1 // SPDX-License-Identifier: GPL-2.0 2 /* kernel/rwsem.c: R/W semaphores, public implementation 3 * 4 * Written by David Howells (dhowells@redhat.com). 5 * Derived from asm-i386/semaphore.h 6 * 7 * Writer lock-stealing by Alex Shi <alex.shi@intel.com> 8 * and Michel Lespinasse <walken@google.com> 9 * 10 * Optimistic spinning by Tim Chen <tim.c.chen@intel.com> 11 * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes. 12 * 13 * Rwsem count bit fields re-definition and rwsem rearchitecture by 14 * Waiman Long <longman@redhat.com> and 15 * Peter Zijlstra <peterz@infradead.org>. 16 */ 17 18 #include <linux/types.h> 19 #include <linux/kernel.h> 20 #include <linux/sched.h> 21 #include <linux/sched/rt.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/debug.h> 24 #include <linux/sched/wake_q.h> 25 #include <linux/sched/signal.h> 26 #include <linux/sched/clock.h> 27 #include <linux/export.h> 28 #include <linux/rwsem.h> 29 #include <linux/atomic.h> 30 31 #ifndef CONFIG_PREEMPT_RT 32 #include "lock_events.h" 33 34 /* 35 * The least significant 2 bits of the owner value has the following 36 * meanings when set. 37 * - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers 38 * - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock 39 * 40 * When the rwsem is reader-owned and a spinning writer has timed out, 41 * the nonspinnable bit will be set to disable optimistic spinning. 42 43 * When a writer acquires a rwsem, it puts its task_struct pointer 44 * into the owner field. It is cleared after an unlock. 45 * 46 * When a reader acquires a rwsem, it will also puts its task_struct 47 * pointer into the owner field with the RWSEM_READER_OWNED bit set. 48 * On unlock, the owner field will largely be left untouched. So 49 * for a free or reader-owned rwsem, the owner value may contain 50 * information about the last reader that acquires the rwsem. 51 * 52 * That information may be helpful in debugging cases where the system 53 * seems to hang on a reader owned rwsem especially if only one reader 54 * is involved. Ideally we would like to track all the readers that own 55 * a rwsem, but the overhead is simply too big. 56 * 57 * A fast path reader optimistic lock stealing is supported when the rwsem 58 * is previously owned by a writer and the following conditions are met: 59 * - rwsem is not currently writer owned 60 * - the handoff isn't set. 61 */ 62 #define RWSEM_READER_OWNED (1UL << 0) 63 #define RWSEM_NONSPINNABLE (1UL << 1) 64 #define RWSEM_OWNER_FLAGS_MASK (RWSEM_READER_OWNED | RWSEM_NONSPINNABLE) 65 66 #ifdef CONFIG_DEBUG_RWSEMS 67 # define DEBUG_RWSEMS_WARN_ON(c, sem) do { \ 68 if (!debug_locks_silent && \ 69 WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\ 70 #c, atomic_long_read(&(sem)->count), \ 71 (unsigned long) sem->magic, \ 72 atomic_long_read(&(sem)->owner), (long)current, \ 73 list_empty(&(sem)->wait_list) ? "" : "not ")) \ 74 debug_locks_off(); \ 75 } while (0) 76 #else 77 # define DEBUG_RWSEMS_WARN_ON(c, sem) 78 #endif 79 80 /* 81 * On 64-bit architectures, the bit definitions of the count are: 82 * 83 * Bit 0 - writer locked bit 84 * Bit 1 - waiters present bit 85 * Bit 2 - lock handoff bit 86 * Bits 3-7 - reserved 87 * Bits 8-62 - 55-bit reader count 88 * Bit 63 - read fail bit 89 * 90 * On 32-bit architectures, the bit definitions of the count are: 91 * 92 * Bit 0 - writer locked bit 93 * Bit 1 - waiters present bit 94 * Bit 2 - lock handoff bit 95 * Bits 3-7 - reserved 96 * Bits 8-30 - 23-bit reader count 97 * Bit 31 - read fail bit 98 * 99 * It is not likely that the most significant bit (read fail bit) will ever 100 * be set. This guard bit is still checked anyway in the down_read() fastpath 101 * just in case we need to use up more of the reader bits for other purpose 102 * in the future. 103 * 104 * atomic_long_fetch_add() is used to obtain reader lock, whereas 105 * atomic_long_cmpxchg() will be used to obtain writer lock. 106 * 107 * There are three places where the lock handoff bit may be set or cleared. 