1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2002 Richard Henderson 4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM. 5 */ 6 7 #define INCLUDE_VERMAGIC 8 9 #include <linux/export.h> 10 #include <linux/extable.h> 11 #include <linux/moduleloader.h> 12 #include <linux/module_signature.h> 13 #include <linux/trace_events.h> 14 #include <linux/init.h> 15 #include <linux/kallsyms.h> 16 #include <linux/buildid.h> 17 #include <linux/fs.h> 18 #include <linux/kernel.h> 19 #include <linux/kernel_read_file.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/elf.h> 23 #include <linux/seq_file.h> 24 #include <linux/syscalls.h> 25 #include <linux/fcntl.h> 26 #include <linux/rcupdate.h> 27 #include <linux/capability.h> 28 #include <linux/cpu.h> 29 #include <linux/moduleparam.h> 30 #include <linux/errno.h> 31 #include <linux/err.h> 32 #include <linux/vermagic.h> 33 #include <linux/notifier.h> 34 #include <linux/sched.h> 35 #include <linux/device.h> 36 #include <linux/string.h> 37 #include <linux/mutex.h> 38 #include <linux/rculist.h> 39 #include <linux/uaccess.h> 40 #include <asm/cacheflush.h> 41 #include <linux/set_memory.h> 42 #include <asm/mmu_context.h> 43 #include <linux/license.h> 44 #include <asm/sections.h> 45 #include <linux/tracepoint.h> 46 #include <linux/ftrace.h> 47 #include <linux/livepatch.h> 48 #include <linux/async.h> 49 #include <linux/percpu.h> 50 #include <linux/kmemleak.h> 51 #include <linux/jump_label.h> 52 #include <linux/pfn.h> 53 #include <linux/bsearch.h> 54 #include <linux/dynamic_debug.h> 55 #include <linux/audit.h> 56 #include <uapi/linux/module.h> 57 #include "internal.h" 58 59 #define CREATE_TRACE_POINTS 60 #include <trace/events/module.h> 61 62 /* 63 * Mutex protects: 64 * 1) List of modules (also safely readable with preempt_disable), 65 * 2) module_use links, 66 * 3) mod_tree.addr_min/mod_tree.addr_max. 67 * (delete and add uses RCU list operations). 68 */ 69 DEFINE_MUTEX(module_mutex); 70 LIST_HEAD(modules); 71 72 /* Work queue for freeing init sections in success case */ 73 static void do_free_init(struct work_struct *w); 74 static DECLARE_WORK(init_free_wq, do_free_init); 75 static LLIST_HEAD(init_free_list); 76 77 struct mod_tree_root mod_tree __cacheline_aligned = { 78 .addr_min = -1UL, 79 }; 80 81 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 82 struct mod_tree_root mod_data_tree __cacheline_aligned = { 83 .addr_min = -1UL, 84 }; 85 #endif 86 87 #define module_addr_min mod_tree.addr_min 88 #define module_addr_max mod_tree.addr_max 89 90 struct symsearch { 91 const struct kernel_symbol *start, *stop; 92 const s32 *crcs; 93 enum mod_license license; 94 }; 95 96 /* 97 * Bounds of module text, for speeding up __module_address. 98 * Protected by module_mutex. 99 */ 100 static void __mod_update_bounds(void *base, unsigned int size, struct mod_tree_root *tree) 101 { 102 unsigned long min = (unsigned long)base; 103 unsigned long max = min + size; 104 105 if (min < tree->addr_min) 106 tree->addr_min = min; 107 if (max > tree->addr_max) 108 tree->addr_max = max; 109 } 110 111 static void mod_update_bounds(struct module *mod) 112 { 113 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size, &mod_tree); 114 if (mod->init_layout.size) 115 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size, &mod_tree); 116 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 117 __mod_update_bounds(mod->data_layout.base, mod->data_layout.size, &mod_data_tree); 118 #endif 119 } 120 121 /* Block module loading/unloading? */ 122 int modules_disabled = 0; 123 core_param(nomodule, modules_disabled, bint, 0); 124 125 /* Waiting for a module to finish initializing? */ 126 static DECLARE_WAIT_QUEUE_HEAD(module_wq); 127 128 static BLOCKING_NOTIFIER_HEAD(module_notify_list); 129 130 int register_module_notifier(struct notifier_block *nb) 131 { 132 return blocking_notifier_chain_register(&module_notify_list, nb); 133 } 134 EXPORT_SYMBOL(register_module_notifier); 135 136 int unregister_module_notifier(struct notifier_block *nb) 137 { 138 return blocking_notifier_chain_unregister(&module_notify_list, nb); 139 } 140 EXPORT_SYMBOL(unregister_module_notifier); 141 142 /* 143 * We require a truly strong try_module_get(): 0 means success. 144 * Otherwise an error is returned due to ongoing or failed 145 * initialization etc. 146 */ 147 static inline int strong_try_module_get(struct module *mod) 148 { 149 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED); 150 if (mod && mod->state == MODULE_STATE_COMING) 151 return -EBUSY; 152 if (try_module_get(mod)) 153 return 0; 154 else 155 return -ENOENT; 156 } 157 158 static inline void add_taint_module(struct module *mod, unsigned flag, 159 enum lockdep_ok lockdep_ok) 160 { 161 add_taint(flag, lockdep_ok); 162 set_bit(flag, &mod->taints); 163 } 164 165 /* 166 * A thread that wants to hold a reference to a module only while it 167 * is running can call this to safely exit. 168 */ 169 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code) 170 { 171 module_put(mod); 172 kthread_exit(code); 173 } 174 EXPORT_SYMBOL(__module_put_and_kthread_exit); 175 176 /* Find a module section: 0 means not found. */ 177 static unsigned int find_sec(const struct load_info *info, const char *name) 178 { 179 unsigned int i; 180 181 for (i = 1; i < info->hdr->e_shnum; i++) { 182 Elf_Shdr *shdr = &info->sechdrs[i]; 183 /* Alloc bit cleared means "ignore it." */ 184 if ((shdr->sh_flags & SHF_ALLOC) 185 && strcmp(info->secstrings + shdr->sh_name, name) == 0) 186 return i; 187 } 188 return 0; 189 } 190 191 /* Find a module section, or NULL. */ 192 static void *section_addr(const struct load_info *info, const char *name) 193 { 194 /* Section 0 has sh_addr 0. */ 195 return (void *)info->sechdrs[find_sec(info, name)].sh_addr; 196 } 197 198 /* Find a module section, or NULL. Fill in number of "objects" in section. */ 199 static void *section_objs(const struct load_info *info, 200 const char *name, 201 size_t object_size, 202 unsigned int *num) 203 { 204 unsigned int sec = find_sec(info, name); 205 206 /* Section 0 has sh_addr 0 and sh_size 0. */ 207 *num = info->sechdrs[sec].sh_size / object_size; 208 return (void *)info->sechdrs[sec].sh_addr; 209 } 210 211 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */ 212 static unsigned int find_any_sec(const struct load_info *info, const char *name) 213 { 214 unsigned int i; 215 216 for (i = 1; i < info->hdr->e_shnum; i++) { 217 Elf_Shdr *shdr = &info->sechdrs[i]; 218 if (strcmp(info->secstrings + shdr->sh_name, name) == 0) 219 return i; 220 } 221 return 0; 222 } 223 224 /* 225 * Find a module section, or NULL. Fill in number of "objects" in section. 226 * Ignores SHF_ALLOC flag. 227 */ 228 static __maybe_unused void *any_section_objs(const struct load_info *info, 229 const char *name, 230 size_t object_size, 231 unsigned int *num) 232 { 233 unsigned int sec = find_any_sec(info, name); 234 235 /* Section 0 has sh_addr 0 and sh_size 0. */ 236 *num = info->sechdrs[sec].sh_size / object_size; 237 return (void *)info->sechdrs[sec].sh_addr; 238 } 239 240 #ifndef CONFIG_MODVERSIONS 241 #define symversion(base, idx) NULL 242 #else 243 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL) 244 #endif 245 246 static const char *kernel_symbol_name(const struct kernel_symbol *sym) 247 { 248 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 249 return offset_to_ptr(&sym->name_offset); 250 #else 251 return sym->name; 252 #endif 253 } 254 255 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym) 256 { 257 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 258 if (!sym->namespace_offset) 259 return NULL; 260 return offset_to_ptr(&sym->namespace_offset); 261 #else 262 return sym->namespace; 263 #endif 264 } 265 266 int cmp_name(const void *name, const void *sym) 267 { 268 return strcmp(name, kernel_symbol_name(sym)); 269 } 270 271 static bool find_exported_symbol_in_section(const struct symsearch *syms, 272 struct module *owner, 273 struct find_symbol_arg *fsa) 274 { 275 struct kernel_symbol *sym; 276 277 if (!fsa->gplok && syms->license == GPL_ONLY) 278 return false; 279 280 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start, 281 sizeof(struct kernel_symbol), cmp_name); 282 if (!sym) 283 return false; 284 285 fsa->owner = owner; 286 fsa->crc = symversion(syms->crcs, sym - syms->start); 287 fsa->sym = sym; 288 fsa->license = syms->license; 289 290 return true; 291 } 292 293 /* 294 * Find an exported symbol and return it, along with, (optional) crc and 295 * (optional) module which owns it. Needs preempt disabled or module_mutex. 296 */ 297 bool find_symbol(struct find_symbol_arg *fsa) 298 { 299 static const struct symsearch arr[] = { 300 { __start___ksymtab, __stop___ksymtab, __start___kcrctab, 301 NOT_GPL_ONLY }, 302 { __start___ksymtab_gpl, __stop___ksymtab_gpl, 303 __start___kcrctab_gpl, 304 GPL_ONLY }, 305 }; 306 struct module *mod; 307 unsigned int i; 308 309 module_assert_mutex_or_preempt(); 310 311 for (i = 0; i < ARRAY_SIZE(arr); i++) 312 if (find_exported_symbol_in_section(&arr[i], NULL, fsa)) 313 return true; 314 315 list_for_each_entry_rcu(mod, &modules, list, 316 lockdep_is_held(&module_mutex)) { 317 struct symsearch arr[] = { 318 { mod->syms, mod->syms + mod->num_syms, mod->crcs, 319 NOT_GPL_ONLY }, 320 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms, 321 mod->gpl_crcs, 322 GPL_ONLY }, 323 }; 324 325 if (mod->state == MODULE_STATE_UNFORMED) 326 continue; 327 328 for (i = 0; i < ARRAY_SIZE(arr); i++) 329 if (find_exported_symbol_in_section(&arr[i], mod, fsa)) 330 return true; 331 } 332 333 pr_debug("Failed to find symbol %s\n", fsa->name); 334 return false; 335 } 336 337 /* 338 * Search for module by name: must hold module_mutex (or preempt disabled 339 * for read-only access). 