg fsa = {
1292 				.name	= kernel_symbol_name(s),
1293 				.gplok	= true,
1294 			};
1295 			if (find_symbol(&fsa)) {
1296 				pr_err("%s: exports duplicate symbol %s"
1297 				       " (owned by %s)\n",
1298 				       mod->name, kernel_symbol_name(s),
1299 				       module_name(fsa.owner));
1300 				return -ENOEXEC;
1301 			}
1302 		}
1303 	}
1304 	return 0;
1305 }
1306 
1307 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1308 {
1309 	/*
1310 	 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1311 	 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1312 	 * i386 has a similar problem but may not deserve a fix.
1313 	 *
1314 	 * If we ever have to ignore many symbols, consider refactoring the code to
1315 	 * only warn if referenced by a relocation.
1316 	 */
1317 	if (emachine == EM_386 || emachine == EM_X86_64)
1318 		return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1319 	return false;
1320 }
1321 
1322 /* Change all symbols so that st_value encodes the pointer directly. */
1323 static int simplify_symbols(struct module *mod, const struct load_info *info)
1324 {
1325 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1326 	Elf_Sym *sym = (void *)symsec->sh_addr;
1327 	unsigned long secbase;
1328 	unsigned int i;
1329 	int ret = 0;
1330 	const struct kernel_symbol *ksym;
1331 
1332 	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1333 		const char *name = info->strtab + sym[i].st_name;
1334 
1335 		switch (sym[i].st_shndx) {
1336 		case SHN_COMMON:
1337 			/* Ignore common symbols */
1338 			if (!strncmp(name, "__gnu_lto", 9))
1339 				break;
1340 
1341 			/*
1342 			 * We compiled with -fno-common.  These are not
1343 			 * supposed to happen.
1344 			 */
1345 			pr_debug("Common symbol: %s\n", name);
1346 			pr_warn("%s: please compile with -fno-common\n",
1347 			       mod->name);
1348 			ret = -ENOEXEC;
1349 			break;
1350 
1351 		case SHN_ABS:
1352 			/* Don't need to do anything */
1353 			pr_debug("Absolute symbol: 0x%08lx\n",
1354 			       (long)sym[i].st_value);
1355 			break;
1356 
1357 		case SHN_LIVEPATCH:
1358 			/* Livepatch symbols are resolved by livepatch */
1359 			break;
1360 
1361 		case SHN_UNDEF:
1362 			ksym = resolve_symbol_wait(mod, info, name);
1363 			/* Ok if resolved.  */
1364 			if (ksym && !IS_ERR(ksym)) {
1365 				sym[i].st_value = kernel_symbol_value(ksym);
1366 				break;
1367 			}
1368 
1369 			/* Ok if weak or ignored.  */
1370 			if (!ksym &&
1371 			    (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1372 			     ignore_undef_symbol(info->hdr->e_machine, name)))
1373 				break;
1374 
1375 			ret = PTR_ERR(ksym) ?: -ENOENT;
1376 			pr_warn("%s: Unknown symbol %s (err %d)\n",
1377 				mod->name, name, ret);
1378 			break;
1379 
1380 		default:
1381 			/* Divert to percpu allocation if a percpu var. */
1382 			if (sym[i].st_shndx == info->index.pcpu)
1383 				secbase = (unsigned long)mod_percpu(mod);
1384 			else
1385 				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1386 			sym[i].st_value += secbase;
1387 			break;
1388 		}
1389 	}
1390 
1391 	return ret;
1392 }
1393 
1394 static int apply_relocations(struct module *mod, const struct load_info *info)
1395 {
1396 	unsigned int i;
1397 	int err = 0;
1398 
1399 	/* Now do relocations. */
1400 	for (i = 1; i < info->hdr->e_shnum; i++) {
1401 		unsigned int infosec = info->sechdrs[i].sh_info;
1402 
1403 		/* Not a valid relocation section? */
1404 		if (infosec >= info->hdr->e_shnum)
1405 			continue;
1406 
1407 		/* Don't bother with non-allocated sections */
1408 		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1409 			continue;
1410 
1411 		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1412 			err = klp_apply_section_relocs(mod, info->sechdrs,
1413 						       info->secstrings,
1414 						       info->strtab,
1415 						       info->index.sym, i,
1416 						       NULL);
1417 		else if (info->sechdrs[i].sh_type == SHT_REL)
1418 			err = apply_relocate(info->sechdrs, info->strtab,
1419 					     info->index.sym, i, mod);
1420 		else if (info->sechdrs[i].sh_type == SHT_RELA)
1421 			err = apply_relocate_add(info->sechdrs, info->strtab,
1422 						 info->index.sym, i, mod);
1423 		if (err < 0)
1424 			break;
1425 	}
1426 	return err;
1427 }
1428 
1429 /* Additional bytes needed by arch in front of individual sections */
1430 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1431 					     unsigned int section)
1432 {
1433 	/* default implementation just returns zero */
1434 	return 0;
1435 }
1436 
1437 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type,
1438 				Elf_Shdr *sechdr, unsigned int section)
1439 {
1440 	long offset;
1441 	long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT;
1442 
1443 	mod->mem[type].size += arch_mod_section_prepend(mod, section);
1444 	offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1);
1445 	mod->mem[type].size = offset + sechdr->sh_size;
1446 
1447 	WARN_ON_ONCE(offset & mask);
1448 	return offset | mask;
1449 }
1450 
1451 static bool module_init_layout_section(const char *sname)
1452 {
1453 #ifndef CONFIG_MODULE_UNLOAD
1454 	if (module_exit_section(sname))
1455 		return true;
1456 #endif
1457 	return module_init_section(sname);
1458 }
1459 
1460 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init)
1461 {
1462 	unsigned int m, i;
1463 
1464 	static const unsigned long masks[][2] = {
1465 		/*
1466 		 * NOTE: all executable code must be the first section
1467 		 * in this array; otherwise modify the text_size
1468 		 * finder in the two loops below
1469 		 */
1470 		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1471 		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1472 		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1473 		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1474 		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1475 	};
1476 	static const int core_m_to_mem_type[] = {
1477 		MOD_TEXT,
1478 		MOD_RODATA,
1479 		MOD_RO_AFTER_INIT,
1480 		MOD_DATA,
1481 		MOD_INVALID,	/* This is needed to match the masks array */
1482 	};
1483 	static const int init_m_to_mem_type[] = {
1484 		MOD_INIT_TEXT,
1485 		MOD_INIT_RODATA,
1486 		MOD_INVALID,
1487 		MOD_INIT_DATA,
1488 		MOD_INVALID,	/* This is needed to match the masks array */
1489 	};
1490 
1491 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1492 		enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m];
1493 
1494 		for (i = 0; i < info->hdr->e_shnum; ++i) {
1495 			Elf_Shdr *s = &info->sechdrs[i];
1496 			const char *sname = info->secstrings + s->sh_name;
1497 
1498 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
1499 			    || (s->sh_flags & masks[m][1])
1500 			    || s->sh_entsize != ~0UL
1501 			    || is_init != module_init_layout_section(sname))
1502 				continue;
1503 
1504 			if (WARN_ON_ONCE(type == MOD_INVALID))
1505 				continue;
1506 
1507 			s->sh_entsize = module_get_offset_and_type(mod, type, s, i);
1508 			pr_debug("\t%s\n", sname);
1509 		}
1510 	}
1511 }
1512 
1513 /*
1514  * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1515  * might -- code, read-only data, read-write data, small data.  Tally
1516  * sizes, and place the offsets into sh_entsize fields: high bit means it
1517  * belongs in init.