108 * 1) rwsem_mark_wake() for readers -- set, clear 109 * 2) rwsem_try_write_lock() for writers -- set, clear 110 * 3) rwsem_del_waiter() -- clear 111 * 112 * For all the above cases, wait_lock will be held. A writer must also 113 * be the first one in the wait_list to be eligible for setting the handoff 114 * bit. So concurrent setting/clearing of handoff bit is not possible. 115 */ 116 #define RWSEM_WRITER_LOCKED (1UL << 0) 117 #define RWSEM_FLAG_WAITERS (1UL << 1) 118 #define RWSEM_FLAG_HANDOFF (1UL << 2) 119 #define RWSEM_FLAG_READFAIL (1UL << (BITS_PER_LONG - 1)) 120 121 #define RWSEM_READER_SHIFT 8 122 #define RWSEM_READER_BIAS (1UL << RWSEM_READER_SHIFT) 123 #define RWSEM_READER_MASK (~(RWSEM_READER_BIAS - 1)) 124 #define RWSEM_WRITER_MASK RWSEM_WRITER_LOCKED 125 #define RWSEM_LOCK_MASK (RWSEM_WRITER_MASK|RWSEM_READER_MASK) 126 #define RWSEM_READ_FAILED_MASK (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\ 127 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL) 128 129 /* 130 * All writes to owner are protected by WRITE_ONCE() to make sure that 131 * store tearing can't happen as optimistic spinners may read and use 132 * the owner value concurrently without lock. Read from owner, however, 133 * may not need READ_ONCE() as long as the pointer value is only used 134 * for comparison and isn't being dereferenced. 135 */ 136 static inline void rwsem_set_owner(struct rw_semaphore *sem) 137 { 138 atomic_long_set(&sem->owner, (long)current); 139 } 140 141 static inline void rwsem_clear_owner(struct rw_semaphore *sem) 142 { 143 atomic_long_set(&sem->owner, 0); 144 } 145 146 /* 147 * Test the flags in the owner field. 148 */ 149 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags) 150 { 151 return atomic_long_read(&sem->owner) & flags; 152 } 153 154 /* 155 * The task_struct pointer of the last owning reader will be left in 156 * the owner field. 157 * 158 * Note that the owner value just indicates the task has owned the rwsem 159 * previously, it may not be the real owner or one of the real owners 160 * anymore when that field is examined, so take it with a grain of salt. 161 * 162 * The reader non-spinnable bit is preserved. 163 */ 164 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem, 165 struct task_struct *owner) 166 { 167 unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED | 168 (atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE); 169 170 atomic_long_set(&sem->owner, val); 171 } 172 173 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem) 174 { 175 __rwsem_set_reader_owned(sem, current); 176 } 177 178 /* 179 * Return true if the rwsem is owned by a reader. 180 */ 181 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem) 182 { 183 #ifdef CONFIG_DEBUG_RWSEMS 184 /* 185 * Check the count to see if it is write-locked. 186 */ 187 long count = atomic_long_read(&sem->count); 188 189 if (count & RWSEM_WRITER_MASK) 190 return false; 191 #endif 192 return rwsem_test_oflags(sem, RWSEM_READER_OWNED); 193 } 194 195 #ifdef CONFIG_DEBUG_RWSEMS 196 /* 197 * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there 198 * is a task pointer in owner of a reader-owned rwsem, it will be the 199 * real owner or one of the real owners. The only exception is when the 200 * unlock is done by up_read_non_owner(). 201 */ 202 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) 203 { 204 unsigned long val = atomic_long_read(&sem->owner); 205 206 while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) { 207 if (atomic_long_try_cmpxchg(&sem->owner, &val, 208 val & RWSEM_OWNER_FLAGS_MASK)) 209 return; 210 } 211 } 212 #else 213 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) 214 { 215 } 216 #endif 217 218 /* 219 * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag 220 * remains set. Otherwise, the operation will be aborted. 