xref: /openbmc/linux/kernel/locking/test-ww_mutex.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * Module-based API test facility for ww_mutexes
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  */
18 
19 #include <linux/kernel.h>
20 
21 #include <linux/completion.h>
22 #include <linux/delay.h>
23 #include <linux/kthread.h>
24 #include <linux/module.h>
25 #include <linux/random.h>
26 #include <linux/slab.h>
27 #include <linux/ww_mutex.h>
28 
29 static DEFINE_WD_CLASS(ww_class);
30 struct workqueue_struct *wq;
31 
32 struct test_mutex {
33 	struct work_struct work;
34 	struct ww_mutex mutex;
35 	struct completion ready, go, done;
36 	unsigned int flags;
37 };
38 
39 #define TEST_MTX_SPIN BIT(0)
40 #define TEST_MTX_TRY BIT(1)
41 #define TEST_MTX_CTX BIT(2)
42 #define __TEST_MTX_LAST BIT(3)
43 
44 static void test_mutex_work(struct work_struct *work)
45 {
46 	struct test_mutex *mtx = container_of(work, typeof(*mtx), work);
47 
48 	complete(&mtx->ready);
49 	wait_for_completion(&mtx->go);
50 
51 	if (mtx->flags & TEST_MTX_TRY) {
52 		while (!ww_mutex_trylock(&mtx->mutex))
53 			cond_resched();
54 	} else {
55 		ww_mutex_lock(&mtx->mutex, NULL);
56 	}
57 	complete(&mtx->done);
58 	ww_mutex_unlock(&mtx->mutex);
59 }
60 
61 static int __test_mutex(unsigned int flags)
62 {
63 #define TIMEOUT (HZ / 16)
64 	struct test_mutex mtx;
65 	struct ww_acquire_ctx ctx;
66 	int ret;
67 
68 	ww_mutex_init(&mtx.mutex, &ww_class);
69 	ww_acquire_init(&ctx, &ww_class);
70 
71 	INIT_WORK_ONSTACK(&mtx.work, test_mutex_work);
72 	init_completion(&mtx.ready);
73 	init_completion(&mtx.go);
74 	init_completion(&mtx.done);
75 	mtx.flags = flags;
76 
77 	schedule_work(&mtx.work);
78 
79 	wait_for_completion(&mtx.ready);
80 	ww_mutex_lock(&mtx.mutex, (flags & TEST_MTX_CTX) ? &ctx : NULL);
81 	complete(&mtx.go);
82 	if (flags & TEST_MTX_SPIN) {
83 		unsigned long timeout = jiffies + TIMEOUT;
84 
85 		ret = 0;
86 		do {
87 			if (completion_done(&mtx.done)) {
88 				ret = -EINVAL;
89 				break;
90 			}
91 			cond_resched();
92 		} while (time_before(jiffies, timeout));
93 	} else {
94 		ret = wait_for_completion_timeout(&mtx.done, TIMEOUT);
95 	}
96 	ww_mutex_unlock(&mtx.mutex);
97 	ww_acquire_fini(&ctx);
98 
99 	if (ret) {
100 		pr_err("%s(flags=%x): mutual exclusion failure\n",
101 		       __func__, flags);
102 		ret = -EINVAL;
103 	}
104 
105 	flush_work(&mtx.work);
106 	destroy_work_on_stack(&mtx.work);
107 	return ret;
108 #undef TIMEOUT
109 }
110 
111 static int test_mutex(void)
112 {
113 	int ret;
114 	int i;
115 
116 	for (i = 0; i < __TEST_MTX_LAST; i++) {
117 		ret = __test_mutex(i);
118 		if (ret)
119 			return ret;
120 	}
121 
122 	return 0;
123 }
124 
125 static int test_aa(void)
126 {
127 	struct ww_mutex mutex;
128 	struct ww_acquire_ctx ctx;
129 	int ret;
130 
131 	ww_mutex_init(&mutex, &ww_class);
132 	ww_acquire_init(&ctx, &ww_class);
133 
134 	ww_mutex_lock(&mutex, &ctx);
135 
136 	if (ww_mutex_trylock(&mutex))  {
137 		pr_err("%s: trylocked itself!\n", __func__);