1518  */
1519 static void layout_sections(struct module *mod, struct load_info *info)
1520 {
1521 	unsigned int i;
1522 
1523 	for (i = 0; i < info->hdr->e_shnum; i++)
1524 		info->sechdrs[i].sh_entsize = ~0UL;
1525 
1526 	pr_debug("Core section allocation order:\n");
1527 	__layout_sections(mod, info, false);
1528 
1529 	pr_debug("Init section allocation order:\n");
1530 	__layout_sections(mod, info, true);
1531 }
1532 
1533 static void set_license(struct module *mod, const char *license)
1534 {
1535 	if (!license)
1536 		license = "unspecified";
1537 
1538 	if (!license_is_gpl_compatible(license)) {
1539 		if (!test_taint(TAINT_PROPRIETARY_MODULE))
1540 			pr_warn("%s: module license '%s' taints kernel.\n",
1541 				mod->name, license);
1542 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1543 				 LOCKDEP_NOW_UNRELIABLE);
1544 	}
1545 }
1546 
1547 /* Parse tag=value strings from .modinfo section */
1548 static char *next_string(char *string, unsigned long *secsize)
1549 {
1550 	/* Skip non-zero chars */
1551 	while (string[0]) {
1552 		string++;
1553 		if ((*secsize)-- <= 1)
1554 			return NULL;
1555 	}
1556 
1557 	/* Skip any zero padding. */
1558 	while (!string[0]) {
1559 		string++;
1560 		if ((*secsize)-- <= 1)
1561 			return NULL;
1562 	}
1563 	return string;
1564 }
1565 
1566 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1567 			      char *prev)
1568 {
1569 	char *p;
1570 	unsigned int taglen = strlen(tag);
1571 	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1572 	unsigned long size = infosec->sh_size;
1573 
1574 	/*
1575 	 * get_modinfo() calls made before rewrite_section_headers()
1576 	 * must use sh_offset, as sh_addr isn't set!
1577 	 */
1578 	char *modinfo = (char *)info->hdr + infosec->sh_offset;
1579 
1580 	if (prev) {
1581 		size -= prev - modinfo;
1582 		modinfo = next_string(prev, &size);
1583 	}
1584 
1585 	for (p = modinfo; p; p = next_string(p, &size)) {
1586 		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1587 			return p + taglen + 1;
1588 	}
1589 	return NULL;
1590 }
1591 
1592 static char *get_modinfo(const struct load_info *info, const char *tag)
1593 {
1594 	return get_next_modinfo(info, tag, NULL);
1595 }
1596 
1597 static void setup_modinfo(struct module *mod, struct load_info *info)
1598 {
1599 	struct module_attribute *attr;
1600 	int i;
1601 
1602 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1603 		if (attr->setup)
1604 			attr->setup(mod, get_modinfo(info, attr->attr.name));
1605 	}
1606 }
1607 
1608 static void free_modinfo(struct module *mod)
1609 {
1610 	struct module_attribute *attr;
1611 	int i;
1612 
1613 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1614 		if (attr->free)
1615 			attr->free(mod);
1616 	}
1617 }
1618 
1619 void * __weak module_alloc(unsigned long size)
1620 {
1621 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
1622 			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
1623 			NUMA_NO_NODE, __builtin_return_address(0));
1624 }
1625 
1626 bool __weak module_init_section(const char *name)
1627 {
1628 	return strstarts(name, ".init");
1629 }
1630 
1631 bool __weak module_exit_section(const char *name)
1632 {
1633 	return strstarts(name, ".exit");
1634 }
1635 
1636 static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr)
1637 {
1638 #if defined(CONFIG_64BIT)
1639 	unsigned long long secend;
1640 #else
1641 	unsigned long secend;
1642 #endif
1643 
1644 	/*
1645 	 * Check for both overflow and offset/size being
1646 	 * too large.
1647 	 */
1648 	secend = shdr->sh_offset + shdr->sh_size;
1649 	if (secend < shdr->sh_offset || secend > info->len)
1650 		return -ENOEXEC;
1651 
1652 	return 0;
1653 }
1654 
1655 /*
1656  * Sanity checks against invalid binaries, wrong arch, weird elf version.
1657  *
1658  * Also do basic validity checks against section offsets and sizes, the
1659  * section name string table, and the indices used for it (sh_name).
1660  */
1661 static int elf_validity_check(struct load_info *info)
1662 {
1663 	unsigned int i;
1664 	Elf_Shdr *shdr, *strhdr;
1665 	int err;
1666 
1667 	if (info->len < sizeof(*(info->hdr))) {
1668 		pr_err("Invalid ELF header len %lu\n", info->len);
1669 		goto no_exec;
1670 	}
1671 
1672 	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1673 		pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1674 		goto no_exec;
1675 	}
1676 	if (info->hdr->e_type != ET_REL) {
1677 		pr_err("Invalid ELF header type: %u != %u\n",
1678 		       info->hdr->e_type, ET_REL);
1679 		goto no_exec;
1680 	}
1681 	if (!elf_check_arch(info->hdr)) {
1682 		pr_err("Invalid architecture in ELF header: %u\n",
1683 		       info->hdr->e_machine);
1684 		goto no_exec;
1685 	}
1686 	if (!module_elf_check_arch(info->hdr)) {
1687 		pr_err("Invalid module architecture in ELF header: %u\n",
1688 		       info->hdr->e_machine);
1689 		goto no_exec;
1690 	}
1691 	if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1692 		pr_err("Invalid ELF section header size\n");
1693 		goto no_exec;
1694 	}
1695 
1696 	/*
1697 	 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1698 	 * known and small. So e_shnum * sizeof(Elf_Shdr)
1699 	 * will not overflow unsigned long on any platform.
1700 	 */
1701 	if (info->hdr->e_shoff >= info->len
1702 	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1703 		info->len - info->hdr->e_shoff)) {
1704 		pr_err("Invalid ELF section header overflow\n");
1705 		goto no_exec;
1706 	}
1707 
1708 	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1709 
1710 	/*
1711 	 * Verify if the section name table index is valid.
1712 	 */
1713 	if (info->hdr->e_shstrndx == SHN_UNDEF
1714 	    || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1715 		pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1716 		       info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1717 		       info->hdr->e_shnum);
1718 		goto no_exec;
1719 	}
1720 
1721 	strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1722 	err = validate_section_offset(info, strhdr);
1723 	if (err < 0) {
1724 		pr_err("Invalid ELF section hdr(type %u)\n", strhdr->sh_type);
1725 		return err;
1726 	}
1727 
1728 	/*
1729 	 * The section name table must be NUL-terminated, as required
1730 	 * by the spec. This makes strcmp and pr_* calls that access
1731 	 * strings in the section safe.
1732 	 */
1733 	info->secstrings = (void *)info->hdr + strhdr->sh_offset;
1734 	if (strhdr->sh_size == 0) {
1735 		pr_err("empty section name table\n");
1736 		goto no_exec;
1737 	}
1738 	if (info->secstrings[strhdr->sh_size - 1] != '\0') {
1739 		pr_err("ELF Spec violation: section name table isn't null terminated\n");
1740 		goto no_exec;
1741 	}
1742 
1743 	/*
1744 	 * The code assumes that section 0 has a length of zero and
1745 	 * an addr of zero, so check for it.