340 */ 341 struct module *find_module_all(const char *name, size_t len, 342 bool even_unformed) 343 { 344 struct module *mod; 345 346 module_assert_mutex_or_preempt(); 347 348 list_for_each_entry_rcu(mod, &modules, list, 349 lockdep_is_held(&module_mutex)) { 350 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED) 351 continue; 352 if (strlen(mod->name) == len && !memcmp(mod->name, name, len)) 353 return mod; 354 } 355 return NULL; 356 } 357 358 struct module *find_module(const char *name) 359 { 360 return find_module_all(name, strlen(name), false); 361 } 362 363 #ifdef CONFIG_SMP 364 365 static inline void __percpu *mod_percpu(struct module *mod) 366 { 367 return mod->percpu; 368 } 369 370 static int percpu_modalloc(struct module *mod, struct load_info *info) 371 { 372 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu]; 373 unsigned long align = pcpusec->sh_addralign; 374 375 if (!pcpusec->sh_size) 376 return 0; 377 378 if (align > PAGE_SIZE) { 379 pr_warn("%s: per-cpu alignment %li > %li\n", 380 mod->name, align, PAGE_SIZE); 381 align = PAGE_SIZE; 382 } 383 384 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align); 385 if (!mod->percpu) { 386 pr_warn("%s: Could not allocate %lu bytes percpu data\n", 387 mod->name, (unsigned long)pcpusec->sh_size); 388 return -ENOMEM; 389 } 390 mod->percpu_size = pcpusec->sh_size; 391 return 0; 392 } 393 394 static void percpu_modfree(struct module *mod) 395 { 396 free_percpu(mod->percpu); 397 } 398 399 static unsigned int find_pcpusec(struct load_info *info) 400 { 401 return find_sec(info, ".data..percpu"); 402 } 403 404 static void percpu_modcopy(struct module *mod, 405 const void *from, unsigned long size) 406 { 407 int cpu; 408 409 for_each_possible_cpu(cpu) 410 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size); 411 } 412 413 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 414 { 415 struct module *mod; 416 unsigned int cpu; 417 418 preempt_disable(); 419 420 list_for_each_entry_rcu(mod, &modules, list) { 421 if (mod->state == MODULE_STATE_UNFORMED) 422 continue; 423 if (!mod->percpu_size) 424 continue; 425 for_each_possible_cpu(cpu) { 426 void *start = per_cpu_ptr(mod->percpu, cpu); 427 void *va = (void *)addr; 428 429 if (va >= start && va < start + mod->percpu_size) { 430 if (can_addr) { 431 *can_addr = (unsigned long) (va - start); 432 *can_addr += (unsigned long) 433 per_cpu_ptr(mod->percpu, 434 get_boot_cpu_id()); 435 } 436 preempt_enable(); 437 return true; 438 } 439 } 440 } 441 442 preempt_enable(); 443 return false; 444 } 445 446 /** 447 * is_module_percpu_address() - test whether address is from module static percpu 448 * @addr: address to test 449 * 450 * Test whether @addr belongs to module static percpu area. 451 * 452 * Return: %true if @addr is from module static percpu area 453 */ 454 bool is_module_percpu_address(unsigned long addr) 455 { 456 return __is_module_percpu_address(addr, NULL); 457 } 458 459 #else /* ... !CONFIG_SMP */ 460 461 static inline void __percpu *mod_percpu(struct module *mod) 462 { 463 return NULL; 464 } 465 static int percpu_modalloc(struct module *mod, struct load_info *info) 466 { 467 /* UP modules shouldn't have this section: ENOMEM isn't quite right */ 468 if (info->sechdrs[info->index.pcpu].sh_size != 0) 469 return -ENOMEM; 470 return 0; 471 } 472 static inline void percpu_modfree(struct module *mod) 473 { 474 } 475 static unsigned int find_pcpusec(struct load_info *info) 476 { 477 return 0; 478 } 479 static inline void percpu_modcopy(struct module *mod, 480 const void *from, unsigned long size) 481 { 482 /* pcpusec should be 0, and size of that section should be 0. */ 483 BUG_ON(size != 0); 484 } 485 bool is_module_percpu_address(unsigned long addr) 486 { 487 return false; 488 } 489 490 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 491 { 492 return false; 493 } 494 495 #endif /* CONFIG_SMP */ 496 497 #define MODINFO_ATTR(field) \ 498 static void setup_modinfo_##field(struct module *mod, const char *s) \ 499 { \ 500 mod->field = kstrdup(s, GFP_KERNEL); \ 501 } \ 502 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \ 503 struct module_kobject *mk, char *buffer) \ 504 { \ 505 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \ 506 } \ 507 static int modinfo_##field##_exists(struct module *mod) \ 508 { \ 509 return mod->field != NULL; \ 510 } \ 511 static void free_modinfo_##field(struct module *mod) \ 512 { \ 513 kfree(mod->field); \ 514 mod->field = NULL; \ 515 } \ 516 static struct module_attribute modinfo_##field = { \ 517 .attr = { .name = __stringify(field), .mode = 0444 }, \ 518 .show = show_modinfo_##field, \ 519 .setup = setup_modinfo_##field, \ 520 .test = modinfo_##field##_exists, \ 521 .free = free_modinfo_##field, \ 522 }; 523 524 MODINFO_ATTR(version); 525 MODINFO_ATTR(srcversion); 526 527 static char last_unloaded_module[MODULE_NAME_LEN+1]; 528 529 #ifdef CONFIG_MODULE_UNLOAD 530 531 EXPORT_TRACEPOINT_SYMBOL(module_get); 532 533 /* MODULE_REF_BASE is the base reference count by kmodule loader. */ 534 #define MODULE_REF_BASE 1 535 536 /* Init the unload section of the module. */ 537 static int module_unload_init(struct module *mod) 538 { 539 /* 540 * Initialize reference counter to MODULE_REF_BASE. 541 * refcnt == 0 means module is going. 542 */ 543 atomic_set(&mod->refcnt, MODULE_REF_BASE); 544 545 INIT_LIST_HEAD(&mod->source_list); 546 INIT_LIST_HEAD(&mod->target_list); 547 548 /* Hold reference count during initialization. */ 549 atomic_inc(&mod->refcnt); 550 551 return 0; 552 } 553 554 /* Does a already use b? */ 555 static int already_uses(struct module *a, struct module *b) 556 { 557 struct module_use *use; 558 559 list_for_each_entry(use, &b->source_list, source_list) { 560 if (use->source == a) { 561 pr_debug("%s uses %s!\n", a->name, b->name); 562 return 1; 563 } 564 } 565 pr_debug("%s does not use %s!\n", a->name, b->name); 566 return 0; 567 } 568 569 /* 570 * Module a uses b 571 * - we add 'a' as a "source", 'b' as a "target" of module use 572 * - the module_use is added to the list of 'b' sources (so 573 * 'b' can walk the list to see who sourced them), and of 'a' 574 * targets (so 'a' can see what modules it targets). 575 */ 576 static int add_module_usage(struct module *a, struct module *b) 577 { 578 struct module_use *use; 579 580 pr_debug("Allocating new usage for %s.\n", a->name); 581 use = kmalloc(sizeof(*use), GFP_ATOMIC); 582 if (!use) 583 return -ENOMEM; 584 585 use->source = a; 586 use->target = b; 587 list_add(&use->source_list, &b->source_list); 588 list_add(&use->target_list, &a->target_list); 589 return 0; 590 } 591 592 /* Module a uses b: caller needs module_mutex() */ 593 static int ref_module(struct module *a, struct module *b) 594 { 595 int err; 596 597 if (b == NULL || already_uses(a, b)) 598 return 0; 599 600 /* If module isn't available, we fail. */ 601 err = strong_try_module_get(b); 602 if (err) 603 return err; 604 605 err = add_module_usage(a, b); 606 if (err) { 607 module_put(b); 608 return err; 609 } 610 return 0; 611 } 612 613 /* Clear the unload stuff of the module. */ 614 static void module_unload_free(struct module *mod) 615 { 616 struct module_use *use, *tmp; 617 618 mutex_lock(&module_mutex); 619 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) { 620 struct module *i = use->target; 621 pr_debug("%s unusing %s\n", mod->name, i->name); 622 module_put(i); 623 list_del(&use->source_list); 624 list_del(&use->target_list); 625 kfree(use); 626 } 627 mutex_unlock(&module_mutex); 628 } 629 630 #ifdef CONFIG_MODULE_FORCE_UNLOAD 631 static inline int try_force_unload(unsigned int flags) 632 { 633 int ret = (flags & O_TRUNC); 634 if (ret) 635 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE); 636 return ret; 637 } 638 #else 639 static inline int try_force_unload(unsigned int flags) 640 { 641 return 0; 642 } 643 #endif /* CONFIG_MODULE_FORCE_UNLOAD */ 644 645 /* Try to release refcount of module, 0 means success. */ 646 static int try_release_module_ref(struct module *mod) 647 { 648 int ret; 649 650 /* Try to decrement refcnt which we set at loading */ 651 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt); 652 BUG_ON(ret < 0); 653 if (ret) 654 /* Someone can put this right now, recover with checking */ 655 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0); 656 657 return ret; 658 } 659 660 static int try_stop_module(struct module *mod, int flags, int *forced) 661 { 662 /* If it's not unused, quit unless we're forcing. */ 663 if (try_release_module_ref(mod) != 0) { 664 *forced = try_force_unload(flags); 665 if (!(*forced)) 666 return -EWOULDBLOCK; 667 } 668 669 /* Mark it as dying. */ 670 mod->state = MODULE_STATE_GOING; 671 672 return 0; 673 } 674 675 /** 676 * module_refcount() - return the refcount or -1 if unloading 677 * @mod: the module we're checking 678 * 679 * Return: 680 * -1 if the module is in the process of unloading 681 * otherwise the number of references in the kernel to the module 682 */ 683 int module_refcount(struct module *mod) 684 { 685 return atomic_read(&mod->refcnt) - MODULE_REF_BASE; 686 } 687 EXPORT_SYMBOL(module_refcount); 688 689 /* This exists whether we can unload or not */ 690 static void free_module(struct module *mod); 691 692 SYSCALL_DEFINE2(delete_module, const char __user *, name_user, 693 unsigned int, flags) 694 { 695 struct module *mod; 696 char name[MODULE_NAME_LEN]; 697 int ret, forced = 0; 698 699 if (!capable(CAP_SYS_MODULE) || modules_disabled) 700 return -EPERM; 701 702 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0) 703 return -EFAULT; 704 name[MODULE_NAME_LEN-1] = '\0'; 705 706 audit_log_kern_module(name); 707 708 if (mutex_lock_interruptible(&module_mutex) != 0) 709 return -EINTR; 710 711 mod = find_module(name); 712 if (!mod) { 713 ret = -ENOENT; 714 goto out; 715 } 716 717 if (!list_empty(&mod->source_list)) { 718 /* Other modules depend on us: get rid of them first. */ 719 ret = -EWOULDBLOCK; 720 goto out; 721 } 722 723 /* Doing init or already dying? */ 724 if (mod->state != MODULE_STATE_LIVE) { 725 /* FIXME: if (force), slam module count damn the torpedoes */ 726 pr_debug("%s already dying\n", mod->name); 727 ret = -EBUSY; 728 goto out; 729 } 730 731 /* If it has an init func, it must have an exit func to unload */ 732 if (mod->init && !mod->exit) { 733 forced = try_force_unload(flags); 734 if (!forced) { 735 /* This module can't be removed */ 736 ret = -EBUSY; 737 goto out; 738 } 739 } 740 741 ret = try_stop_module(mod, flags, &forced); 742 if (ret != 0) 743 goto out; 744 745 mutex_unlock(&module_mutex); 746 /* Final destruction now no one is using it. */ 747 if (mod->exit != NULL) 748 mod->exit(); 749 blocking_notifier_call_chain(&module_notify_list, 750 MODULE_STATE_GOING, mod); 751 klp_module_going(mod); 752 ftrace_release_mod(mod); 753 754 async_synchronize_full(); 755 756 /* Store the name of the last unloaded module for diagnostic purposes */ 757 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module)); 758 759 free_module(mod); 760 /* someone could wait for the module in add_unformed_module() */ 761 wake_up_all(&module_wq); 762 return 0; 763 out: 764 mutex_unlock(&module_mutex); 765 return ret; 766 } 767 768 void __symbol_put(const char *symbol) 769 { 770 struct find_symbol_arg fsa = { 771 .name = symbol, 772 .gplok = true, 773 }; 774 775 preempt_disable(); 776 BUG_ON(!find_symbol(&fsa)); 777 module_put(fsa.owner); 778 preempt_enable(); 779 } 780 EXPORT_SYMBOL(__symbol_put); 781 782 /* Note this assumes addr is a function, which it currently always is. */ 783 void symbol_put_addr(void *addr) 784 { 785 struct module *modaddr; 786 unsigned long a = (unsigned long)dereference_function_descriptor(addr); 787 788 if (core_kernel_text(a)) 789 return; 790 791 /* 792 * Even though we hold a reference on the module; we still need to 793 * disable preemption in order to safely traverse the data structure. 