138 		ww_mutex_unlock(&mutex);
139 		ret = -EINVAL;
140 		goto out;
141 	}
142 
143 	ret = ww_mutex_lock(&mutex, &ctx);
144 	if (ret != -EALREADY) {
145 		pr_err("%s: missed deadlock for recursing, ret=%d\n",
146 		       __func__, ret);
147 		if (!ret)
148 			ww_mutex_unlock(&mutex);
149 		ret = -EINVAL;
150 		goto out;
151 	}
152 
153 	ret = 0;
154 out:
155 	ww_mutex_unlock(&mutex);
156 	ww_acquire_fini(&ctx);
157 	return ret;
158 }
159 
160 struct test_abba {
161 	struct work_struct work;
162 	struct ww_mutex a_mutex;
163 	struct ww_mutex b_mutex;
164 	struct completion a_ready;
165 	struct completion b_ready;
166 	bool resolve;
167 	int result;
168 };
169 
170 static void test_abba_work(struct work_struct *work)
171 {
172 	struct test_abba *abba = container_of(work, typeof(*abba), work);
173 	struct ww_acquire_ctx ctx;
174 	int err;
175 
176 	ww_acquire_init(&ctx, &ww_class);
177 	ww_mutex_lock(&abba->b_mutex, &ctx);
178 
179 	complete(&abba->b_ready);
180 	wait_for_completion(&abba->a_ready);
181 
182 	err = ww_mutex_lock(&abba->a_mutex, &ctx);
183 	if (abba->resolve && err == -EDEADLK) {
184 		ww_mutex_unlock(&abba->b_mutex);
185 		ww_mutex_lock_slow(&abba->a_mutex, &ctx);
186 		err = ww_mutex_lock(&abba->b_mutex, &ctx);
187 	}
188 
189 	if (!err)
190 		ww_mutex_unlock(&abba->a_mutex);
191 	ww_mutex_unlock(&abba->b_mutex);
192 	ww_acquire_fini(&ctx);
193 
194 	abba->result = err;
195 }
196 
197 static int test_abba(bool resolve)
198 {
199 	struct test_abba abba;
200 	struct ww_acquire_ctx ctx;
201 	int err, ret;
202 
203 	ww_mutex_init(&abba.a_mutex, &ww_class);
204 	ww_mutex_init(&abba.b_mutex, &ww_class);
205 	INIT_WORK_ONSTACK(&abba.work, test_abba_work);
206 	init_completion(&abba.a_ready);
207 	init_completion(&abba.b_ready);
208 	abba.resolve = resolve;
209 
210 	schedule_work(&abba.work);
211 
212 	ww_acquire_init(&ctx, &ww_class);
213 	ww_mutex_lock(&abba.a_mutex, &ctx);
214 
215 	complete(&abba.a_ready);
216 	wait_for_completion(&abba.b_ready);
217 
218 	err = ww_mutex_lock(&abba.b_mutex, &ctx);
219 	if (resolve && err == -EDEADLK) {
220 		ww_mutex_unlock(&abba.a_mutex);
221 		ww_mutex_lock_slow(&abba.b_mutex, &ctx);
222 		err = ww_mutex_lock(&abba.a_mutex, &ctx);
223 	}
224 
225 	if (!err)
226 		ww_mutex_unlock(&abba.b_mutex);
227 	ww_mutex_unlock(&abba.a_mutex);
228 	ww_acquire_fini(&ctx);
229 
230 	flush_work(&abba.work);
231 	destroy_work_on_stack(&abba.work);
232 
233 	ret = 0;
234 	if (resolve) {
235 		if (err || abba.result) {
236 			pr_err("%s: failed to resolve ABBA deadlock, A err=%d, B err=%d\n",
237 			       __func__, err, abba.result);
238 			ret = -EINVAL;
239 		}
240 	} else {
241 		if (err != -EDEADLK && abba.result != -EDEADLK) {
242 			pr_err("%s: missed ABBA deadlock, A err=%d, B err=%d\n",
243 			       __func__, err, abba.result);
244 			ret = -EINVAL;
245 		}
246 	}
247 	return ret;
248 }
249 
250 struct test_cycle {
251 	struct work_struct work;
252 	struct ww_mutex a_mutex;
253 	struct ww_mutex *b_mutex;
254 	struct completion *a_signal;