1746 	 */
1747 	if (info->sechdrs[0].sh_type != SHT_NULL
1748 	    || info->sechdrs[0].sh_size != 0
1749 	    || info->sechdrs[0].sh_addr != 0) {
1750 		pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1751 		       info->sechdrs[0].sh_type);
1752 		goto no_exec;
1753 	}
1754 
1755 	for (i = 1; i < info->hdr->e_shnum; i++) {
1756 		shdr = &info->sechdrs[i];
1757 		switch (shdr->sh_type) {
1758 		case SHT_NULL:
1759 		case SHT_NOBITS:
1760 			continue;
1761 		case SHT_SYMTAB:
1762 			if (shdr->sh_link == SHN_UNDEF
1763 			    || shdr->sh_link >= info->hdr->e_shnum) {
1764 				pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
1765 				       shdr->sh_link, shdr->sh_link,
1766 				       info->hdr->e_shnum);
1767 				goto no_exec;
1768 			}
1769 			fallthrough;
1770 		default:
1771 			err = validate_section_offset(info, shdr);
1772 			if (err < 0) {
1773 				pr_err("Invalid ELF section in module (section %u type %u)\n",
1774 					i, shdr->sh_type);
1775 				return err;
1776 			}
1777 
1778 			if (shdr->sh_flags & SHF_ALLOC) {
1779 				if (shdr->sh_name >= strhdr->sh_size) {
1780 					pr_err("Invalid ELF section name in module (section %u type %u)\n",
1781 					       i, shdr->sh_type);
1782 					return -ENOEXEC;
1783 				}
1784 			}
1785 			break;
1786 		}
1787 	}
1788 
1789 	return 0;
1790 
1791 no_exec:
1792 	return -ENOEXEC;
1793 }
1794 
1795 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
1796 
1797 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
1798 {
1799 	do {
1800 		unsigned long n = min(len, COPY_CHUNK_SIZE);
1801 
1802 		if (copy_from_user(dst, usrc, n) != 0)
1803 			return -EFAULT;
1804 		cond_resched();
1805 		dst += n;
1806 		usrc += n;
1807 		len -= n;
1808 	} while (len);
1809 	return 0;
1810 }
1811 
1812 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
1813 {
1814 	if (!get_modinfo(info, "livepatch"))
1815 		/* Nothing more to do */
1816 		return 0;
1817 
1818 	if (set_livepatch_module(mod)) {
1819 		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
1820 		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
1821 				mod->name);
1822 		return 0;
1823 	}
1824 
1825 	pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
1826 	       mod->name);
1827 	return -ENOEXEC;
1828 }
1829 
1830 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
1831 {
1832 	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
1833 		return;
1834 
1835 	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
1836 		mod->name);
1837 }
1838 
1839 /* Sets info->hdr and info->len. */
1840 static int copy_module_from_user(const void __user *umod, unsigned long len,
1841 				  struct load_info *info)
1842 {
1843 	int err;
1844 
1845 	info->len = len;
1846 	if (info->len < sizeof(*(info->hdr)))
1847 		return -ENOEXEC;
1848 
1849 	err = security_kernel_load_data(LOADING_MODULE, true);
1850 	if (err)
1851 		return err;
1852 
1853 	/* Suck in entire file: we'll want most of it. */
1854 	info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
1855 	if (!info->hdr)
1856 		return -ENOMEM;
1857 
1858 	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
1859 		err = -EFAULT;
1860 		goto out;
1861 	}
1862 
1863 	err = security_kernel_post_load_data((char *)info->hdr, info->len,
1864 					     LOADING_MODULE, "init_module");
1865 out:
1866 	if (err)
1867 		vfree(info->hdr);
1868 
1869 	return err;
1870 }
1871 
1872 static void free_copy(struct load_info *info, int flags)
1873 {
1874 	if (flags & MODULE_INIT_COMPRESSED_FILE)
1875 		module_decompress_cleanup(info);
1876 	else
1877 		vfree(info->hdr);
1878 }
1879 
1880 static int rewrite_section_headers(struct load_info *info, int flags)
1881 {
1882 	unsigned int i;
1883 
1884 	/* This should always be true, but let's be sure. */
1885 	info->sechdrs[0].sh_addr = 0;
1886 
1887 	for (i = 1; i < info->hdr->e_shnum; i++) {
1888 		Elf_Shdr *shdr = &info->sechdrs[i];
1889 
1890 		/*
1891 		 * Mark all sections sh_addr with their address in the
1892 		 * temporary image.
1893 		 */
1894 		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
1895 
1896 	}
1897 
1898 	/* Track but don't keep modinfo and version sections. */
1899 	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
1900 	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
1901 
1902 	return 0;
1903 }
1904 
1905 /*
1906  * Set up our basic convenience variables (pointers to section headers,
1907  * search for module section index etc), and do some basic section
1908  * verification.
1909  *
1910  * Set info->mod to the temporary copy of the module in info->hdr. The final one
1911  * will be allocated in move_module().
1912  */
1913 static int setup_load_info(struct load_info *info, int flags)
1914 {
1915 	unsigned int i;
1916 
1917 	/* Try to find a name early so we can log errors with a module name */
1918 	info->index.info = find_sec(info, ".modinfo");
1919 	if (info->index.info)
1920 		info->name = get_modinfo(info, "name");
1921 
1922 	/* Find internal symbols and strings. */
1923 	for (i = 1; i < info->hdr->e_shnum; i++) {
1924 		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
1925 			info->index.sym = i;
1926 			info->index.str = info->sechdrs[i].sh_link;
1927 			info->strtab = (char *)info->hdr
1928 				+ info->sechdrs[info->index.str].sh_offset;
1929 			break;
1930 		}
1931 	}
1932 
1933 	if (info->index.sym == 0) {
1934 		pr_warn("%s: module has no symbols (stripped?)\n",
1935 			info->name ?: "(missing .modinfo section or name field)");
1936 		return -ENOEXEC;
1937 	}
1938 
1939 	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
1940 	if (!info->index.mod) {
1941 		pr_warn("%s: No module found in object\n",
1942 			info->name ?: "(missing .modinfo section or name field)");
1943 		return -ENOEXEC;
1944 	}
1945 	/* This is temporary: point mod into copy of data. */
1946 	info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
1947 
1948 	/*
1949 	 * If we didn't load the .modinfo 'name' field earlier, fall back to
1950 	 * on-disk struct mod 'name' field.
1951 	 */
1952 	if (!info->name)
1953 		info->name = info->mod->name;
1954 
1955 	if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
1956 		info->index.vers = 0; /* Pretend no __versions section! */
1957 	else
1958 		info->index.vers = find_sec(info, "__versions");
1959 
1960 	info->index.pcpu = find_pcpusec(info);
1961 
1962 	return 0;
1963 }
1964 
1965 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
1966 {
1967 	const char *modmagic = get_modinfo(info, "vermagic");
1968 	int err;
1969 
1970 	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
1971 		modmagic = NULL;
1972 
1973 	/* This is allowed: modprobe --force will invalidate it. */
1974 	if (!modmagic) {
1975 		err = try_to_force_load(mod, "bad vermagic");
1976 		if (err)
1977 			return err;
1978 	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
1979 		pr_err("%s: version magic '%s' should be '%s'\n",
1980 		       info->name, modmagic, vermagic);
1981 		return -ENOEXEC;
1982 	}
1983 
1984 	if (!get_modinfo(info, "intree")) {
1985 		if (!test_taint(TAINT_OOT_MODULE))
1986 			pr_warn("%s: loading out-of-tree module taints kernel.\n",
1987 				mod->name);
1988 		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
1989 	}
1990 
1991 	check_modinfo_retpoline(mod, info);
1992 
1993 	if (get_modinfo(info, "staging")) {
1994 		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
1995 		pr_warn("%s: module is from the staging directory, the quality "
1996 			"is unknown, you have been warned.\n", mod->name);
1997 	}
1998 
1999 	err = check_modinfo_livepatch(mod, info);
2000 	if (err)
2001 		return err;
2002 
2003 	/* Set up license info based on the info section */
2004 	set_license(mod, get_modinfo(info, "license"));
2005 
2006 	if (get_modinfo(info, "test")) {
2007 		if (!test_taint(TAINT_TEST))
2008 			pr_warn("%s: loading test module taints kernel.\n",
2009 				mod->name);
2010 		add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
2011 	}
2012 
2013 	return 0;
2014 }
2015 
2016 static int find_module_sections(struct module *mod, struct load_info *info)
2017 {
2018 	mod->kp = section_objs(info, "__param",
2019 			       sizeof(*mod->kp), &mod->num_kp);
2020 	mod->syms = section_objs(info, "__ksymtab",
2021 				 sizeof(*mod->syms), &mod->num_syms);
2022 	mod->crcs = section_addr(info, "__kcrctab");
2023 	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2024 				     sizeof(*mod->gpl_syms),
2025 				     &mod->num_gpl_syms);
2026 	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2027 
2028 #ifdef CONFIG_CONSTRUCTORS
2029 	mod->ctors = section_objs(info, ".ctors",
2030 				  sizeof(*mod->ctors), &mod->num_ctors);
2031 	if (!mod->ctors)
2032 		mod->ctors = section_objs(info, ".init_array",
2033 				sizeof(*mod->ctors), &mod->num_ctors);
2034 	else if (find_sec(info, ".init_array")) {
2035 		/*
2036 		 * This shouldn't happen with same compiler and binutils
2037 		 * building all parts of the module.