794 */ 795 preempt_disable(); 796 modaddr = __module_text_address(a); 797 BUG_ON(!modaddr); 798 module_put(modaddr); 799 preempt_enable(); 800 } 801 EXPORT_SYMBOL_GPL(symbol_put_addr); 802 803 static ssize_t show_refcnt(struct module_attribute *mattr, 804 struct module_kobject *mk, char *buffer) 805 { 806 return sprintf(buffer, "%i\n", module_refcount(mk->mod)); 807 } 808 809 static struct module_attribute modinfo_refcnt = 810 __ATTR(refcnt, 0444, show_refcnt, NULL); 811 812 void __module_get(struct module *module) 813 { 814 if (module) { 815 preempt_disable(); 816 atomic_inc(&module->refcnt); 817 trace_module_get(module, _RET_IP_); 818 preempt_enable(); 819 } 820 } 821 EXPORT_SYMBOL(__module_get); 822 823 bool try_module_get(struct module *module) 824 { 825 bool ret = true; 826 827 if (module) { 828 preempt_disable(); 829 /* Note: here, we can fail to get a reference */ 830 if (likely(module_is_live(module) && 831 atomic_inc_not_zero(&module->refcnt) != 0)) 832 trace_module_get(module, _RET_IP_); 833 else 834 ret = false; 835 836 preempt_enable(); 837 } 838 return ret; 839 } 840 EXPORT_SYMBOL(try_module_get); 841 842 void module_put(struct module *module) 843 { 844 int ret; 845 846 if (module) { 847 preempt_disable(); 848 ret = atomic_dec_if_positive(&module->refcnt); 849 WARN_ON(ret < 0); /* Failed to put refcount */ 850 trace_module_put(module, _RET_IP_); 851 preempt_enable(); 852 } 853 } 854 EXPORT_SYMBOL(module_put); 855 856 #else /* !CONFIG_MODULE_UNLOAD */ 857 static inline void module_unload_free(struct module *mod) 858 { 859 } 860 861 static int ref_module(struct module *a, struct module *b) 862 { 863 return strong_try_module_get(b); 864 } 865 866 static inline int module_unload_init(struct module *mod) 867 { 868 return 0; 869 } 870 #endif /* CONFIG_MODULE_UNLOAD */ 871 872 size_t module_flags_taint(unsigned long taints, char *buf) 873 { 874 size_t l = 0; 875 int i; 876 877 for (i = 0; i < TAINT_FLAGS_COUNT; i++) { 878 if (taint_flags[i].module && test_bit(i, &taints)) 879 buf[l++] = taint_flags[i].c_true; 880 } 881 882 return l; 883 } 884 885 static ssize_t show_initstate(struct module_attribute *mattr, 886 struct module_kobject *mk, char *buffer) 887 { 888 const char *state = "unknown"; 889 890 switch (mk->mod->state) { 891 case MODULE_STATE_LIVE: 892 state = "live"; 893 break; 894 case MODULE_STATE_COMING: 895 state = "coming"; 896 break; 897 case MODULE_STATE_GOING: 898 state = "going"; 899 break; 900 default: 901 BUG(); 902 } 903 return sprintf(buffer, "%s\n", state); 904 } 905 906 static struct module_attribute modinfo_initstate = 907 __ATTR(initstate, 0444, show_initstate, NULL); 908 909 static ssize_t store_uevent(struct module_attribute *mattr, 910 struct module_kobject *mk, 911 const char *buffer, size_t count) 912 { 913 int rc; 914 915 rc = kobject_synth_uevent(&mk->kobj, buffer, count); 916 return rc ? rc : count; 917 } 918 919 struct module_attribute module_uevent = 920 __ATTR(uevent, 0200, NULL, store_uevent); 921 922 static ssize_t show_coresize(struct module_attribute *mattr, 923 struct module_kobject *mk, char *buffer) 924 { 925 return sprintf(buffer, "%u\n", mk->mod->core_layout.size); 926 } 927 928 static struct module_attribute modinfo_coresize = 929 __ATTR(coresize, 0444, show_coresize, NULL); 930 931 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 932 static ssize_t show_datasize(struct module_attribute *mattr, 933 struct module_kobject *mk, char *buffer) 934 { 935 return sprintf(buffer, "%u\n", mk->mod->data_layout.size); 936 } 937 938 static struct module_attribute modinfo_datasize = 939 __ATTR(datasize, 0444, show_datasize, NULL); 940 #endif 941 942 static ssize_t show_initsize(struct module_attribute *mattr, 943 struct module_kobject *mk, char *buffer) 944 { 945 return sprintf(buffer, "%u\n", mk->mod->init_layout.size); 946 } 947 948 static struct module_attribute modinfo_initsize = 949 __ATTR(initsize, 0444, show_initsize, NULL); 950 951 static ssize_t show_taint(struct module_attribute *mattr, 952 struct module_kobject *mk, char *buffer) 953 { 954 size_t l; 955 956 l = module_flags_taint(mk->mod->taints, buffer); 957 buffer[l++] = '\n'; 958 return l; 959 } 960 961 static struct module_attribute modinfo_taint = 962 __ATTR(taint, 0444, show_taint, NULL); 963 964 struct module_attribute *modinfo_attrs[] = { 965 &module_uevent, 966 &modinfo_version, 967 &modinfo_srcversion, 968 &modinfo_initstate, 969 &modinfo_coresize, 970 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 971 &modinfo_datasize, 972 #endif 973 &modinfo_initsize, 974 &modinfo_taint, 975 #ifdef CONFIG_MODULE_UNLOAD 976 &modinfo_refcnt, 977 #endif 978 NULL, 979 }; 980 981 size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs); 982 983 static const char vermagic[] = VERMAGIC_STRING; 984 985 int try_to_force_load(struct module *mod, const char *reason) 986 { 987 #ifdef CONFIG_MODULE_FORCE_LOAD 988 if (!test_taint(TAINT_FORCED_MODULE)) 989 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason); 990 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE); 991 return 0; 992 #else 993 return -ENOEXEC; 994 #endif 995 } 996 997 static char *get_modinfo(const struct load_info *info, const char *tag); 998 static char *get_next_modinfo(const struct load_info *info, const char *tag, 999 char *prev); 1000 1001 static int verify_namespace_is_imported(const struct load_info *info, 1002 const struct kernel_symbol *sym, 1003 struct module *mod) 1004 { 1005 const char *namespace; 1006 char *imported_namespace; 1007 1008 namespace = kernel_symbol_namespace(sym); 1009 if (namespace && namespace[0]) { 1010 imported_namespace = get_modinfo(info, "import_ns"); 1011 while (imported_namespace) { 1012 if (strcmp(namespace, imported_namespace) == 0) 1013 return 0; 1014 imported_namespace = get_next_modinfo( 1015 info, "import_ns", imported_namespace); 1016 } 1017 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1018 pr_warn( 1019 #else 1020 pr_err( 1021 #endif 1022 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n", 1023 mod->name, kernel_symbol_name(sym), namespace); 1024 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1025 return -EINVAL; 1026 #endif 1027 } 1028 return 0; 1029 } 1030 1031 static bool inherit_taint(struct module *mod, struct module *owner, const char *name) 1032 { 1033 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints)) 1034 return true; 1035 1036 if (mod->using_gplonly_symbols) { 1037 pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n", 1038 mod->name, name, owner->name); 1039 return false; 1040 } 1041 1042 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) { 1043 pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n", 1044 mod->name, name, owner->name); 1045 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints); 1046 } 1047 return true; 1048 } 1049 1050 /* Resolve a symbol for this module. I.e. if we find one, record usage. */ 1051 static const struct kernel_symbol *resolve_symbol(struct module *mod, 1052 const struct load_info *info, 1053 const char *name, 1054 char ownername[]) 1055 { 1056 struct find_symbol_arg fsa = { 1057 .name = name, 1058 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), 1059 .warn = true, 1060 }; 1061 int err; 1062 1063 /* 1064 * The module_mutex should not be a heavily contended lock; 1065 * if we get the occasional sleep here, we'll go an extra iteration 1066 * in the wait_event_interruptible(), which is harmless. 1067 */ 1068 sched_annotate_sleep(); 1069 mutex_lock(&module_mutex); 1070 if (!find_symbol(&fsa)) 1071 goto unlock; 1072 1073 if (fsa.license == GPL_ONLY) 1074 mod->using_gplonly_symbols = true; 1075 1076 if (!inherit_taint(mod, fsa.owner, name)) { 1077 fsa.sym = NULL; 1078 goto getname; 1079 } 1080 1081 if (!check_version(info, name, mod, fsa.crc)) { 1082 fsa.sym = ERR_PTR(-EINVAL); 1083 goto getname; 1084 } 1085 1086 err = verify_namespace_is_imported(info, fsa.sym, mod); 1087 if (err) { 1088 fsa.sym = ERR_PTR(err); 1089 goto getname; 1090 } 1091 1092 err = ref_module(mod, fsa.owner); 1093 if (err) { 1094 fsa.sym = ERR_PTR(err); 1095 goto getname; 1096 } 1097 1098 getname: 1099 /* We must make copy under the lock if we failed to get ref. */ 1100 strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN); 1101 unlock: 1102 mutex_unlock(&module_mutex); 1103 return fsa.sym; 1104 } 1105 1106 static const struct kernel_symbol * 1107 resolve_symbol_wait(struct module *mod, 1108 const struct load_info *info, 1109 const char *name) 1110 { 1111 const struct kernel_symbol *ksym; 1112 char owner[MODULE_NAME_LEN]; 1113 1114 if (wait_event_interruptible_timeout(module_wq, 1115 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner)) 1116 || PTR_ERR(ksym) != -EBUSY, 1117 30 * HZ) <= 0) { 1118 pr_warn("%s: gave up waiting for init of module %s.\n", 1119 mod->name, owner); 1120 } 1121 return ksym; 1122 } 1123 1124 void __weak module_memfree(void *module_region) 1125 { 1126 /* 1127 * This memory may be RO, and freeing RO memory in an interrupt is not 1128 * supported by vmalloc. 1129 */ 1130 WARN_ON(in_interrupt()); 1131 vfree(module_region); 1132 } 1133 1134 void __weak module_arch_cleanup(struct module *mod) 1135 { 1136 } 1137 1138 void __weak module_arch_freeing_init(struct module *mod) 1139 { 1140 } 1141 1142 static void cfi_cleanup(struct module *mod); 1143 1144 /* Free a module, remove from lists, etc. */ 1145 static void free_module(struct module *mod) 1146 { 1147 trace_module_free(mod); 1148 1149 mod_sysfs_teardown(mod); 1150 1151 /* 1152 * We leave it in list to prevent duplicate loads, but make sure 1153 * that noone uses it while it's being deconstructed. 1154 */ 1155 mutex_lock(&module_mutex); 1156 mod->state = MODULE_STATE_UNFORMED; 1157 mutex_unlock(&module_mutex); 1158 1159 /* Remove dynamic debug info */ 1160 ddebug_remove_module(mod->name); 1161 1162 /* Arch-specific cleanup. */ 1163 module_arch_cleanup(mod); 1164 1165 /* Module unload stuff */ 1166 module_unload_free(mod); 1167 1168 /* Free any allocated parameters. */ 1169 destroy_params(mod->kp, mod->num_kp); 1170 1171 if (is_livepatch_module(mod)) 1172 free_module_elf(mod); 1173 1174 /* Now we can delete it from the lists */ 1175 mutex_lock(&module_mutex); 1176 /* Unlink carefully: kallsyms could be walking list. */ 1177 list_del_rcu(&mod->list); 1178 mod_tree_remove(mod); 1179 /* Remove this module from bug list, this uses list_del_rcu */ 1180 module_bug_cleanup(mod); 1181 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */ 1182 synchronize_rcu(); 1183 if (try_add_tainted_module(mod)) 1184 pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n", 1185 mod->name); 1186 mutex_unlock(&module_mutex); 1187 1188 /* Clean up CFI for the module. */ 1189 cfi_cleanup(mod); 1190 1191 /* This may be empty, but that's OK */ 1192 module_arch_freeing_init(mod); 1193 module_memfree(mod->init_layout.base); 1194 kfree(mod->args); 1195 percpu_modfree(mod); 1196 1197 /* Free lock-classes; relies on the preceding sync_rcu(). */ 1198 lockdep_free_key_range(mod->data_layout.base, mod->data_layout.size); 1199 1200 /* Finally, free the core (containing the module structure) */ 1201 module_memfree(mod->core_layout.base); 1202 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 1203 vfree(mod->data_layout.base); 1204 #endif 1205 } 1206 1207 void *__symbol_get(const char *symbol) 1208 { 1209 struct find_symbol_arg fsa = { 1210 .name = symbol, 1211 .gplok = true, 1212 .warn = true, 1213 }; 1214 1215 preempt_disable(); 1216 if (!find_symbol(&fsa) || strong_try_module_get(fsa.owner)) { 1217 preempt_enable(); 1218 return NULL; 1219 } 1220 preempt_enable(); 1221 return (void *)kernel_symbol_value(fsa.sym); 1222 } 1223 EXPORT_SYMBOL_GPL(__symbol_get); 1224 1225 /* 1226 * Ensure that an exported symbol [global namespace] does not already exist 1227 * in the kernel or in some other module's exported symbol table. 1228 * 1229 * You must hold the module_mutex. 