255 	struct completion b_signal;
256 	int result;
257 };
258 
259 static void test_cycle_work(struct work_struct *work)
260 {
261 	struct test_cycle *cycle = container_of(work, typeof(*cycle), work);
262 	struct ww_acquire_ctx ctx;
263 	int err, erra = 0;
264 
265 	ww_acquire_init(&ctx, &ww_class);
266 	ww_mutex_lock(&cycle->a_mutex, &ctx);
267 
268 	complete(cycle->a_signal);
269 	wait_for_completion(&cycle->b_signal);
270 
271 	err = ww_mutex_lock(cycle->b_mutex, &ctx);
272 	if (err == -EDEADLK) {
273 		err = 0;
274 		ww_mutex_unlock(&cycle->a_mutex);
275 		ww_mutex_lock_slow(cycle->b_mutex, &ctx);
276 		erra = ww_mutex_lock(&cycle->a_mutex, &ctx);
277 	}
278 
279 	if (!err)
280 		ww_mutex_unlock(cycle->b_mutex);
281 	if (!erra)
282 		ww_mutex_unlock(&cycle->a_mutex);
283 	ww_acquire_fini(&ctx);
284 
285 	cycle->result = err ?: erra;
286 }
287 
288 static int __test_cycle(unsigned int nthreads)
289 {
290 	struct test_cycle *cycles;
291 	unsigned int n, last = nthreads - 1;
292 	int ret;
293 
294 	cycles = kmalloc_array(nthreads, sizeof(*cycles), GFP_KERNEL);
295 	if (!cycles)
296 		return -ENOMEM;
297 
298 	for (n = 0; n < nthreads; n++) {
299 		struct test_cycle *cycle = &cycles[n];
300 
301 		ww_mutex_init(&cycle->a_mutex, &ww_class);
302 		if (n == last)
303 			cycle->b_mutex = &cycles[0].a_mutex;
304 		else
305 			cycle->b_mutex = &cycles[n + 1].a_mutex;
306 
307 		if (n == 0)
308 			cycle->a_signal = &cycles[last].b_signal;
309 		else
310 			cycle->a_signal = &cycles[n - 1].b_signal;
311 		init_completion(&cycle->b_signal);
312 
313 		INIT_WORK(&cycle->work, test_cycle_work);
314 		cycle->result = 0;
315 	}
316 
317 	for (n = 0; n < nthreads; n++)
318 		queue_work(wq, &cycles[n].work);
319 
320 	flush_workqueue(wq);
321 
322 	ret = 0;
323 	for (n = 0; n < nthreads; n++) {
324 		struct test_cycle *cycle = &cycles[n];
325 
326 		if (!cycle->result)
327 			continue;
328 
329 		pr_err("cyclic deadlock not resolved, ret[%d/%d] = %d\n",
330 		       n, nthreads, cycle->result);
331 		ret = -EINVAL;
332 		break;
333 	}
334 
335 	for (n = 0; n < nthreads; n++)
336 		ww_mutex_destroy(&cycles[n].a_mutex);
337 	kfree(cycles);
338 	return ret;
339 }
340 
341 static int test_cycle(unsigned int ncpus)
342 {
343 	unsigned int n;
344 	int ret;
345 
346 	for (n = 2; n <= ncpus + 1; n++) {
347 		ret = __test_cycle(n);
348 		if (ret)
349 			return ret;
350 	}
351 
352 	return 0;
353 }
354 
355 struct stress {
356 	struct work_struct work;
357 	struct ww_mutex *locks;
358 	unsigned long timeout;
359 	int nlocks;
360 };
361 
362 static int *get_random_order(int count)
363 {
364 	int *order;
365 	int n, r, tmp;
366 
367 	order = kmalloc_array(count, sizeof(*order), GFP_KERNEL);
368 	if (!order)
369 		return order;
370 
371 	for (n = 0; n < count; n++)
372 		order[n] = n;
373 
374 	for (n = count - 1; n > 1; n--) {
375 		r = get_random_int() % (n + 1);
376 		if (r != n) {
377 			tmp = order[n];
378 			order[n] = order[r];
379 			order[r] = tmp;
380 		}
381 	}
382 