2038 		 */
2039 		pr_warn("%s: has both .ctors and .init_array.\n",
2040 		       mod->name);
2041 		return -EINVAL;
2042 	}
2043 #endif
2044 
2045 	mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2046 						&mod->noinstr_text_size);
2047 
2048 #ifdef CONFIG_TRACEPOINTS
2049 	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2050 					     sizeof(*mod->tracepoints_ptrs),
2051 					     &mod->num_tracepoints);
2052 #endif
2053 #ifdef CONFIG_TREE_SRCU
2054 	mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2055 					     sizeof(*mod->srcu_struct_ptrs),
2056 					     &mod->num_srcu_structs);
2057 #endif
2058 #ifdef CONFIG_BPF_EVENTS
2059 	mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2060 					   sizeof(*mod->bpf_raw_events),
2061 					   &mod->num_bpf_raw_events);
2062 #endif
2063 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2064 	mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2065 #endif
2066 #ifdef CONFIG_JUMP_LABEL
2067 	mod->jump_entries = section_objs(info, "__jump_table",
2068 					sizeof(*mod->jump_entries),
2069 					&mod->num_jump_entries);
2070 #endif
2071 #ifdef CONFIG_EVENT_TRACING
2072 	mod->trace_events = section_objs(info, "_ftrace_events",
2073 					 sizeof(*mod->trace_events),
2074 					 &mod->num_trace_events);
2075 	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2076 					sizeof(*mod->trace_evals),
2077 					&mod->num_trace_evals);
2078 #endif
2079 #ifdef CONFIG_TRACING
2080 	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2081 					 sizeof(*mod->trace_bprintk_fmt_start),
2082 					 &mod->num_trace_bprintk_fmt);
2083 #endif
2084 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2085 	/* sechdrs[0].sh_size is always zero */
2086 	mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2087 					     sizeof(*mod->ftrace_callsites),
2088 					     &mod->num_ftrace_callsites);
2089 #endif
2090 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2091 	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2092 					    sizeof(*mod->ei_funcs),
2093 					    &mod->num_ei_funcs);
2094 #endif
2095 #ifdef CONFIG_KPROBES
2096 	mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2097 						&mod->kprobes_text_size);
2098 	mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2099 						sizeof(unsigned long),
2100 						&mod->num_kprobe_blacklist);
2101 #endif
2102 #ifdef CONFIG_PRINTK_INDEX
2103 	mod->printk_index_start = section_objs(info, ".printk_index",
2104 					       sizeof(*mod->printk_index_start),
2105 					       &mod->printk_index_size);
2106 #endif
2107 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2108 	mod->static_call_sites = section_objs(info, ".static_call_sites",
2109 					      sizeof(*mod->static_call_sites),
2110 					      &mod->num_static_call_sites);
2111 #endif
2112 #if IS_ENABLED(CONFIG_KUNIT)
2113 	mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2114 					      sizeof(*mod->kunit_suites),
2115 					      &mod->num_kunit_suites);
2116 #endif
2117 
2118 	mod->extable = section_objs(info, "__ex_table",
2119 				    sizeof(*mod->extable), &mod->num_exentries);
2120 
2121 	if (section_addr(info, "__obsparm"))
2122 		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2123 
2124 #ifdef CONFIG_DYNAMIC_DEBUG_CORE
2125 	mod->dyndbg_info.descs = section_objs(info, "__dyndbg",
2126 					      sizeof(*mod->dyndbg_info.descs),
2127 					      &mod->dyndbg_info.num_descs);
2128 	mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes",
2129 						sizeof(*mod->dyndbg_info.classes),
2130 						&mod->dyndbg_info.num_classes);
2131 #endif
2132 
2133 	return 0;
2134 }
2135 
2136 static int move_module(struct module *mod, struct load_info *info)
2137 {
2138 	int i;
2139 	void *ptr;
2140 	enum mod_mem_type t;
2141 
2142 	for_each_mod_mem_type(type) {
2143 		if (!mod->mem[type].size) {
2144 			mod->mem[type].base = NULL;
2145 			continue;
2146 		}
2147 		mod->mem[type].size = PAGE_ALIGN(mod->mem[type].size);
2148 		ptr = module_memory_alloc(mod->mem[type].size, type);
2149 
2150 		/*
2151 		 * The pointer to this block is stored in the module structure
2152 		 * which is inside the block. Just mark it as not being a
2153 		 * leak.
2154 		 */
2155 		kmemleak_ignore(ptr);
2156 		if (!ptr) {
2157 			t = type;
2158 			goto out_enomem;
2159 		}
2160 		memset(ptr, 0, mod->mem[type].size);
2161 		mod->mem[type].base = ptr;
2162 	}
2163 
2164 	/* Transfer each section which specifies SHF_ALLOC */
2165 	pr_debug("final section addresses:\n");
2166 	for (i = 0; i < info->hdr->e_shnum; i++) {
2167 		void *dest;
2168 		Elf_Shdr *shdr = &info->sechdrs[i];
2169 		enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT;
2170 
2171 		if (!(shdr->sh_flags & SHF_ALLOC))
2172 			continue;
2173 
2174 		dest = mod->mem[type].base + (shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK);
2175 
2176 		if (shdr->sh_type != SHT_NOBITS)
2177 			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2178 		/* Update sh_addr to point to copy in image. */
2179 		shdr->sh_addr = (unsigned long)dest;
2180 		pr_debug("\t0x%lx %s\n",
2181 			 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
2182 	}
2183 
2184 	return 0;
2185 out_enomem:
2186 	for (t--; t >= 0; t--)
2187 		module_memory_free(mod->mem[t].base, t);
2188 	return -ENOMEM;
2189 }
2190 
2191 static int check_module_license_and_versions(struct module *mod)
2192 {
2193 	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2194 
2195 	/*
2196 	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2197 	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2198 	 * using GPL-only symbols it needs.