1230 */ 1231 static int verify_exported_symbols(struct module *mod) 1232 { 1233 unsigned int i; 1234 const struct kernel_symbol *s; 1235 struct { 1236 const struct kernel_symbol *sym; 1237 unsigned int num; 1238 } arr[] = { 1239 { mod->syms, mod->num_syms }, 1240 { mod->gpl_syms, mod->num_gpl_syms }, 1241 }; 1242 1243 for (i = 0; i < ARRAY_SIZE(arr); i++) { 1244 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) { 1245 struct find_symbol_arg fsa = { 1246 .name = kernel_symbol_name(s), 1247 .gplok = true, 1248 }; 1249 if (find_symbol(&fsa)) { 1250 pr_err("%s: exports duplicate symbol %s" 1251 " (owned by %s)\n", 1252 mod->name, kernel_symbol_name(s), 1253 module_name(fsa.owner)); 1254 return -ENOEXEC; 1255 } 1256 } 1257 } 1258 return 0; 1259 } 1260 1261 static bool ignore_undef_symbol(Elf_Half emachine, const char *name) 1262 { 1263 /* 1264 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as 1265 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64. 1266 * i386 has a similar problem but may not deserve a fix. 1267 * 1268 * If we ever have to ignore many symbols, consider refactoring the code to 1269 * only warn if referenced by a relocation. 1270 */ 1271 if (emachine == EM_386 || emachine == EM_X86_64) 1272 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_"); 1273 return false; 1274 } 1275 1276 /* Change all symbols so that st_value encodes the pointer directly. */ 1277 static int simplify_symbols(struct module *mod, const struct load_info *info) 1278 { 1279 Elf_Shdr *symsec = &info->sechdrs[info->index.sym]; 1280 Elf_Sym *sym = (void *)symsec->sh_addr; 1281 unsigned long secbase; 1282 unsigned int i; 1283 int ret = 0; 1284 const struct kernel_symbol *ksym; 1285 1286 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) { 1287 const char *name = info->strtab + sym[i].st_name; 1288 1289 switch (sym[i].st_shndx) { 1290 case SHN_COMMON: 1291 /* Ignore common symbols */ 1292 if (!strncmp(name, "__gnu_lto", 9)) 1293 break; 1294 1295 /* 1296 * We compiled with -fno-common. These are not 1297 * supposed to happen. 1298 */ 1299 pr_debug("Common symbol: %s\n", name); 1300 pr_warn("%s: please compile with -fno-common\n", 1301 mod->name); 1302 ret = -ENOEXEC; 1303 break; 1304 1305 case SHN_ABS: 1306 /* Don't need to do anything */ 1307 pr_debug("Absolute symbol: 0x%08lx\n", 1308 (long)sym[i].st_value); 1309 break; 1310 1311 case SHN_LIVEPATCH: 1312 /* Livepatch symbols are resolved by livepatch */ 1313 break; 1314 1315 case SHN_UNDEF: 1316 ksym = resolve_symbol_wait(mod, info, name); 1317 /* Ok if resolved. */ 1318 if (ksym && !IS_ERR(ksym)) { 1319 sym[i].st_value = kernel_symbol_value(ksym); 1320 break; 1321 } 1322 1323 /* Ok if weak or ignored. */ 1324 if (!ksym && 1325 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK || 1326 ignore_undef_symbol(info->hdr->e_machine, name))) 1327 break; 1328 1329 ret = PTR_ERR(ksym) ?: -ENOENT; 1330 pr_warn("%s: Unknown symbol %s (err %d)\n", 1331 mod->name, name, ret); 1332 break; 1333 1334 default: 1335 /* Divert to percpu allocation if a percpu var. */ 1336 if (sym[i].st_shndx == info->index.pcpu) 1337 secbase = (unsigned long)mod_percpu(mod); 1338 else 1339 secbase = info->sechdrs[sym[i].st_shndx].sh_addr; 1340 sym[i].st_value += secbase; 1341 break; 1342 } 1343 } 1344 1345 return ret; 1346 } 1347 1348 static int apply_relocations(struct module *mod, const struct load_info *info) 1349 { 1350 unsigned int i; 1351 int err = 0; 1352 1353 /* Now do relocations. */ 1354 for (i = 1; i < info->hdr->e_shnum; i++) { 1355 unsigned int infosec = info->sechdrs[i].sh_info; 1356 1357 /* Not a valid relocation section? */ 1358 if (infosec >= info->hdr->e_shnum) 1359 continue; 1360 1361 /* Don't bother with non-allocated sections */ 1362 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC)) 1363 continue; 1364 1365 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH) 1366 err = klp_apply_section_relocs(mod, info->sechdrs, 1367 info->secstrings, 1368 info->strtab, 1369 info->index.sym, i, 1370 NULL); 1371 else if (info->sechdrs[i].sh_type == SHT_REL) 1372 err = apply_relocate(info->sechdrs, info->strtab, 1373 info->index.sym, i, mod); 1374 else if (info->sechdrs[i].sh_type == SHT_RELA) 1375 err = apply_relocate_add(info->sechdrs, info->strtab, 1376 info->index.sym, i, mod); 1377 if (err < 0) 1378 break; 1379 } 1380 return err; 1381 } 1382 1383 /* Additional bytes needed by arch in front of individual sections */ 1384 unsigned int __weak arch_mod_section_prepend(struct module *mod, 1385 unsigned int section) 1386 { 1387 /* default implementation just returns zero */ 1388 return 0; 1389 } 1390 1391 /* Update size with this section: return offset. */ 1392 long module_get_offset(struct module *mod, unsigned int *size, 1393 Elf_Shdr *sechdr, unsigned int section) 1394 { 1395 long ret; 1396 1397 *size += arch_mod_section_prepend(mod, section); 1398 ret = ALIGN(*size, sechdr->sh_addralign ?: 1); 1399 *size = ret + sechdr->sh_size; 1400 return ret; 1401 } 1402 1403 static bool module_init_layout_section(const char *sname) 1404 { 1405 #ifndef CONFIG_MODULE_UNLOAD 1406 if (module_exit_section(sname)) 1407 return true; 1408 #endif 1409 return module_init_section(sname); 1410 } 1411 1412 /* 1413 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld 1414 * might -- code, read-only data, read-write data, small data. Tally 1415 * sizes, and place the offsets into sh_entsize fields: high bit means it 1416 * belongs in init. 1417 */ 1418 static void layout_sections(struct module *mod, struct load_info *info) 1419 { 1420 static unsigned long const masks[][2] = { 1421 /* 1422 * NOTE: all executable code must be the first section 1423 * in this array; otherwise modify the text_size 1424 * finder in the two loops below 1425 */ 1426 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL }, 1427 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL }, 1428 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL }, 1429 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL }, 1430 { ARCH_SHF_SMALL | SHF_ALLOC, 0 } 1431 }; 1432 unsigned int m, i; 1433 1434 for (i = 0; i < info->hdr->e_shnum; i++) 1435 info->sechdrs[i].sh_entsize = ~0UL; 1436 1437 pr_debug("Core section allocation order:\n"); 1438 for (m = 0; m < ARRAY_SIZE(masks); ++m) { 1439 for (i = 0; i < info->hdr->e_shnum; ++i) { 1440 Elf_Shdr *s = &info->sechdrs[i]; 1441 const char *sname = info->secstrings + s->sh_name; 1442 unsigned int *sizep; 1443 1444 if ((s->sh_flags & masks[m][0]) != masks[m][0] 1445 || (s->sh_flags & masks[m][1]) 1446 || s->sh_entsize != ~0UL 1447 || module_init_layout_section(sname)) 1448 continue; 1449 sizep = m ? &mod->data_layout.size : &mod->core_layout.size; 1450 s->sh_entsize = module_get_offset(mod, sizep, s, i); 1451 pr_debug("\t%s\n", sname); 1452 } 1453 switch (m) { 1454 case 0: /* executable */ 1455 mod->core_layout.size = strict_align(mod->core_layout.size); 1456 mod->core_layout.text_size = mod->core_layout.size; 1457 break; 1458 case 1: /* RO: text and ro-data */ 1459 mod->data_layout.size = strict_align(mod->data_layout.size); 1460 mod->data_layout.ro_size = mod->data_layout.size; 1461 break; 1462 case 2: /* RO after init */ 1463 mod->data_layout.size = strict_align(mod->data_layout.size); 1464 mod->data_layout.ro_after_init_size = mod->data_layout.size; 1465 break; 1466 case 4: /* whole core */ 1467 mod->data_layout.size = strict_align(mod->data_layout.size); 1468 break; 1469 } 1470 } 1471 1472 pr_debug("Init section allocation order:\n"); 1473 for (m = 0; m < ARRAY_SIZE(masks); ++m) { 1474 for (i = 0; i < info->hdr->e_shnum; ++i) { 1475 Elf_Shdr *s = &info->sechdrs[i]; 1476 const char *sname = info->secstrings + s->sh_name; 1477 1478 if ((s->sh_flags & masks[m][0]) != masks[m][0] 1479 || (s->sh_flags & masks[m][1]) 1480 || s->sh_entsize != ~0UL 1481 || !module_init_layout_section(sname)) 1482 continue; 1483 s->sh_entsize = (module_get_offset(mod, &mod->init_layout.size, s, i) 1484 | INIT_OFFSET_MASK); 1485 pr_debug("\t%s\n", sname); 1486 } 1487 switch (m) { 1488 case 0: /* executable */ 1489 mod->init_layout.size = strict_align(mod->init_layout.size); 1490 mod->init_layout.text_size = mod->init_layout.size; 1491 break; 1492 case 1: /* RO: text and ro-data */ 1493 mod->init_layout.size = strict_align(mod->init_layout.size); 1494 mod->init_layout.ro_size = mod->init_layout.size; 1495 break; 1496 case 2: 1497 /* 1498 * RO after init doesn't apply to init_layout (only 1499 * core_layout), so it just takes the value of ro_size. 1500 */ 1501 mod->init_layout.ro_after_init_size = mod->init_layout.ro_size; 1502 break; 1503 case 4: /* whole init */ 1504 mod->init_layout.size = strict_align(mod->init_layout.size); 1505 break; 1506 } 1507 } 1508 } 1509 1510 static void set_license(struct module *mod, const char *license) 1511 { 1512 if (!license) 1513 license = "unspecified"; 1514 1515 if (!license_is_gpl_compatible(license)) { 1516 if (!test_taint(TAINT_PROPRIETARY_MODULE)) 1517 pr_warn("%s: module license '%s' taints kernel.\n", 1518 mod->name, license); 1519 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 1520 LOCKDEP_NOW_UNRELIABLE); 1521 } 1522 } 1523 1524 /* Parse tag=value strings from .modinfo section */ 1525 static char *next_string(char *string, unsigned long *secsize) 1526 { 1527 /* Skip non-zero chars */ 1528 while (string[0]) { 1529 string++; 1530 if ((*secsize)-- <= 1) 1531 return NULL; 1532 } 1533 1534 /* Skip any zero padding. */ 1535 while (!string[0]) { 1536 string++; 1537 if ((*secsize)-- <= 1) 1538 return NULL; 1539 } 1540 return string; 1541 } 1542 1543 static char *get_next_modinfo(const struct load_info *info, const char *tag, 1544 char *prev) 1545 { 1546 char *p; 1547 unsigned int taglen = strlen(tag); 1548 Elf_Shdr *infosec = &info->sechdrs[info->index.info]; 1549 unsigned long size = infosec->sh_size; 1550 1551 /* 1552 * get_modinfo() calls made before rewrite_section_headers() 1553 * must use sh_offset, as sh_addr isn't set! 1554 */ 1555 char *modinfo = (char *)info->hdr + infosec->sh_offset; 1556 1557 if (prev) { 1558 size -= prev - modinfo; 1559 modinfo = next_string(prev, &size); 1560 } 1561 1562 for (p = modinfo; p; p = next_string(p, &size)) { 1563 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=') 1564 return p + taglen + 1; 1565 } 1566 return NULL; 1567 } 1568 1569 static char *get_modinfo(const struct load_info *info, const char *tag) 1570 { 1571 return get_next_modinfo(info, tag, NULL); 1572 } 1573 1574 static void setup_modinfo(struct module *mod, struct load_info *info) 1575 { 1576 struct module_attribute *attr; 1577 int i; 1578 1579 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1580 if (attr->setup) 1581 attr->setup(mod, get_modinfo(info, attr->attr.name)); 1582 } 1583 } 1584 1585 static void free_modinfo(struct module *mod) 1586 { 1587 struct module_attribute *attr; 1588 int i; 1589 1590 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1591 if (attr->free) 1592 attr->free(mod); 1593 } 1594 } 1595 1596 static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num) 1597 { 1598 if (!debug) 1599 return; 1600 ddebug_add_module(debug, num, mod->name); 1601 } 1602 1603 static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug) 1604 { 1605 if (debug) 1606 ddebug_remove_module(mod->name); 1607 } 1608 1609 void * __weak module_alloc(unsigned long size) 1610 { 1611 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 1612 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS, 1613 NUMA_NO_NODE, __builtin_return_address(0)); 1614 } 1615 1616 bool __weak module_init_section(const char *name) 1617 { 1618 return strstarts(name, ".init"); 1619 } 1620 1621 bool __weak module_exit_section(const char *name) 1622 { 1623 return strstarts(name, ".exit"); 1624 } 1625 1626 static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr) 1627 { 1628 #if defined(CONFIG_64BIT) 1629 unsigned long long secend; 1630 #else 1631 unsigned long secend; 1632 #endif 1633 1634 /* 1635 * Check for both overflow and offset/size being 1636 * too large. 