383 	return order;
384 }
385 
386 static void dummy_load(struct stress *stress)
387 {
388 	usleep_range(1000, 2000);
389 }
390 
391 static void stress_inorder_work(struct work_struct *work)
392 {
393 	struct stress *stress = container_of(work, typeof(*stress), work);
394 	const int nlocks = stress->nlocks;
395 	struct ww_mutex *locks = stress->locks;
396 	struct ww_acquire_ctx ctx;
397 	int *order;
398 
399 	order = get_random_order(nlocks);
400 	if (!order)
401 		return;
402 
403 	do {
404 		int contended = -1;
405 		int n, err;
406 
407 		ww_acquire_init(&ctx, &ww_class);
408 retry:
409 		err = 0;
410 		for (n = 0; n < nlocks; n++) {
411 			if (n == contended)
412 				continue;
413 
414 			err = ww_mutex_lock(&locks[order[n]], &ctx);
415 			if (err < 0)
416 				break;
417 		}
418 		if (!err)
419 			dummy_load(stress);
420 
421 		if (contended > n)
422 			ww_mutex_unlock(&locks[order[contended]]);
423 		contended = n;
424 		while (n--)
425 			ww_mutex_unlock(&locks[order[n]]);
426 
427 		if (err == -EDEADLK) {
428 			ww_mutex_lock_slow(&locks[order[contended]], &ctx);
429 			goto retry;
430 		}
431 
432 		if (err) {
433 			pr_err_once("stress (%s) failed with %d\n",
434 				    __func__, err);
435 			break;
436 		}
437 
438 		ww_acquire_fini(&ctx);
439 	} while (!time_after(jiffies, stress->timeout));
440 
441 	kfree(order);
442 	kfree(stress);
443 }
444 
445 struct reorder_lock {
446 	struct list_head link;
447 	struct ww_mutex *lock;
448 };
449 
450 static void stress_reorder_work(struct work_struct *work)
451 {
452 	struct stress *stress = container_of(work, typeof(*stress), work);
453 	LIST_HEAD(locks);
454 	struct ww_acquire_ctx ctx;
455 	struct reorder_lock *ll, *ln;
456 	int *order;
457 	int n, err;
458 
459 	order = get_random_order(stress->nlocks);
460 	if (!order)
461 		return;
462 
463 	for (n = 0; n < stress->nlocks; n++) {
464 		ll = kmalloc(sizeof(*ll), GFP_KERNEL);
465 		if (!ll)
466 			goto out;
467 
468 		ll->lock = &stress->locks[order[n]];
469 		list_add(&ll->link, &locks);
470 	}
471 	kfree(order);
472 	order = NULL;
473 
474 	do {
475 		ww_acquire_init(&ctx, &ww_class);
476 
477 		list_for_each_entry(ll, &locks, link) {
478 			err = ww_mutex_lock(ll->lock, &ctx);
479 			if (!err)
480 				continue;
481 
482 			ln = ll;
483 			list_for_each_entry_continue_reverse(ln, &locks, link)
484 				ww_mutex_unlock(ln->lock);
485 
486 			if (err != -EDEADLK) {
487 				pr_err_once("stress (%s) failed with %d\n",
488 					    __func__, err);
489 				break;
490 			}
491 
492 			ww_mutex_lock_slow(ll->lock, &ctx);
493 			list_move(&ll->link, &locks); /* restarts iteration */
494 		}
495 
496 		dummy_load(stress);
497 		list_for_each_entry(ll, &locks, link)
498 			ww_mutex_unlock(ll->lock);
499 
500 		ww_acquire_fini(&ctx);
501 	} while (!time_after(jiffies, stress->timeout));
502 
503 out:
504 	list_for_each_entry_safe(ll, ln, &locks, link)
505 		kfree(ll);
506 	kfree(order);
507 	kfree(stress);
508 }
509 
510 static void stress_one_work(struct work_struct *work)
511 {