2199 	 */
2200 	if (strcmp(mod->name, "ndiswrapper") == 0)
2201 		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2202 
2203 	/* driverloader was caught wrongly pretending to be under GPL */
2204 	if (strcmp(mod->name, "driverloader") == 0)
2205 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2206 				 LOCKDEP_NOW_UNRELIABLE);
2207 
2208 	/* lve claims to be GPL but upstream won't provide source */
2209 	if (strcmp(mod->name, "lve") == 0)
2210 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2211 				 LOCKDEP_NOW_UNRELIABLE);
2212 
2213 	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2214 		pr_warn("%s: module license taints kernel.\n", mod->name);
2215 
2216 #ifdef CONFIG_MODVERSIONS
2217 	if ((mod->num_syms && !mod->crcs) ||
2218 	    (mod->num_gpl_syms && !mod->gpl_crcs)) {
2219 		return try_to_force_load(mod,
2220 					 "no versions for exported symbols");
2221 	}
2222 #endif
2223 	return 0;
2224 }
2225 
2226 static void flush_module_icache(const struct module *mod)
2227 {
2228 	/*
2229 	 * Flush the instruction cache, since we've played with text.
2230 	 * Do it before processing of module parameters, so the module
2231 	 * can provide parameter accessor functions of its own.
2232 	 */
2233 	for_each_mod_mem_type(type) {
2234 		const struct module_memory *mod_mem = &mod->mem[type];
2235 
2236 		if (mod_mem->size) {
2237 			flush_icache_range((unsigned long)mod_mem->base,
2238 					   (unsigned long)mod_mem->base + mod_mem->size);
2239 		}
2240 	}
2241 }
2242 
2243 bool __weak module_elf_check_arch(Elf_Ehdr *hdr)
2244 {
2245 	return true;
2246 }
2247 
2248 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2249 				     Elf_Shdr *sechdrs,
2250 				     char *secstrings,
2251 				     struct module *mod)
2252 {
2253 	return 0;
2254 }
2255 
2256 /* module_blacklist is a comma-separated list of module names */
2257 static char *module_blacklist;
2258 static bool blacklisted(const char *module_name)
2259 {
2260 	const char *p;
2261 	size_t len;
2262 
2263 	if (!module_blacklist)
2264 		return false;
2265 
2266 	for (p = module_blacklist; *p; p += len) {
2267 		len = strcspn(p, ",");
2268 		if (strlen(module_name) == len && !memcmp(module_name, p, len))
2269 			return true;
2270 		if (p[len] == ',')
2271 			len++;
2272 	}
2273 	return false;
2274 }
2275 core_param(module_blacklist, module_blacklist, charp, 0400);
2276 
2277 static struct module *layout_and_allocate(struct load_info *info, int flags)
2278 {
2279 	struct module *mod;
2280 	unsigned int ndx;
2281 	int err;
2282 
2283 	err = check_modinfo(info->mod, info, flags);
2284 	if (err)
2285 		return ERR_PTR(err);
2286 
2287 	/* Allow arches to frob section contents and sizes.  */
2288 	err = module_frob_arch_sections(info->hdr, info->sechdrs,
2289 					info->secstrings, info->mod);
2290 	if (err < 0)
2291 		return ERR_PTR(err);
2292 
2293 	err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2294 					  info->secstrings, info->mod);
2295 	if (err < 0)
2296 		return ERR_PTR(err);
2297 
2298 	/* We will do a special allocation for per-cpu sections later. */
2299 	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2300 
2301 	/*
2302 	 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
2303 	 * layout_sections() can put it in the right place.
2304 	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2305 	 */
2306 	ndx = find_sec(info, ".data..ro_after_init");
2307 	if (ndx)
2308 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2309 	/*
2310 	 * Mark the __jump_table section as ro_after_init as well: these data
2311 	 * structures are never modified, with the exception of entries that
2312 	 * refer to code in the __init section, which are annotated as such
2313 	 * at module load time.
2314 	 */
2315 	ndx = find_sec(info, "__jump_table");
2316 	if (ndx)
2317 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2318 
2319 	/*
2320 	 * Determine total sizes, and put offsets in sh_entsize.  For now
2321 	 * this is done generically; there doesn't appear to be any
2322 	 * special cases for the architectures.
2323 	 */
2324 	layout_sections(info->mod, info);
2325 	layout_symtab(info->mod, info);
2326 
2327 	/* Allocate and move to the final place */
2328 	err = move_module(info->mod, info);
2329 	if (err)
2330 		return ERR_PTR(err);
2331 
2332 	/* Module has been copied to its final place now: return it. */
2333 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2334 	kmemleak_load_module(mod, info);
2335 	return mod;
2336 }
2337 
2338 /* mod is no longer valid after this! */
2339 static void module_deallocate(struct module *mod, struct load_info *info)
2340 {
2341 	percpu_modfree(mod);
2342 	module_arch_freeing_init(mod);
2343 
2344 	free_mod_mem(mod);
2345 }
2346 
2347 int __weak module_finalize(const Elf_Ehdr *hdr,
2348 			   const Elf_Shdr *sechdrs,
2349 			   struct module *me)
2350 {
2351 	return 0;
2352 }
2353 
2354 static int post_relocation(struct module *mod, const struct load_info *info)
2355 {
2356 	/* Sort exception table now relocations are done. */
2357 	sort_extable(mod->extable, mod->extable + mod->num_exentries);
2358 
2359 	/* Copy relocated percpu area over. */
2360 	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2361 		       info->sechdrs[info->index.pcpu].sh_size);
2362 
2363 	/* Setup kallsyms-specific fields. */
2364 	add_kallsyms(mod, info);
2365 
2366 	/* Arch-specific module finalizing. */
2367 	return module_finalize(info->hdr, info->sechdrs, mod);
2368 }
2369 
2370 /* Is this module of this name done loading?  No locks held. */
2371 static bool finished_loading(const char *name)
2372 {
2373 	struct module *mod;
2374 	bool ret;
2375 
2376 	/*
2377 	 * The module_mutex should not be a heavily contended lock;
2378 	 * if we get the occasional sleep here, we'll go an extra iteration
2379 	 * in the wait_event_interruptible(), which is harmless.
2380 	 */
2381 	sched_annotate_sleep();
2382 	mutex_lock(&module_mutex);
2383 	mod = find_module_all(name, strlen(name), true);
2384 	ret = !mod || mod->state == MODULE_STATE_LIVE
2385 		|| mod->state == MODULE_STATE_GOING;
2386 	mutex_unlock(&module_mutex);
2387 
2388 	return ret;
2389 }
2390 
2391 /* Call module constructors. */
2392 static void do_mod_ctors(struct module *mod)
2393 {
2394 #ifdef CONFIG_CONSTRUCTORS
2395 	unsigned long i;
2396 
2397 	for (i = 0; i < mod->num_ctors; i++)
2398 		mod->ctors[i]();
2399 #endif
2400 }
2401 
2402 /* For freeing module_init on success, in case kallsyms traversing */
2403 struct mod_initfree {
2404 	struct llist_node node;
2405 	void *init_text;
2406 	void *init_data;
2407 	void *init_rodata;
2408 };
2409 
2410 static void do_free_init(struct work_struct *w)
2411 {
2412 	struct llist_node *pos, *n, *list;
2413 	struct mod_initfree *initfree;
2414 
2415 	list = llist_del_all(&init_free_list);
2416 
2417 	synchronize_rcu();
2418 
2419 	llist_for_each_safe(pos, n, list) {
2420 		initfree = container_of(pos, struct mod_initfree, node);
2421 		module_memfree(initfree->init_text);
2422 		module_memfree(initfree->init_data);
2423 		module_memfree(initfree->init_rodata);
2424 		kfree(initfree);
2425 	}
2426 }
2427 
2428 #undef MODULE_PARAM_PREFIX
2429 #define MODULE_PARAM_PREFIX "module."
2430 /* Default value for module->async_probe_requested */
2431 static bool async_probe;
2432 module_param(async_probe, bool, 0644);
2433 
2434 /*
2435  * This is where the real work happens.
2436  *
2437  * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
2438  * helper command 'lx-symbols'.