1637 */ 1638 secend = shdr->sh_offset + shdr->sh_size; 1639 if (secend < shdr->sh_offset || secend > info->len) 1640 return -ENOEXEC; 1641 1642 return 0; 1643 } 1644 1645 /* 1646 * Sanity checks against invalid binaries, wrong arch, weird elf version. 1647 * 1648 * Also do basic validity checks against section offsets and sizes, the 1649 * section name string table, and the indices used for it (sh_name). 1650 */ 1651 static int elf_validity_check(struct load_info *info) 1652 { 1653 unsigned int i; 1654 Elf_Shdr *shdr, *strhdr; 1655 int err; 1656 1657 if (info->len < sizeof(*(info->hdr))) { 1658 pr_err("Invalid ELF header len %lu\n", info->len); 1659 goto no_exec; 1660 } 1661 1662 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) { 1663 pr_err("Invalid ELF header magic: != %s\n", ELFMAG); 1664 goto no_exec; 1665 } 1666 if (info->hdr->e_type != ET_REL) { 1667 pr_err("Invalid ELF header type: %u != %u\n", 1668 info->hdr->e_type, ET_REL); 1669 goto no_exec; 1670 } 1671 if (!elf_check_arch(info->hdr)) { 1672 pr_err("Invalid architecture in ELF header: %u\n", 1673 info->hdr->e_machine); 1674 goto no_exec; 1675 } 1676 if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) { 1677 pr_err("Invalid ELF section header size\n"); 1678 goto no_exec; 1679 } 1680 1681 /* 1682 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is 1683 * known and small. So e_shnum * sizeof(Elf_Shdr) 1684 * will not overflow unsigned long on any platform. 1685 */ 1686 if (info->hdr->e_shoff >= info->len 1687 || (info->hdr->e_shnum * sizeof(Elf_Shdr) > 1688 info->len - info->hdr->e_shoff)) { 1689 pr_err("Invalid ELF section header overflow\n"); 1690 goto no_exec; 1691 } 1692 1693 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff; 1694 1695 /* 1696 * Verify if the section name table index is valid. 1697 */ 1698 if (info->hdr->e_shstrndx == SHN_UNDEF 1699 || info->hdr->e_shstrndx >= info->hdr->e_shnum) { 1700 pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n", 1701 info->hdr->e_shstrndx, info->hdr->e_shstrndx, 1702 info->hdr->e_shnum); 1703 goto no_exec; 1704 } 1705 1706 strhdr = &info->sechdrs[info->hdr->e_shstrndx]; 1707 err = validate_section_offset(info, strhdr); 1708 if (err < 0) { 1709 pr_err("Invalid ELF section hdr(type %u)\n", strhdr->sh_type); 1710 return err; 1711 } 1712 1713 /* 1714 * The section name table must be NUL-terminated, as required 1715 * by the spec. This makes strcmp and pr_* calls that access 1716 * strings in the section safe. 1717 */ 1718 info->secstrings = (void *)info->hdr + strhdr->sh_offset; 1719 if (strhdr->sh_size == 0) { 1720 pr_err("empty section name table\n"); 1721 goto no_exec; 1722 } 1723 if (info->secstrings[strhdr->sh_size - 1] != '\0') { 1724 pr_err("ELF Spec violation: section name table isn't null terminated\n"); 1725 goto no_exec; 1726 } 1727 1728 /* 1729 * The code assumes that section 0 has a length of zero and 1730 * an addr of zero, so check for it. 1731 */ 1732 if (info->sechdrs[0].sh_type != SHT_NULL 1733 || info->sechdrs[0].sh_size != 0 1734 || info->sechdrs[0].sh_addr != 0) { 1735 pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n", 1736 info->sechdrs[0].sh_type); 1737 goto no_exec; 1738 } 1739 1740 for (i = 1; i < info->hdr->e_shnum; i++) { 1741 shdr = &info->sechdrs[i]; 1742 switch (shdr->sh_type) { 1743 case SHT_NULL: 1744 case SHT_NOBITS: 1745 continue; 1746 case SHT_SYMTAB: 1747 if (shdr->sh_link == SHN_UNDEF 1748 || shdr->sh_link >= info->hdr->e_shnum) { 1749 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n", 1750 shdr->sh_link, shdr->sh_link, 1751 info->hdr->e_shnum); 1752 goto no_exec; 1753 } 1754 fallthrough; 1755 default: 1756 err = validate_section_offset(info, shdr); 1757 if (err < 0) { 1758 pr_err("Invalid ELF section in module (section %u type %u)\n", 1759 i, shdr->sh_type); 1760 return err; 1761 } 1762 1763 if (shdr->sh_flags & SHF_ALLOC) { 1764 if (shdr->sh_name >= strhdr->sh_size) { 1765 pr_err("Invalid ELF section name in module (section %u type %u)\n", 1766 i, shdr->sh_type); 1767 return -ENOEXEC; 1768 } 1769 } 1770 break; 1771 } 1772 } 1773 1774 return 0; 1775 1776 no_exec: 1777 return -ENOEXEC; 1778 } 1779 1780 #define COPY_CHUNK_SIZE (16*PAGE_SIZE) 1781 1782 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len) 1783 { 1784 do { 1785 unsigned long n = min(len, COPY_CHUNK_SIZE); 1786 1787 if (copy_from_user(dst, usrc, n) != 0) 1788 return -EFAULT; 1789 cond_resched(); 1790 dst += n; 1791 usrc += n; 1792 len -= n; 1793 } while (len); 1794 return 0; 1795 } 1796 1797 static int check_modinfo_livepatch(struct module *mod, struct load_info *info) 1798 { 1799 if (!get_modinfo(info, "livepatch")) 1800 /* Nothing more to do */ 1801 return 0; 1802 1803 if (set_livepatch_module(mod)) { 1804 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK); 1805 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n", 1806 mod->name); 1807 return 0; 1808 } 1809 1810 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled", 1811 mod->name); 1812 return -ENOEXEC; 1813 } 1814 1815 static void check_modinfo_retpoline(struct module *mod, struct load_info *info) 1816 { 1817 if (retpoline_module_ok(get_modinfo(info, "retpoline"))) 1818 return; 1819 1820 pr_warn("%s: loading module not compiled with retpoline compiler.\n", 1821 mod->name); 1822 } 1823 1824 /* Sets info->hdr and info->len. */ 1825 static int copy_module_from_user(const void __user *umod, unsigned long len, 1826 struct load_info *info) 1827 { 1828 int err; 1829 1830 info->len = len; 1831 if (info->len < sizeof(*(info->hdr))) 1832 return -ENOEXEC; 1833 1834 err = security_kernel_load_data(LOADING_MODULE, true); 1835 if (err) 1836 return err; 1837 1838 /* Suck in entire file: we'll want most of it. */ 1839 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN); 1840 if (!info->hdr) 1841 return -ENOMEM; 1842 1843 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) { 1844 err = -EFAULT; 1845 goto out; 1846 } 1847 1848 err = security_kernel_post_load_data((char *)info->hdr, info->len, 1849 LOADING_MODULE, "init_module"); 1850 out: 1851 if (err) 1852 vfree(info->hdr); 1853 1854 return err; 1855 } 1856 1857 static void free_copy(struct load_info *info, int flags) 1858 { 1859 if (flags & MODULE_INIT_COMPRESSED_FILE) 1860 module_decompress_cleanup(info); 1861 else 1862 vfree(info->hdr); 1863 } 1864 1865 static int rewrite_section_headers(struct load_info *info, int flags) 1866 { 1867 unsigned int i; 1868 1869 /* This should always be true, but let's be sure. */ 1870 info->sechdrs[0].sh_addr = 0; 1871 1872 for (i = 1; i < info->hdr->e_shnum; i++) { 1873 Elf_Shdr *shdr = &info->sechdrs[i]; 1874 1875 /* 1876 * Mark all sections sh_addr with their address in the 1877 * temporary image. 1878 */ 1879 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset; 1880 1881 } 1882 1883 /* Track but don't keep modinfo and version sections. */ 1884 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC; 1885 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC; 1886 1887 return 0; 1888 } 1889 1890 /* 1891 * Set up our basic convenience variables (pointers to section headers, 1892 * search for module section index etc), and do some basic section 1893 * verification. 1894 * 1895 * Set info->mod to the temporary copy of the module in info->hdr. The final one 1896 * will be allocated in move_module(). 1897 */ 1898 static int setup_load_info(struct load_info *info, int flags) 1899 { 1900 unsigned int i; 1901 1902 /* Try to find a name early so we can log errors with a module name */ 1903 info->index.info = find_sec(info, ".modinfo"); 1904 if (info->index.info) 1905 info->name = get_modinfo(info, "name"); 1906 1907 /* Find internal symbols and strings. */ 1908 for (i = 1; i < info->hdr->e_shnum; i++) { 1909 if (info->sechdrs[i].sh_type == SHT_SYMTAB) { 1910 info->index.sym = i; 1911 info->index.str = info->sechdrs[i].sh_link; 1912 info->strtab = (char *)info->hdr 1913 + info->sechdrs[info->index.str].sh_offset; 1914 break; 1915 } 1916 } 1917 1918 if (info->index.sym == 0) { 1919 pr_warn("%s: module has no symbols (stripped?)\n", 1920 info->name ?: "(missing .modinfo section or name field)"); 1921 return -ENOEXEC; 1922 } 1923 1924 info->index.mod = find_sec(info, ".gnu.linkonce.this_module"); 1925 if (!info->index.mod) { 1926 pr_warn("%s: No module found in object\n", 1927 info->name ?: "(missing .modinfo section or name field)"); 1928 return -ENOEXEC; 1929 } 1930 /* This is temporary: point mod into copy of data. */ 1931 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset; 1932 1933 /* 1934 * If we didn't load the .modinfo 'name' field earlier, fall back to 1935 * on-disk struct mod 'name' field. 1936 */ 1937 if (!info->name) 1938 info->name = info->mod->name; 1939 1940 if (flags & MODULE_INIT_IGNORE_MODVERSIONS) 1941 info->index.vers = 0; /* Pretend no __versions section! */ 1942 else 1943 info->index.vers = find_sec(info, "__versions"); 1944 1945 info->index.pcpu = find_pcpusec(info); 1946 1947 return 0; 1948 } 1949 1950 static int check_modinfo(struct module *mod, struct load_info *info, int flags) 1951 { 1952 const char *modmagic = get_modinfo(info, "vermagic"); 1953 int err; 1954 1955 if (flags & MODULE_INIT_IGNORE_VERMAGIC) 1956 modmagic = NULL; 1957 1958 /* This is allowed: modprobe --force will invalidate it. */ 1959 if (!modmagic) { 1960 err = try_to_force_load(mod, "bad vermagic"); 1961 if (err) 1962 return err; 1963 } else if (!same_magic(modmagic, vermagic, info->index.vers)) { 1964 pr_err("%s: version magic '%s' should be '%s'\n", 1965 info->name, modmagic, vermagic); 1966 return -ENOEXEC; 1967 } 1968 1969 if (!get_modinfo(info, "intree")) { 1970 if (!test_taint(TAINT_OOT_MODULE)) 1971 pr_warn("%s: loading out-of-tree module taints kernel.\n", 1972 mod->name); 1973 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK); 1974 } 1975 1976 check_modinfo_retpoline(mod, info); 1977 1978 if (get_modinfo(info, "staging")) { 1979 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK); 1980 pr_warn("%s: module is from the staging directory, the quality " 1981 "is unknown, you have been warned.