512 	struct stress *stress = container_of(work, typeof(*stress), work);
513 	const int nlocks = stress->nlocks;
514 	struct ww_mutex *lock = stress->locks + (get_random_int() % nlocks);
515 	int err;
516 
517 	do {
518 		err = ww_mutex_lock(lock, NULL);
519 		if (!err) {
520 			dummy_load(stress);
521 			ww_mutex_unlock(lock);
522 		} else {
523 			pr_err_once("stress (%s) failed with %d\n",
524 				    __func__, err);
525 			break;
526 		}
527 	} while (!time_after(jiffies, stress->timeout));
528 
529 	kfree(stress);
530 }
531 
532 #define STRESS_INORDER BIT(0)
533 #define STRESS_REORDER BIT(1)
534 #define STRESS_ONE BIT(2)
535 #define STRESS_ALL (STRESS_INORDER | STRESS_REORDER | STRESS_ONE)
536 
537 static int stress(int nlocks, int nthreads, unsigned int flags)
538 {
539 	struct ww_mutex *locks;
540 	int n;
541 
542 	locks = kmalloc_array(nlocks, sizeof(*locks), GFP_KERNEL);
543 	if (!locks)
544 		return -ENOMEM;
545 
546 	for (n = 0; n < nlocks; n++)
547 		ww_mutex_init(&locks[n], &ww_class);
548 
549 	for (n = 0; nthreads; n++) {
550 		struct stress *stress;
551 		void (*fn)(struct work_struct *work);
552 
553 		fn = NULL;
554 		switch (n & 3) {
555 		case 0:
556 			if (flags & STRESS_INORDER)
557 				fn = stress_inorder_work;
558 			break;
559 		case 1:
560 			if (flags & STRESS_REORDER)
561 				fn = stress_reorder_work;
562 			break;
563 		case 2:
564 			if (flags & STRESS_ONE)
565 				fn = stress_one_work;
566 			break;
567 		}
568 
569 		if (!fn)
570 			continue;
571 
572 		stress = kmalloc(sizeof(*stress), GFP_KERNEL);
573 		if (!stress)
574 			break;
575 
576 		INIT_WORK(&stress->work, fn);
577 		stress->locks = locks;
578 		stress->nlocks = nlocks;
579 		stress->timeout = jiffies + 2*HZ;
580 
581 		queue_work(wq, &stress->work);
582 		nthreads--;
583 	}
584 
585 	flush_workqueue(wq);
586 
587 	for (n = 0; n < nlocks; n++)
588 		ww_mutex_destroy(&locks[n]);
589 	kfree(locks);
590 
591 	return 0;
592 }
593 
594 static int __init test_ww_mutex_init(void)
595 {
596 	int ncpus = num_online_cpus();
597 	int ret;
598 
599 	wq = alloc_workqueue("test-ww_mutex", WQ_UNBOUND, 0);
600 	if (!wq)
601 		return -ENOMEM;
602 
603 	ret = test_mutex();
604 	if (ret)
605 		return ret;
606 
607 	ret = test_aa();
608 	if (ret)
609 		return ret;
610 
611 	ret = test_abba(false);
612 	if (ret)
613 		return ret;
614 
615 	ret = test_abba(true);
616 	if (ret)
617 		return ret;
618 
619 	ret = test_cycle(ncpus);
620 	if (ret)
621 		return ret;
622 
623 	ret = stress(16, 2*ncpus, STRESS_INORDER);
624 	if (ret)
625 		return ret;
626 
627 	ret = stress(16, 2*ncpus, STRESS_REORDER);
628 	if (ret)
629 		return ret;
630 
631 	ret = stress(4095, hweight32(STRESS_ALL)*ncpus, STRESS_ALL);
632 	if (ret)
633 		return ret;
634 
635 	return 0;
636 }
637 
638 static void __exit test_ww_mutex_exit(void)
639 {
640 	destroy_workqueue(wq);
641 }
642 
643 module_init(test_ww_mutex_init);
644 module_exit(test_ww_mutex_exit);
645 
646 MODULE_LICENSE("GPL");
647 MODULE_AUTHOR("Intel Corporation");
648