2439  */
2440 static noinline int do_init_module(struct module *mod)
2441 {
2442 	int ret = 0;
2443 	struct mod_initfree *freeinit;
2444 
2445 	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
2446 	if (!freeinit) {
2447 		ret = -ENOMEM;
2448 		goto fail;
2449 	}
2450 	freeinit->init_text = mod->mem[MOD_INIT_TEXT].base;
2451 	freeinit->init_data = mod->mem[MOD_INIT_DATA].base;
2452 	freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base;
2453 
2454 	do_mod_ctors(mod);
2455 	/* Start the module */
2456 	if (mod->init != NULL)
2457 		ret = do_one_initcall(mod->init);
2458 	if (ret < 0) {
2459 		goto fail_free_freeinit;
2460 	}
2461 	if (ret > 0) {
2462 		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
2463 			"follow 0/-E convention\n"
2464 			"%s: loading module anyway...\n",
2465 			__func__, mod->name, ret, __func__);
2466 		dump_stack();
2467 	}
2468 
2469 	/* Now it's a first class citizen! */
2470 	mod->state = MODULE_STATE_LIVE;
2471 	blocking_notifier_call_chain(&module_notify_list,
2472 				     MODULE_STATE_LIVE, mod);
2473 
2474 	/* Delay uevent until module has finished its init routine */
2475 	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
2476 
2477 	/*
2478 	 * We need to finish all async code before the module init sequence
2479 	 * is done. This has potential to deadlock if synchronous module
2480 	 * loading is requested from async (which is not allowed!).
2481 	 *
2482 	 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
2483 	 * request_module() from async workers") for more details.
2484 	 */
2485 	if (!mod->async_probe_requested)
2486 		async_synchronize_full();
2487 
2488 	ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base,
2489 			mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size);
2490 	mutex_lock(&module_mutex);
2491 	/* Drop initial reference. */
2492 	module_put(mod);
2493 	trim_init_extable(mod);
2494 #ifdef CONFIG_KALLSYMS
2495 	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
2496 	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
2497 #endif
2498 	module_enable_ro(mod, true);
2499 	mod_tree_remove_init(mod);
2500 	module_arch_freeing_init(mod);
2501 	for_class_mod_mem_type(type, init) {
2502 		mod->mem[type].base = NULL;
2503 		mod->mem[type].size = 0;
2504 	}
2505 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2506 	/* .BTF is not SHF_ALLOC and will get removed, so sanitize pointer */
2507 	mod->btf_data = NULL;
2508 #endif
2509 	/*
2510 	 * We want to free module_init, but be aware that kallsyms may be
2511 	 * walking this with preempt disabled.  In all the failure paths, we
2512 	 * call synchronize_rcu(), but we don't want to slow down the success
2513 	 * path. module_memfree() cannot be called in an interrupt, so do the
2514 	 * work and call synchronize_rcu() in a work queue.
2515 	 *
2516 	 * Note that module_alloc() on most architectures creates W+X page
2517 	 * mappings which won't be cleaned up until do_free_init() runs.  Any
2518 	 * code such as mark_rodata_ro() which depends on those mappings to
2519 	 * be cleaned up needs to sync with the queued work - ie
2520 	 * rcu_barrier()
2521 	 */
2522 	if (llist_add(&freeinit->node, &init_free_list))
2523 		schedule_work(&init_free_wq);
2524 
2525 	mutex_unlock(&module_mutex);
2526 	wake_up_all(&module_wq);
2527 
2528 	return 0;
2529 
2530 fail_free_freeinit:
2531 	kfree(freeinit);
2532 fail:
2533 	/* Try to protect us from buggy refcounters. */
2534 	mod->state = MODULE_STATE_GOING;
2535 	synchronize_rcu();
2536 	module_put(mod);
2537 	blocking_notifier_call_chain(&module_notify_list,
2538 				     MODULE_STATE_GOING, mod);
2539 	klp_module_going(mod);
2540 	ftrace_release_mod(mod);
2541 	free_module(mod);
2542 	wake_up_all(&module_wq);
2543 	return ret;
2544 }
2545 
2546 static int may_init_module(void)
2547 {
2548 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
2549 		return -EPERM;
2550 
2551 	return 0;
2552 }
2553 
2554 /*
2555  * We try to place it in the list now to make sure it's unique before
2556  * we dedicate too many resources.  In particular, temporary percpu
2557  * memory exhaustion.
2558  */
2559 static int add_unformed_module(struct module *mod)
2560 {
2561 	int err;
2562 	struct module *old;
2563 
2564 	mod->state = MODULE_STATE_UNFORMED;
2565 
2566 	mutex_lock(&module_mutex);
2567 	old = find_module_all(mod->name, strlen(mod->name), true);
2568 	if (old != NULL) {
2569 		if (old->state == MODULE_STATE_COMING
2570 		    || old->state == MODULE_STATE_UNFORMED) {
2571 			/* Wait in case it fails to load. */
2572 			mutex_unlock(&module_mutex);
2573 			err = wait_event_interruptible(module_wq,
2574 					       finished_loading(mod->name));
2575 			if (err)
2576 				goto out_unlocked;
2577 
2578 			/* The module might have gone in the meantime. */
2579 			mutex_lock(&module_mutex);
2580 			old = find_module_all(mod->name, strlen(mod->name),
2581 					      true);
2582 		}
2583 
2584 		/*
2585 		 * We are here only when the same module was being loaded. Do
2586 		 * not try to load it again right now. It prevents long delays
2587 		 * caused by serialized module load failures. It might happen
2588 		 * when more devices of the same type trigger load of
2589 		 * a particular module.
2590 		 */
2591 		if (old && old->state == MODULE_STATE_LIVE)
2592 			err = -EEXIST;
2593 		else
2594 			err = -EBUSY;
2595 		goto out;
2596 	}
2597 	mod_update_bounds(mod);
2598 	list_add_rcu(&mod->list, &modules);
2599 	mod_tree_insert(mod);
2600 	err = 0;
2601 
2602 out:
2603 	mutex_unlock(&module_mutex);
2604 out_unlocked:
2605 	return err;
2606 }
2607 
2608 static int complete_formation(struct module *mod, struct load_info *info)
2609 {
2610 	int err;
2611 
2612 	mutex_lock(&module_mutex);
2613 
2614 	/* Find duplicate symbols (must be called under lock). */
2615 	err = verify_exported_symbols(mod);
2616 	if (err < 0)
2617 		goto out;
2618 
2619 	/* These rely on module_mutex for list integrity. */
2620 	module_bug_finalize(info->hdr, info->sechdrs, mod);
2621 	module_cfi_finalize(info->hdr, info->sechdrs, mod);
2622 
2623 	module_enable_ro(mod, false);
2624 	module_enable_nx(mod);
2625 	module_enable_x(mod);
2626 
2627 	/*
2628 	 * Mark state as coming so strong_try_module_get() ignores us,
2629 	 * but kallsyms etc. can see us.
2630 	 */
2631 	mod->state = MODULE_STATE_COMING;
2632 	mutex_unlock(&module_mutex);
2633 
2634 	return 0;
2635 
2636 out:
2637 	mutex_unlock(&module_mutex);
2638 	return err;
2639 }
2640 
2641 static int prepare_coming_module(struct module *mod)
2642 {
2643 	int err;
2644 
2645 	ftrace_module_enable(mod);
2646 	err = klp_module_coming(mod);
2647 	if (err)
2648 		return err;
2649 
2650 	err = blocking_notifier_call_chain_robust(&module_notify_list,
2651 			MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
2652 	err = notifier_to_errno(err);
2653 	if (err)
2654 		klp_module_going(mod);
2655 
2656 	return err;
2657 }
2658 
2659 static int unknown_module_param_cb(char *param, char *val, const char *modname,
2660 				   void *arg)
2661 {
2662 	struct module *mod = arg;
2663 	int ret;
2664 
2665 	if (strcmp(param, "async_probe") == 0) {
2666 		if (kstrtobool(val, &mod->async_probe_requested))
2667 			mod->async_probe_requested = true;
2668 		return 0;
2669 	}
2670 
2671 	/* Check for magic 'dyndbg' arg */
2672 	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
2673 	if (ret != 0)
2674 		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
2675 	return 0;
2676 }
2677 
2678 /*
2679  * Allocate and load the module: note that size of section 0 is always
2680  * zero, and we rely on this for optional sections.