\n", mod->name); 1982 } 1983 1984 err = check_modinfo_livepatch(mod, info); 1985 if (err) 1986 return err; 1987 1988 /* Set up license info based on the info section */ 1989 set_license(mod, get_modinfo(info, "license")); 1990 1991 return 0; 1992 } 1993 1994 static int find_module_sections(struct module *mod, struct load_info *info) 1995 { 1996 mod->kp = section_objs(info, "__param", 1997 sizeof(*mod->kp), &mod->num_kp); 1998 mod->syms = section_objs(info, "__ksymtab", 1999 sizeof(*mod->syms), &mod->num_syms); 2000 mod->crcs = section_addr(info, "__kcrctab"); 2001 mod->gpl_syms = section_objs(info, "__ksymtab_gpl", 2002 sizeof(*mod->gpl_syms), 2003 &mod->num_gpl_syms); 2004 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl"); 2005 2006 #ifdef CONFIG_CONSTRUCTORS 2007 mod->ctors = section_objs(info, ".ctors", 2008 sizeof(*mod->ctors), &mod->num_ctors); 2009 if (!mod->ctors) 2010 mod->ctors = section_objs(info, ".init_array", 2011 sizeof(*mod->ctors), &mod->num_ctors); 2012 else if (find_sec(info, ".init_array")) { 2013 /* 2014 * This shouldn't happen with same compiler and binutils 2015 * building all parts of the module. 2016 */ 2017 pr_warn("%s: has both .ctors and .init_array.\n", 2018 mod->name); 2019 return -EINVAL; 2020 } 2021 #endif 2022 2023 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1, 2024 &mod->noinstr_text_size); 2025 2026 #ifdef CONFIG_TRACEPOINTS 2027 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs", 2028 sizeof(*mod->tracepoints_ptrs), 2029 &mod->num_tracepoints); 2030 #endif 2031 #ifdef CONFIG_TREE_SRCU 2032 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs", 2033 sizeof(*mod->srcu_struct_ptrs), 2034 &mod->num_srcu_structs); 2035 #endif 2036 #ifdef CONFIG_BPF_EVENTS 2037 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map", 2038 sizeof(*mod->bpf_raw_events), 2039 &mod->num_bpf_raw_events); 2040 #endif 2041 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 2042 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size); 2043 #endif 2044 #ifdef CONFIG_JUMP_LABEL 2045 mod->jump_entries = section_objs(info, "__jump_table", 2046 sizeof(*mod->jump_entries), 2047 &mod->num_jump_entries); 2048 #endif 2049 #ifdef CONFIG_EVENT_TRACING 2050 mod->trace_events = section_objs(info, "_ftrace_events", 2051 sizeof(*mod->trace_events), 2052 &mod->num_trace_events); 2053 mod->trace_evals = section_objs(info, "_ftrace_eval_map", 2054 sizeof(*mod->trace_evals), 2055 &mod->num_trace_evals); 2056 #endif 2057 #ifdef CONFIG_TRACING 2058 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt", 2059 sizeof(*mod->trace_bprintk_fmt_start), 2060 &mod->num_trace_bprintk_fmt); 2061 #endif 2062 #ifdef CONFIG_FTRACE_MCOUNT_RECORD 2063 /* sechdrs[0].sh_size is always zero */ 2064 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION, 2065 sizeof(*mod->ftrace_callsites), 2066 &mod->num_ftrace_callsites); 2067 #endif 2068 #ifdef CONFIG_FUNCTION_ERROR_INJECTION 2069 mod->ei_funcs = section_objs(info, "_error_injection_whitelist", 2070 sizeof(*mod->ei_funcs), 2071 &mod->num_ei_funcs); 2072 #endif 2073 #ifdef CONFIG_KPROBES 2074 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1, 2075 &mod->kprobes_text_size); 2076 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist", 2077 sizeof(unsigned long), 2078 &mod->num_kprobe_blacklist); 2079 #endif 2080 #ifdef CONFIG_PRINTK_INDEX 2081 mod->printk_index_start = section_objs(info, ".printk_index", 2082 sizeof(*mod->printk_index_start), 2083 &mod->printk_index_size); 2084 #endif 2085 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE 2086 mod->static_call_sites = section_objs(info, ".static_call_sites", 2087 sizeof(*mod->static_call_sites), 2088 &mod->num_static_call_sites); 2089 #endif 2090 mod->extable = section_objs(info, "__ex_table", 2091 sizeof(*mod->extable), &mod->num_exentries); 2092 2093 if (section_addr(info, "__obsparm")) 2094 pr_warn("%s: Ignoring obsolete parameters\n", mod->name); 2095 2096 info->debug = section_objs(info, "__dyndbg", 2097 sizeof(*info->debug), &info->num_debug); 2098 2099 return 0; 2100 } 2101 2102 static int move_module(struct module *mod, struct load_info *info) 2103 { 2104 int i; 2105 void *ptr; 2106 2107 /* Do the allocs. */ 2108 ptr = module_alloc(mod->core_layout.size); 2109 /* 2110 * The pointer to this block is stored in the module structure 2111 * which is inside the block. Just mark it as not being a 2112 * leak. 2113 */ 2114 kmemleak_not_leak(ptr); 2115 if (!ptr) 2116 return -ENOMEM; 2117 2118 memset(ptr, 0, mod->core_layout.size); 2119 mod->core_layout.base = ptr; 2120 2121 if (mod->init_layout.size) { 2122 ptr = module_alloc(mod->init_layout.size); 2123 /* 2124 * The pointer to this block is stored in the module structure 2125 * which is inside the block. This block doesn't need to be 2126 * scanned as it contains data and code that will be freed 2127 * after the module is initialized. 2128 */ 2129 kmemleak_ignore(ptr); 2130 if (!ptr) { 2131 module_memfree(mod->core_layout.base); 2132 return -ENOMEM; 2133 } 2134 memset(ptr, 0, mod->init_layout.size); 2135 mod->init_layout.base = ptr; 2136 } else 2137 mod->init_layout.base = NULL; 2138 2139 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 2140 /* Do the allocs. */ 2141 ptr = vmalloc(mod->data_layout.size); 2142 /* 2143 * The pointer to this block is stored in the module structure 2144 * which is inside the block. Just mark it as not being a 2145 * leak. 2146 */ 2147 kmemleak_not_leak(ptr); 2148 if (!ptr) { 2149 module_memfree(mod->core_layout.base); 2150 module_memfree(mod->init_layout.base); 2151 return -ENOMEM; 2152 } 2153 2154 memset(ptr, 0, mod->data_layout.size); 2155 mod->data_layout.base = ptr; 2156 #endif 2157 /* Transfer each section which specifies SHF_ALLOC */ 2158 pr_debug("final section addresses:\n"); 2159 for (i = 0; i < info->hdr->e_shnum; i++) { 2160 void *dest; 2161 Elf_Shdr *shdr = &info->sechdrs[i]; 2162 2163 if (!(shdr->sh_flags & SHF_ALLOC)) 2164 continue; 2165 2166 if (shdr->sh_entsize & INIT_OFFSET_MASK) 2167 dest = mod->init_layout.base 2168 + (shdr->sh_entsize & ~INIT_OFFSET_MASK); 2169 else if (!(shdr->sh_flags & SHF_EXECINSTR)) 2170 dest = mod->data_layout.base + shdr->sh_entsize; 2171 else 2172 dest = mod->core_layout.base + shdr->sh_entsize; 2173 2174 if (shdr->sh_type != SHT_NOBITS) 2175 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size); 2176 /* Update sh_addr to point to copy in image. */ 2177 shdr->sh_addr = (unsigned long)dest; 2178 pr_debug("\t0x%lx %s\n", 2179 (long)shdr->sh_addr, info->secstrings + shdr->sh_name); 2180 } 2181 2182 return 0; 2183 } 2184 2185 static int check_module_license_and_versions(struct module *mod) 2186 { 2187 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE); 2188 2189 /* 2190 * ndiswrapper is under GPL by itself, but loads proprietary modules. 2191 * Don't use add_taint_module(), as it would prevent ndiswrapper from 2192 * using GPL-only symbols it needs. 2193 */ 2194 if (strcmp(mod->name, "ndiswrapper") == 0) 2195 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE); 2196 2197 /* driverloader was caught wrongly pretending to be under GPL */ 2198 if (strcmp(mod->name, "driverloader") == 0) 2199 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 2200 LOCKDEP_NOW_UNRELIABLE); 2201 2202 /* lve claims to be GPL but upstream won't provide source */ 2203 if (strcmp(mod->name, "lve") == 0) 2204 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 2205 LOCKDEP_NOW_UNRELIABLE); 2206 2207 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE)) 2208 pr_warn("%s: module license taints kernel.\n", mod->name); 2209 2210 #ifdef CONFIG_MODVERSIONS 2211 if ((mod->num_syms && !mod->crcs) || 2212 (mod->num_gpl_syms && !mod->gpl_crcs)) { 2213 return try_to_force_load(mod, 2214 "no versions for exported symbols"); 2215 } 2216 #endif 2217 return 0; 2218 } 2219 2220 static void flush_module_icache(const struct module *mod) 2221 { 2222 /* 2223 * Flush the instruction cache, since we've played with text. 2224 * Do it before processing of module parameters, so the module 2225 * can provide parameter accessor functions of its own. 2226 */ 2227 if (mod->init_layout.base) 2228 flush_icache_range((unsigned long)mod->init_layout.base, 2229 (unsigned long)mod->init_layout.base 2230 + mod->init_layout.size); 2231 flush_icache_range((unsigned long)mod->core_layout.base, 2232 (unsigned long)mod->core_layout.base + mod->core_layout.size); 2233 } 2234 2235 int __weak module_frob_arch_sections(Elf_Ehdr *hdr, 2236 Elf_Shdr *sechdrs, 2237 char *secstrings, 2238 struct module *mod) 2239 { 2240 return 0; 2241 } 2242 2243 /* module_blacklist is a comma-separated list of module names */ 2244 static char *module_blacklist; 2245 static bool blacklisted(const char *module_name) 2246 { 2247 const char *p; 2248 size_t len; 2249 2250 if (!module_blacklist) 2251 return false; 2252 2253 for (p = module_blacklist; *p; p += len) { 2254 len = strcspn(p, ","); 2255 if (strlen(module_name) == len && !memcmp(module_name, p, len)) 2256 return true; 2257 if (p[len] == ',') 2258 len++; 2259 } 2260 return false; 2261 } 2262 core_param(module_blacklist, module_blacklist, charp, 0400); 2263 2264 static struct module *layout_and_allocate(struct load_info *info, int flags) 2265 { 2266 struct module *mod; 2267 unsigned int ndx; 2268 int err; 2269 2270 err = check_modinfo(info->mod, info, flags); 2271 if (err) 2272 return ERR_PTR(err); 2273 2274 /* Allow arches to frob section contents and sizes. */ 2275 err = module_frob_arch_sections(info->hdr, info->sechdrs, 2276 info->secstrings, info->mod); 2277 if (err < 0) 2278 return ERR_PTR(err); 2279 2280 err = module_enforce_rwx_sections(info->hdr, info->sechdrs, 2281 info->secstrings, info->mod); 2282 if (err < 0) 2283 return ERR_PTR(err); 2284 2285 /* We will do a special allocation for per-cpu sections later. */ 2286 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC; 2287 2288 /* 2289 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that 2290 * layout_sections() can put it in the right place. 2291 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set. 2292 */ 2293 ndx = find_sec(info, ".data..ro_after_init"); 2294 if (ndx) 2295 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT; 2296 /* 2297 * Mark the __jump_table section as ro_after_init as well: these data 2298 * structures are never modified, with the exception of entries that 2299 * refer to code in the __init section, which are annotated as such 2300 * at module load time. 2301 */ 2302 ndx = find_sec(info, "__jump_table"); 2303 if (ndx) 2304 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT; 2305 2306 /* 2307 * Determine total sizes, and put offsets in sh_entsize. For now 2308 * this is done generically; there doesn't appear to be any 2309 * special cases for the architectures. 