2681  */
2682 static int load_module(struct load_info *info, const char __user *uargs,
2683 		       int flags)
2684 {
2685 	struct module *mod;
2686 	long err = 0;
2687 	char *after_dashes;
2688 
2689 	/*
2690 	 * Do the signature check (if any) first. All that
2691 	 * the signature check needs is info->len, it does
2692 	 * not need any of the section info. That can be
2693 	 * set up later. This will minimize the chances
2694 	 * of a corrupt module causing problems before
2695 	 * we even get to the signature check.
2696 	 *
2697 	 * The check will also adjust info->len by stripping
2698 	 * off the sig length at the end of the module, making
2699 	 * checks against info->len more correct.
2700 	 */
2701 	err = module_sig_check(info, flags);
2702 	if (err)
2703 		goto free_copy;
2704 
2705 	/*
2706 	 * Do basic sanity checks against the ELF header and
2707 	 * sections.
2708 	 */
2709 	err = elf_validity_check(info);
2710 	if (err)
2711 		goto free_copy;
2712 
2713 	/*
2714 	 * Everything checks out, so set up the section info
2715 	 * in the info structure.
2716 	 */
2717 	err = setup_load_info(info, flags);
2718 	if (err)
2719 		goto free_copy;
2720 
2721 	/*
2722 	 * Now that we know we have the correct module name, check
2723 	 * if it's blacklisted.
2724 	 */
2725 	if (blacklisted(info->name)) {
2726 		err = -EPERM;
2727 		pr_err("Module %s is blacklisted\n", info->name);
2728 		goto free_copy;
2729 	}
2730 
2731 	err = rewrite_section_headers(info, flags);
2732 	if (err)
2733 		goto free_copy;
2734 
2735 	/* Check module struct version now, before we try to use module. */
2736 	if (!check_modstruct_version(info, info->mod)) {
2737 		err = -ENOEXEC;
2738 		goto free_copy;
2739 	}
2740 
2741 	/* Figure out module layout, and allocate all the memory. */
2742 	mod = layout_and_allocate(info, flags);
2743 	if (IS_ERR(mod)) {
2744 		err = PTR_ERR(mod);
2745 		goto free_copy;
2746 	}
2747 
2748 	audit_log_kern_module(mod->name);
2749 
2750 	/* Reserve our place in the list. */
2751 	err = add_unformed_module(mod);
2752 	if (err)
2753 		goto free_module;
2754 
2755 #ifdef CONFIG_MODULE_SIG
2756 	mod->sig_ok = info->sig_ok;
2757 	if (!mod->sig_ok) {
2758 		pr_notice_once("%s: module verification failed: signature "
2759 			       "and/or required key missing - tainting "
2760 			       "kernel\n", mod->name);
2761 		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2762 	}
2763 #endif
2764 
2765 	/* To avoid stressing percpu allocator, do this once we're unique. */
2766 	err = percpu_modalloc(mod, info);
2767 	if (err)
2768 		goto unlink_mod;
2769 
2770 	/* Now module is in final location, initialize linked lists, etc. */
2771 	err = module_unload_init(mod);
2772 	if (err)
2773 		goto unlink_mod;
2774 
2775 	init_param_lock(mod);
2776 
2777 	/*
2778 	 * Now we've got everything in the final locations, we can
2779 	 * find optional sections.
2780 	 */
2781 	err = find_module_sections(mod, info);
2782 	if (err)
2783 		goto free_unload;
2784 
2785 	err = check_module_license_and_versions(mod);
2786 	if (err)
2787 		goto free_unload;
2788 
2789 	/* Set up MODINFO_ATTR fields */
2790 	setup_modinfo(mod, info);
2791 
2792 	/* Fix up syms, so that st_value is a pointer to location. */
2793 	err = simplify_symbols(mod, info);
2794 	if (err < 0)
2795 		goto free_modinfo;
2796 
2797 	err = apply_relocations(mod, info);
2798 	if (err < 0)
2799 		goto free_modinfo;
2800 
2801 	err = post_relocation(mod, info);
2802 	if (err < 0)
2803 		goto free_modinfo;
2804 
2805 	flush_module_icache(mod);
2806 
2807 	/* Now copy in args */
2808 	mod->args = strndup_user(uargs, ~0UL >> 1);
2809 	if (IS_ERR(mod->args)) {
2810 		err = PTR_ERR(mod->args);
2811 		goto free_arch_cleanup;
2812 	}
2813 
2814 	init_build_id(mod, info);
2815 
2816 	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
2817 	ftrace_module_init(mod);
2818 
2819 	/* Finally it's fully formed, ready to start executing. */
2820 	err = complete_formation(mod, info);
2821 	if (err)
2822 		goto ddebug_cleanup;
2823 
2824 	err = prepare_coming_module(mod);
2825 	if (err)
2826 		goto bug_cleanup;
2827 
2828 	mod->async_probe_requested = async_probe;
2829 
2830 	/* Module is ready to execute: parsing args may do that. */
2831 	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
2832 				  -32768, 32767, mod,
2833 				  unknown_module_param_cb);
2834 	if (IS_ERR(after_dashes)) {
2835 		err = PTR_ERR(after_dashes);
2836 		goto coming_cleanup;
2837 	} else if (after_dashes) {
2838 		pr_warn("%s: parameters '%s' after `--' ignored\n",
2839 		       mod->name, after_dashes);
2840 	}
2841 
2842 	/* Link in to sysfs. */
2843 	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
2844 	if (err < 0)
2845 		goto coming_cleanup;
2846 
2847 	if (is_livepatch_module(mod)) {
2848 		err = copy_module_elf(mod, info);
2849 		if (err < 0)
2850 			goto sysfs_cleanup;
2851 	}
2852 
2853 	/* Get rid of temporary copy. */
2854 	free_copy(info, flags);
2855 
2856 	/* Done! */
2857 	trace_module_load(mod);
2858 
2859 	return do_init_module(mod);
2860 
2861  sysfs_cleanup:
2862 	mod_sysfs_teardown(mod);
2863  coming_cleanup:
2864 	mod->state = MODULE_STATE_GOING;
2865 	destroy_params(mod->kp, mod->num_kp);
2866 	blocking_notifier_call_chain(&module_notify_list,
2867 				     MODULE_STATE_GOING, mod);
2868 	klp_module_going(mod);
2869  bug_cleanup:
2870 	mod->state = MODULE_STATE_GOING;
2871 	/* module_bug_cleanup needs module_mutex protection */
2872 	mutex_lock(&module_mutex);
2873 	module_bug_cleanup(mod);
2874 	mutex_unlock(&module_mutex);
2875 
2876  ddebug_cleanup:
2877 	ftrace_release_mod(mod);
2878 	synchronize_rcu();
2879 	kfree(mod->args);
2880  free_arch_cleanup:
2881 	module_arch_cleanup(mod);
2882  free_modinfo:
2883 	free_modinfo(mod);
2884  free_unload:
2885 	module_unload_free(mod);
2886  unlink_mod:
2887 	mutex_lock(&module_mutex);
2888 	/* Unlink carefully: kallsyms could be walking list. */
2889 	list_del_rcu(&mod->list);
2890 	mod_tree_remove(mod);
2891 	wake_up_all(&module_wq);
2892 	/* Wait for RCU-sched synchronizing before releasing mod->list. */
2893 	synchronize_rcu();
2894 	mutex_unlock(&module_mutex);
2895  free_module:
2896 	/* Free lock-classes; relies on the preceding sync_rcu() */
2897 	for_class_mod_mem_type(type, core_data) {
2898 		lockdep_free_key_range(mod->mem[type].base,
2899 				       mod->mem[type].size);
2900 	}
2901 
2902 	module_deallocate(mod, info);
2903  free_copy:
2904 	free_copy(info, flags);
2905 	return err;
2906 }
2907 
2908 SYSCALL_DEFINE3(init_module, void __user *, umod,
2909 		unsigned long, len, const char __user *, uargs)
2910 {
2911 	int err;
2912 	struct load_info info = { };
2913 
2914 	err = may_init_module();
2915 	if (err)
2916 		return err;
2917 
2918 	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
2919 	       umod, len, uargs);
2920 
2921 	err = copy_module_from_user(umod, len, &info);
2922 	if (err)
2923 		return err;
2924 
2925 	return load_module(&info, uargs, 0);
2926 }
2927 
2928 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
2929 {
2930 	struct load_info info = { };
2931 	void *buf = NULL;
2932 	int len;
2933 	int err;
2934 
2935 	err = may_init_module();
2936 	if (err)
2937 		return err;
2938 
2939 	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
2940 
2941 	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
2942 		      |MODULE_INIT_IGNORE_VERMAGIC
2943 		      |MODULE_INIT_COMPRESSED_FILE))
2944 		return -EINVAL;
2945 
2946 	len = kernel_read_file_from_fd(fd, 0, &buf, INT_MAX, NULL,
2947 				       READING_MODULE);
2948 	if (len < 0)
2949 		return len;
2950 
2951 	if (flags & MODULE_INIT_COMPRESSED_FILE) {
2952 		err = module_decompress(&info, buf, len);
2953 		vfree(buf); /* compressed data is no longer needed */
2954 		if (err)
2955 			return err;
2956 	} else {
2957 		info.hdr = buf;
2958 		info.len = len;
2959 	}
2960 
2961 	return load_module(&info, uargs, flags);
2962 }
2963 
2964 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
2965 char *module_flags(struct module *mod, char *buf, bool show_state)
2966 {
2967 	int bx = 0;
2968 
2969 	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
2970 	if (!mod->taints && !show_state)
2971 		goto out;
2972 	if (mod->taints ||
2973 	    mod->state == MODULE_STATE_GOING ||
2974 	    mod->state == MODULE_STATE_COMING) {
2975 		buf[bx++] = '(';
2976 		bx += module_flags_taint(mod->taints, buf + bx);
2977 		/* Show a - for module-is-being-unloaded */
2978 		if (mod->state == MODULE_STATE_GOING && show_state)
2979 			buf[bx++] = '-';
2980 		/* Show a + for module-is-being-loaded */
2981 		if (mod->state == MODULE_STATE_COMING && show_state)
2982 			buf[bx++] = '+';
2983 		buf[bx++] = ')';
2984 	}
2985 out:
2986 	buf[bx] = '\0';
2987 
2988 	return buf;
2989 }
2990 
2991 /* Given an address, look for it in the module exception tables. */
2992 const struct exception_table_entry *search_module_extables(unsigned long addr)
2993 {
2994 	const struct exception_table_entry *e = NULL;
2995 	struct module *mod;
2996 
2997 	preempt_disable();
2998 	mod = __module_address(addr);
2999 	if (!mod)
3000 		goto out;
3001 
3002 	if (!mod->num_exentries)
3003 		goto out;
3004 
3005 	e = search_extable(mod->extable,
3006 			   mod->num_exentries,
3007 			   addr);
3008 out:
3009 	preempt_enable();
3010 
3011 	/*
3012 	 * Now, if we found one, we are running inside it now, hence
3013 	 * we cannot unload the module, hence no refcnt needed.
3014 	 */
3015 	return e;
3016 }
3017 
3018 /**
3019  * is_module_address() - is this address inside a module?
3020  * @addr: the address to check.
3021  *
3022  * See is_module_text_address() if you simply want to see if the address
3023  * is code (not data).
3024  */
3025 bool is_module_address(unsigned long addr)
3026 {
3027 	bool ret;
3028 
3029 	preempt_disable();
3030 	ret = __module_address(addr) != NULL;
3031 	preempt_enable();
3032 
3033 	return ret;
3034 }
3035 
3036 /**
3037  * __module_address() - get the module which contains an address.
3038  * @addr: the address.
3039  *
3040  * Must be called with preempt disabled or module mutex held so that
3041  * module doesn't get freed during this.
3042  */
3043 struct module *__module_address(unsigned long addr)
3044 {
3045 	struct module *mod;
3046 
3047 	if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3048 		goto lookup;
3049 
3050 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3051 	if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max)
3052 		goto lookup;
3053 #endif
3054 
3055 	return NULL;
3056 
3057 lookup:
3058 	module_assert_mutex_or_preempt();
3059 
3060 	mod = mod_find(addr, &mod_tree);
3061 	if (mod) {
3062 		BUG_ON(!within_module(addr, mod));
3063 		if (mod->state == MODULE_STATE_UNFORMED)
3064 			mod = NULL;
3065 	}
3066 	return mod;
3067 }
3068 
3069 /**
3070  * is_module_text_address() - is this address inside module code?
3071  * @addr: the address to check.
3072  *
3073  * See is_module_address() if you simply want to see if the address is
3074  * anywhere in a module.  See kernel_text_address() for testing if an
3075  * address corresponds to kernel or module code.
3076  */
3077 bool is_module_text_address(unsigned long addr)
3078 {
3079 	bool ret;
3080 
3081 	preempt_disable();
3082 	ret = __module_text_address(addr) != NULL;
3083 	preempt_enable();
3084 
3085 	return ret;
3086 }
3087 
3088 /**
3089  * __module_text_address() - get the module whose code contains an address.
3090  * @addr: the address.
3091  *
3092  * Must be called with preempt disabled or module mutex held so that
3093  * module doesn't get freed during this.
3094  */
3095 struct module *__module_text_address(unsigned long addr)
3096 {
3097 	struct module *mod = __module_address(addr);
3098 	if (mod) {
3099 		/* Make sure it's within the text section. */
3100 		if (!within_module_mem_type(addr, mod, MOD_TEXT) &&
3101 		    !within_module_mem_type(addr, mod, MOD_INIT_TEXT))
3102 			mod = NULL;
3103 	}
3104 	return mod;
3105 }
3106 
3107 /* Don't grab lock, we're oopsing. */
3108 void print_modules(void)
3109 {
3110 	struct module *mod;
3111 	char buf[MODULE_FLAGS_BUF_SIZE];
3112 
3113 	printk(KERN_DEFAULT "Modules linked in:");
3114 	/* Most callers should already have preempt disabled, but make sure */
3115 	preempt_disable();
3116 	list_for_each_entry_rcu(mod, &modules, list) {
3117 		if (mod->state == MODULE_STATE_UNFORMED)
3118 			continue;
3119 		pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3120 	}
3121 
3122 	print_unloaded_tainted_modules();
3123 	preempt_enable();
3124 	if (last_unloaded_module.name[0])
3125 		pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3126 			last_unloaded_module.taints);
3127 	pr_cont("\n");
3128 }
3129