2310 */ 2311 layout_sections(info->mod, info); 2312 layout_symtab(info->mod, info); 2313 2314 /* Allocate and move to the final place */ 2315 err = move_module(info->mod, info); 2316 if (err) 2317 return ERR_PTR(err); 2318 2319 /* Module has been copied to its final place now: return it. */ 2320 mod = (void *)info->sechdrs[info->index.mod].sh_addr; 2321 kmemleak_load_module(mod, info); 2322 return mod; 2323 } 2324 2325 /* mod is no longer valid after this! */ 2326 static void module_deallocate(struct module *mod, struct load_info *info) 2327 { 2328 percpu_modfree(mod); 2329 module_arch_freeing_init(mod); 2330 module_memfree(mod->init_layout.base); 2331 module_memfree(mod->core_layout.base); 2332 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 2333 vfree(mod->data_layout.base); 2334 #endif 2335 } 2336 2337 int __weak module_finalize(const Elf_Ehdr *hdr, 2338 const Elf_Shdr *sechdrs, 2339 struct module *me) 2340 { 2341 return 0; 2342 } 2343 2344 static int post_relocation(struct module *mod, const struct load_info *info) 2345 { 2346 /* Sort exception table now relocations are done. */ 2347 sort_extable(mod->extable, mod->extable + mod->num_exentries); 2348 2349 /* Copy relocated percpu area over. */ 2350 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr, 2351 info->sechdrs[info->index.pcpu].sh_size); 2352 2353 /* Setup kallsyms-specific fields. */ 2354 add_kallsyms(mod, info); 2355 2356 /* Arch-specific module finalizing. */ 2357 return module_finalize(info->hdr, info->sechdrs, mod); 2358 } 2359 2360 /* Is this module of this name done loading? No locks held. */ 2361 static bool finished_loading(const char *name) 2362 { 2363 struct module *mod; 2364 bool ret; 2365 2366 /* 2367 * The module_mutex should not be a heavily contended lock; 2368 * if we get the occasional sleep here, we'll go an extra iteration 2369 * in the wait_event_interruptible(), which is harmless. 2370 */ 2371 sched_annotate_sleep(); 2372 mutex_lock(&module_mutex); 2373 mod = find_module_all(name, strlen(name), true); 2374 ret = !mod || mod->state == MODULE_STATE_LIVE; 2375 mutex_unlock(&module_mutex); 2376 2377 return ret; 2378 } 2379 2380 /* Call module constructors. */ 2381 static void do_mod_ctors(struct module *mod) 2382 { 2383 #ifdef CONFIG_CONSTRUCTORS 2384 unsigned long i; 2385 2386 for (i = 0; i < mod->num_ctors; i++) 2387 mod->ctors[i](); 2388 #endif 2389 } 2390 2391 /* For freeing module_init on success, in case kallsyms traversing */ 2392 struct mod_initfree { 2393 struct llist_node node; 2394 void *module_init; 2395 }; 2396 2397 static void do_free_init(struct work_struct *w) 2398 { 2399 struct llist_node *pos, *n, *list; 2400 struct mod_initfree *initfree; 2401 2402 list = llist_del_all(&init_free_list); 2403 2404 synchronize_rcu(); 2405 2406 llist_for_each_safe(pos, n, list) { 2407 initfree = container_of(pos, struct mod_initfree, node); 2408 module_memfree(initfree->module_init); 2409 kfree(initfree); 2410 } 2411 } 2412 2413 /* 2414 * This is where the real work happens. 2415 * 2416 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb 2417 * helper command 'lx-symbols'. 2418 */ 2419 static noinline int do_init_module(struct module *mod) 2420 { 2421 int ret = 0; 2422 struct mod_initfree *freeinit; 2423 2424 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL); 2425 if (!freeinit) { 2426 ret = -ENOMEM; 2427 goto fail; 2428 } 2429 freeinit->module_init = mod->init_layout.base; 2430 2431 do_mod_ctors(mod); 2432 /* Start the module */ 2433 if (mod->init != NULL) 2434 ret = do_one_initcall(mod->init); 2435 if (ret < 0) { 2436 goto fail_free_freeinit; 2437 } 2438 if (ret > 0) { 2439 pr_warn("%s: '%s'->init suspiciously returned %d, it should " 2440 "follow 0/-E convention\n" 2441 "%s: loading module anyway...\n", 2442 __func__, mod->name, ret, __func__); 2443 dump_stack(); 2444 } 2445 2446 /* Now it's a first class citizen! */ 2447 mod->state = MODULE_STATE_LIVE; 2448 blocking_notifier_call_chain(&module_notify_list, 2449 MODULE_STATE_LIVE, mod); 2450 2451 /* Delay uevent until module has finished its init routine */ 2452 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD); 2453 2454 /* 2455 * We need to finish all async code before the module init sequence 2456 * is done. This has potential to deadlock if synchronous module 2457 * loading is requested from async (which is not allowed!). 2458 * 2459 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous 2460 * request_module() from async workers") for more details. 2461 */ 2462 if (!mod->async_probe_requested) 2463 async_synchronize_full(); 2464 2465 ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base + 2466 mod->init_layout.size); 2467 mutex_lock(&module_mutex); 2468 /* Drop initial reference. */ 2469 module_put(mod); 2470 trim_init_extable(mod); 2471 #ifdef CONFIG_KALLSYMS 2472 /* Switch to core kallsyms now init is done: kallsyms may be walking! */ 2473 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms); 2474 #endif 2475 module_enable_ro(mod, true); 2476 mod_tree_remove_init(mod); 2477 module_arch_freeing_init(mod); 2478 mod->init_layout.base = NULL; 2479 mod->init_layout.size = 0; 2480 mod->init_layout.ro_size = 0; 2481 mod->init_layout.ro_after_init_size = 0; 2482 mod->init_layout.text_size = 0; 2483 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 2484 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointer */ 2485 mod->btf_data = NULL; 2486 #endif 2487 /* 2488 * We want to free module_init, but be aware that kallsyms may be 2489 * walking this with preempt disabled. In all the failure paths, we 2490 * call synchronize_rcu(), but we don't want to slow down the success 2491 * path. module_memfree() cannot be called in an interrupt, so do the 2492 * work and call synchronize_rcu() in a work queue. 2493 * 2494 * Note that module_alloc() on most architectures creates W+X page 2495 * mappings which won't be cleaned up until do_free_init() runs. Any 2496 * code such as mark_rodata_ro() which depends on those mappings to 2497 * be cleaned up needs to sync with the queued work - ie 2498 * rcu_barrier() 2499 */ 2500 if (llist_add(&freeinit->node, &init_free_list)) 2501 schedule_work(&init_free_wq); 2502 2503 mutex_unlock(&module_mutex); 2504 wake_up_all(&module_wq); 2505 2506 return 0; 2507 2508 fail_free_freeinit: 2509 kfree(freeinit); 2510 fail: 2511 /* Try to protect us from buggy refcounters. */ 2512 mod->state = MODULE_STATE_GOING; 2513 synchronize_rcu(); 2514 module_put(mod); 2515 blocking_notifier_call_chain(&module_notify_list, 2516 MODULE_STATE_GOING, mod); 2517 klp_module_going(mod); 2518 ftrace_release_mod(mod); 2519 free_module(mod); 2520 wake_up_all(&module_wq); 2521 return ret; 2522 } 2523 2524 static int may_init_module(void) 2525 { 2526 if (!capable(CAP_SYS_MODULE) || modules_disabled) 2527 return -EPERM; 2528 2529 return 0; 2530 } 2531 2532 /* 2533 * We try to place it in the list now to make sure it's unique before 2534 * we dedicate too many resources. In particular, temporary percpu 2535 * memory exhaustion. 2536 */ 2537 static int add_unformed_module(struct module *mod) 2538 { 2539 int err; 2540 struct module *old; 2541 2542 mod->state = MODULE_STATE_UNFORMED; 2543 2544 again: 2545 mutex_lock(&module_mutex); 2546 old = find_module_all(mod->name, strlen(mod->name), true); 2547 if (old != NULL) { 2548 if (old->state != MODULE_STATE_LIVE) { 2549 /* Wait in case it fails to load. */ 2550 mutex_unlock(&module_mutex); 2551 err = wait_event_interruptible(module_wq, 2552 finished_loading(mod->name)); 2553 if (err) 2554 goto out_unlocked; 2555 goto again; 2556 } 2557 err = -EEXIST; 2558 goto out; 2559 } 2560 mod_update_bounds(mod); 2561 list_add_rcu(&mod->list, &modules); 2562 mod_tree_insert(mod); 2563 err = 0; 2564 2565 out: 2566 mutex_unlock(&module_mutex); 2567 out_unlocked: 2568 return err; 2569 } 2570 2571 static int complete_formation(struct module *mod, struct load_info *info) 2572 { 2573 int err; 2574 2575 mutex_lock(&module_mutex); 2576 2577 /* Find duplicate symbols (must be called under lock). */ 2578 err = verify_exported_symbols(mod); 2579 if (err < 0) 2580 goto out; 2581 2582 /* This relies on module_mutex for list integrity. */ 2583 module_bug_finalize(info->hdr, info->sechdrs, mod); 2584 2585 if (module_check_misalignment(mod)) 2586 goto out_misaligned; 2587 2588 module_enable_ro(mod, false); 2589 module_enable_nx(mod); 2590 module_enable_x(mod); 2591 2592 /* 2593 * Mark state as coming so strong_try_module_get() ignores us, 2594 * but kallsyms etc. can see us. 2595 */ 2596 mod->state = MODULE_STATE_COMING; 2597 mutex_unlock(&module_mutex); 2598 2599 return 0; 2600 2601 out_misaligned: 2602 err = -EINVAL; 2603 out: 2604 mutex_unlock(&module_mutex); 2605 return err; 2606 } 2607 2608 static int prepare_coming_module(struct module *mod) 2609 { 2610 int err; 2611 2612 ftrace_module_enable(mod); 2613 err = klp_module_coming(mod); 2614 if (err) 2615 return err; 2616 2617 err = blocking_notifier_call_chain_robust(&module_notify_list, 2618 MODULE_STATE_COMING, MODULE_STATE_GOING, mod); 2619 err = notifier_to_errno(err); 2620 if (err) 2621 klp_module_going(mod); 2622 2623 return err; 2624 } 2625 2626 static int unknown_module_param_cb(char *param, char *val, const char *modname, 2627 void *arg) 2628 { 2629 struct module *mod = arg; 2630 int ret; 2631 2632 if (strcmp(param, "async_probe") == 0) { 2633 mod->async_probe_requested = true; 2634 return 0; 2635 } 2636 2637 /* Check for magic 'dyndbg' arg */ 2638 ret = ddebug_dyndbg_module_param_cb(param, val, modname); 2639 if (ret != 0) 2640 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param); 2641 return 0; 2642 } 2643 2644 static void cfi_init(struct module *mod); 2645 2646 /* 2647 * Allocate and load the module: note that size of section 0 is always 2648 * zero, and we rely on this for optional sections. 2649 */ 2650 static int load_module(struct load_info *info, const char __user *uargs, 2651 int flags) 2652 { 2653 struct module *mod; 2654 long err = 0; 2655 char *after_dashes; 2656 2657 /* 2658 * Do the signature check (if any) first. All that 2659 * the signature check needs is info->len, it does 2660 * not need any of the section info. That can be 2661 * set up later. This will minimize the chances 2662 * of a corrupt module causing problems before 2663 * we even get to the signature check. 2664 * 2665 * The check will also adjust info->len by stripping 2666 * off the sig length at the end of the module, making 2667 * checks against info->len more correct. 2668 */ 2669 err = module_sig_check(info, flags); 2670 if (err) 2671 goto free_copy; 2672 2673 /* 2674 * Do basic sanity checks against the ELF header and 2675 * sections. 2676 */ 2677 err = elf_validity_check(info); 2678 if (err) 2679 goto free_copy; 2680 2681 /* 2682 * Everything checks out, so set up the section info 2683 * in the info structure. 2684 */ 2685 err = setup_load_info(info, flags); 2686 if (err) 2687 goto free_copy; 2688 2689 /* 2690 * Now that we know we have the correct module name, check 2691 * if it's blacklisted. 2692 */ 2693 if (blacklisted(info->name)) { 2694 err = -EPERM; 2695 pr_err("Module %s is blacklisted\n", info->name); 2696 goto free_copy; 2697 } 2698 2699 err = rewrite_section_headers(info, flags); 2700 if (err) 2701 goto free_copy; 2702 2703 /* Check module struct version now, before we try to use module. */ 2704 if (!check_modstruct_version(info, info->mod)) { 2705 err = -ENOEXEC; 2706 goto free_copy; 2707 } 2708 2709 /* Figure out module layout, and allocate all the memory. */ 2710 mod = layout_and_allocate(info, flags); 2711 if (IS_ERR(mod)) { 2712 err = PTR_ERR(mod); 2713 goto free_copy; 2714 } 2715 2716 audit_log_kern_module(mod->name); 2717 2718 /* Reserve our place in the list. */ 2719 err = add_unformed_module(mod); 2720 if (err) 2721 goto free_module; 2722 2723 #ifdef CONFIG_MODULE_SIG 2724 mod->sig_ok = info->sig_ok; 2725 if (!mod->sig_ok) { 2726 pr_notice_once("%s: module verification failed: signature " 2727 "and/or required key missing - tainting " 2728 "kernel\n", mod->name); 2729 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK); 2730 } 2731 #endif 2732 2733 /* To avoid stressing percpu allocator, do this once we're unique. */ 2734 err = percpu_modalloc(mod, info); 2735 if (err) 2736 goto unlink_mod; 2737 2738 /* Now module is in final location, initialize linked lists, etc. */ 2739 err = module_unload_init(mod); 2740 if (err) 2741 goto unlink_mod; 2742 2743 init_param_lock(mod); 2744 2745 /* 2746 * Now we've got everything in the final locations, we can 2747 * find optional sections. 2748 */ 2749 err = find_module_sections(mod, info); 2750 if (err) 2751 goto free_unload; 2752 2753 err = check_module_license_and_versions(mod); 2754 if (err) 2755 goto free_unload; 2756 2757 /* Set up MODINFO_ATTR fields */ 2758 setup_modinfo(mod, info); 2759 2760 /* Fix up syms, so that st_value is a pointer to location. */ 2761 err = simplify_symbols(mod, info); 2762 if (err < 0) 2763 goto free_modinfo; 2764 2765 err = apply_relocations(mod, info); 2766 if (err < 0) 2767 goto free_modinfo; 2768 2769 err = post_relocation(mod, info); 2770 if (err < 0) 2771 goto free_modinfo; 2772 2773 flush_module_icache(mod); 2774 2775 /* Setup CFI for the module. */ 2776 cfi_init(mod); 2777 2778 /* Now copy in args */ 2779 mod->args = strndup_user(uargs, ~0UL >> 1); 2780 if (IS_ERR(mod->args)) { 2781 err = PTR_ERR(mod->args); 2782 goto free_arch_cleanup; 2783 } 2784 2785 init_build_id(mod, info); 2786 dynamic_debug_setup(mod, info->debug, info->num_debug); 2787 2788 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */ 2789 ftrace_module_init(mod); 2790 2791 /* Finally it's fully formed, ready to start executing. */ 2792 err = complete_formation(mod, info); 2793 if (err) 2794 goto ddebug_cleanup; 2795 2796 err = prepare_coming_module(mod); 2797 if (err) 2798 goto bug_cleanup; 2799 2800 /* Module is ready to execute: parsing args may do that. */ 2801 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp, 2802 -32768, 32767, mod, 2803 unknown_module_param_cb); 2804 if (IS_ERR(after_dashes)) { 2805 err = PTR_ERR(after_dashes); 2806 goto coming_cleanup; 2807 } else if (after_dashes) { 2808 pr_warn("%s: parameters '%s' after `--' ignored\n", 2809 mod->name, after_dashes); 2810 } 2811 2812 /* Link in to sysfs. */ 2813 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp); 2814 if (err < 0) 2815 goto coming_cleanup; 2816 2817 if (is_livepatch_module(mod)) { 2818 err = copy_module_elf(mod, info); 2819 if (err < 0) 2820 goto sysfs_cleanup; 2821 } 2822 2823 /* Get rid of temporary copy. */ 2824 free_copy(info, flags); 2825 2826 /* Done! */ 2827 trace_module_load(mod); 2828 2829 return do_init_module(mod); 2830 2831 sysfs_cleanup: 2832 mod_sysfs_teardown(mod); 2833 coming_cleanup: 2834 mod->state = MODULE_STATE_GOING; 2835 destroy_params(mod->kp, mod->num_kp); 2836 blocking_notifier_call_chain(&module_notify_list, 2837 MODULE_STATE_GOING, mod); 2838 klp_module_going(mod); 2839 bug_cleanup: 2840 mod->state = MODULE_STATE_GOING; 2841 /* module_bug_cleanup needs module_mutex protection */ 2842 mutex_lock(&module_mutex); 2843 module_bug_cleanup(mod); 2844 mutex_unlock(&module_mutex); 2845 2846 ddebug_cleanup: 2847 ftrace_release_mod(mod); 2848 dynamic_debug_remove(mod, info->debug); 2849 synchronize_rcu(); 2850 kfree(mod->args); 2851 free_arch_cleanup: 2852 cfi_cleanup(mod); 2853 module_arch_cleanup(mod); 2854 free_modinfo: 2855 free_modinfo(mod); 2856 free_unload: 2857 module_unload_free(mod); 2858 unlink_mod: 2859 mutex_lock(&module_mutex); 2860 /* Unlink carefully: kallsyms could be walking list. */ 2861 list_del_rcu(&mod->list); 2862 mod_tree_remove(mod); 2863 wake_up_all(&module_wq); 2864 /* Wait for RCU-sched synchronizing before releasing mod->list. */ 2865 synchronize_rcu(); 2866 mutex_unlock(&module_mutex); 2867 free_module: 2868 /* Free lock-classes; relies on the preceding sync_rcu() */ 2869 lockdep_free_key_range(mod->data_layout.base, mod->data_layout.size); 2870 2871 module_deallocate(mod, info); 2872 free_copy: 2873 free_copy(info, flags); 2874 return err; 2875 } 2876 2877 SYSCALL_DEFINE3(init_module, void __user *, umod, 2878 unsigned long, len, const char __user *, uargs) 2879 { 2880 int err; 2881 struct load_info info = { }; 2882 2883 err = may_init_module(); 2884 if (err) 2885 return err; 2886 2887 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n", 2888 umod, len, uargs); 2889 2890 err = copy_module_from_user(umod, len, &info); 2891 if (err) 2892 return err; 2893 2894 return load_module(&info, uargs, 0); 2895 } 2896 2897 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags) 2898 { 2899 struct load_info info = { }; 2900 void *buf = NULL; 2901 int len; 2902 int err; 2903 2904 err = may_init_module(); 2905 if (err) 2906 return err; 2907 2908 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags); 2909 2910 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS 2911 |MODULE_INIT_IGNORE_VERMAGIC 2912 |MODULE_INIT_COMPRESSED_FILE)) 2913 return -EINVAL; 2914 2915 len = kernel_read_file_from_fd(fd, 0, &buf, INT_MAX, NULL, 2916 READING_MODULE); 2917 if (len < 0) 2918 return len; 2919 2920 if (flags & MODULE_INIT_COMPRESSED_FILE) { 2921 err = module_decompress(&info, buf, len); 2922 vfree(buf); /* compressed data is no longer needed */ 2923 if (err) 2924 return err; 2925 } else { 2926 info.hdr = buf; 2927 info.len = len; 2928 } 2929 2930 return load_module(&info, uargs, flags); 2931 } 2932 2933 static inline int within(unsigned long addr, void *start, unsigned long size) 2934 { 2935 return ((void *)addr >= start && (void *)addr < start + size); 2936 } 2937 2938 static void cfi_init(struct module *mod) 2939 { 2940 #ifdef CONFIG_CFI_CLANG 2941 initcall_t *init; 2942 exitcall_t *exit; 2943 2944 rcu_read_lock_sched(); 2945 mod->cfi_check = (cfi_check_fn) 2946 find_kallsyms_symbol_value(mod, "__cfi_check"); 2947 init = (initcall_t *) 2948 find_kallsyms_symbol_value(mod, "__cfi_jt_init_module"); 2949 exit = (exitcall_t *) 2950 find_kallsyms_symbol_value(mod, "__cfi_jt_cleanup_module"); 2951 rcu_read_unlock_sched(); 2952 2953 /* Fix init/exit functions to point to the CFI jump table */ 2954 if (init) 2955 mod->init = *init; 2956 #ifdef CONFIG_MODULE_UNLOAD 2957 if (exit) 2958 mod->exit = *exit; 2959 #endif 2960 2961 cfi_module_add(mod, mod_tree.addr_min); 2962 #endif 2963 } 2964 2965 static void cfi_cleanup(struct module *mod) 2966 { 2967 #ifdef CONFIG_CFI_CLANG 2968 cfi_module_remove(mod, mod_tree.addr_min); 2969 #endif 2970 } 2971 2972 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */ 2973 char *module_flags(struct module *mod, char *buf) 2974 { 2975 int bx = 0; 2976 2977 BUG_ON(mod->state == MODULE_STATE_UNFORMED); 2978 if (mod->taints || 2979 mod->state == MODULE_STATE_GOING || 2980 mod->state == MODULE_STATE_COMING) { 2981 buf[bx++] = '('; 2982 bx += module_flags_taint(mod->taints, buf + bx); 2983 /* Show a - for module-is-being-unloaded */ 2984 if (mod->state == MODULE_STATE_GOING) 2985 buf[bx++] = '-'; 2986 /* Show a + for module-is-being-loaded */ 2987 if (mod->state == MODULE_STATE_COMING) 2988 buf[bx++] = '+'; 2989 buf[bx++] = ')'; 2990 } 2991 buf[bx] = '\0'; 2992 2993 return buf; 2994 } 2995 2996 /* Given an address, look for it in the module exception tables. */ 2997 const struct exception_table_entry *search_module_extables(unsigned long addr) 2998 { 2999 const struct exception_table_entry *e = NULL; 3000 struct module *mod; 3001 3002 preempt_disable(); 3003 mod = __module_address(addr); 3004 if (!mod) 3005 goto out; 3006 3007 if (!mod->num_exentries) 3008 goto out; 3009 3010 e = search_extable(mod->extable, 3011 mod->num_exentries, 3012 addr); 3013 out: 3014 preempt_enable(); 3015 3016 /* 3017 * Now, if we found one, we are running inside it now, hence 3018 * we cannot unload the module, hence no refcnt needed. 3019 */ 3020 return e; 3021 } 3022 3023 /** 3024 * is_module_address() - is this address inside a module? 3025 * @addr: the address to check. 3026 * 3027 * See is_module_text_address() if you simply want to see if the address 3028 * is code (not data). 3029 */ 3030 bool is_module_address(unsigned long addr) 3031 { 3032 bool ret; 3033 3034 preempt_disable(); 3035 ret = __module_address(addr) != NULL; 3036 preempt_enable(); 3037 3038 return ret; 3039 } 3040 3041 /** 3042 * __module_address() - get the module which contains an address. 3043 * @addr: the address. 3044 * 3045 * Must be called with preempt disabled or module mutex held so that 3046 * module doesn't get freed during this. 3047 */ 3048 struct module *__module_address(unsigned long addr) 3049 { 3050 struct module *mod; 3051 struct mod_tree_root *tree; 3052 3053 if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max) 3054 tree = &mod_tree; 3055 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 3056 else if (addr >= mod_data_tree.addr_min && addr <= mod_data_tree.addr_max) 3057 tree = &mod_data_tree; 3058 #endif 3059 else 3060 return NULL; 3061 3062 module_assert_mutex_or_preempt(); 3063 3064 mod = mod_find(addr, tree); 3065 if (mod) { 3066 BUG_ON(!within_module(addr, mod)); 3067 if (mod->state == MODULE_STATE_UNFORMED) 3068 mod = NULL; 3069 } 3070 return mod; 3071 } 3072 3073 /** 3074 * is_module_text_address() - is this address inside module code? 3075 * @addr: the address to check. 3076 * 3077 * See is_module_address() if you simply want to see if the address is 3078 * anywhere in a module. See kernel_text_address() for testing if an 3079 * address corresponds to kernel or module code. 3080 */ 3081 bool is_module_text_address(unsigned long addr) 3082 { 3083 bool ret; 3084 3085 preempt_disable(); 3086 ret = __module_text_address(addr) != NULL; 3087 preempt_enable(); 3088 3089 return ret; 3090 } 3091 3092 /** 3093 * __module_text_address() - get the module whose code contains an address. 3094 * @addr: the address. 3095 * 3096 * Must be called with preempt disabled or module mutex held so that 3097 * module doesn't get freed during this. 3098 */ 3099 struct module *__module_text_address(unsigned long addr) 3100 { 3101 struct module *mod = __module_address(addr); 3102 if (mod) { 3103 /* Make sure it's within the text section. */ 3104 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size) 3105 && !within(addr, mod->core_layout.base, mod->core_layout.text_size)) 3106 mod = NULL; 3107 } 3108 return mod; 3109 } 3110 3111 /* Don't grab lock, we're oopsing. */ 3112 void print_modules(void) 3113 { 3114 struct module *mod; 3115 char buf[MODULE_FLAGS_BUF_SIZE]; 3116 3117 printk(KERN_DEFAULT "Modules linked in:"); 3118 /* Most callers should already have preempt disabled, but make sure */ 3119 preempt_disable(); 3120 list_for_each_entry_rcu(mod, &modules, list) { 3121 if (mod->state == MODULE_STATE_UNFORMED) 3122 continue; 3123 pr_cont(" %s%s", mod->name, module_flags(mod, buf)); 3124 } 3125 3126 print_unloaded_tainted_modules(); 3127 preempt_enable(); 3128 if (last_unloaded_module[0]) 3129 pr_cont(" [last unloaded: %s]", last_unloaded_module); 3130 pr_cont("\n"); 3131 } 3132