221 */ 222 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem) 223 { 224 unsigned long owner = atomic_long_read(&sem->owner); 225 226 do { 227 if (!(owner & RWSEM_READER_OWNED)) 228 break; 229 if (owner & RWSEM_NONSPINNABLE) 230 break; 231 } while (!atomic_long_try_cmpxchg(&sem->owner, &owner, 232 owner | RWSEM_NONSPINNABLE)); 233 } 234 235 static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp) 236 { 237 *cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count); 238 239 if (WARN_ON_ONCE(*cntp < 0)) 240 rwsem_set_nonspinnable(sem); 241 242 if (!(*cntp & RWSEM_READ_FAILED_MASK)) { 243 rwsem_set_reader_owned(sem); 244 return true; 245 } 246 247 return false; 248 } 249 250 static inline bool rwsem_write_trylock(struct rw_semaphore *sem) 251 { 252 long tmp = RWSEM_UNLOCKED_VALUE; 253 254 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) { 255 rwsem_set_owner(sem); 256 return true; 257 } 258 259 return false; 260 } 261 262 /* 263 * Return just the real task structure pointer of the owner 264 */ 265 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem) 266 { 267 return (struct task_struct *) 268 (atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK); 269 } 270 271 /* 272 * Return the real task structure pointer of the owner and the embedded 273 * flags in the owner. pflags must be non-NULL. 274 */ 275 static inline struct task_struct * 276 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags) 277 { 278 unsigned long owner = atomic_long_read(&sem->owner); 279 280 *pflags = owner & RWSEM_OWNER_FLAGS_MASK; 281 return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK); 282 } 283 284 /* 285 * Guide to the rw_semaphore's count field. 286 * 287 * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned 288 * by a writer. 289 * 290 * The lock is owned by readers when 291 * (1) the RWSEM_WRITER_LOCKED isn't set in count, 292 * (2) some of the reader bits are set in count, and 293 * (3) the owner field has RWSEM_READ_OWNED bit set. 294 * 295 * Having some reader bits set is not enough to guarantee a readers owned 296 * lock as the readers may be in the process of backing out from the count 297 * and a writer has just released the lock. So another writer may steal 298 * the lock immediately after that. 299 */ 300 301 /* 302 * Initialize an rwsem: 303 */ 304 void __init_rwsem(struct rw_semaphore *sem, const char *name, 305 struct lock_class_key *key) 306 { 307 #ifdef CONFIG_DEBUG_LOCK_ALLOC 308 /* 309 * Make sure we are not reinitializing a held semaphore: 310 */ 311 debug_check_no_locks_freed((void *)sem, sizeof(*sem)); 312 lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP); 313 #endif 314 #ifdef CONFIG_DEBUG_RWSEMS 315 sem->magic = sem; 316 #endif 317 atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE); 318 raw_spin_lock_init(&sem->wait_lock); 319 INIT_LIST_HEAD(&sem->wait_list); 320 atomic_long_set(&sem->owner, 0L); 321 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER 322 osq_lock_init(&sem->osq); 323 #endif 324 } 325 EXPORT_SYMBOL(__init_rwsem); 326 327 enum rwsem_waiter_type { 328 RWSEM_WAITING_FOR_WRITE, 329 RWSEM_WAITING_FOR_READ 330 }; 331 332 struct rwsem_waiter { 333 struct list_head list; 334 struct task_struct *task; 335 enum rwsem_waiter_type type; 336 unsigned long timeout; 337 338 /* Writer only, not initialized in reader */ 339 bool handoff_set; 340 }; 341 #define rwsem_first_waiter(sem) \ 342 list_first_entry(&sem->wait_list, struct rwsem_waiter, list) 343 344 enum rwsem_wake_type { 345 RWSEM_WAKE_ANY, /* Wake whatever's at head of wait list */ 346 RWSEM_WAKE_READERS, /* Wake readers only */ 347 RWSEM_WAKE_READ_OWNED /* Waker thread holds the read lock */ 348 }; 349 350 /* 351 * The typical HZ value is either 250 or 1000. So set the minimum waiting 352 * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait 353 * queue before initiating the handoff protocol. 354 */ 355 #define RWSEM_WAIT_TIMEOUT DIV_ROUND_UP(HZ, 250) 356 357 /* 358 * Magic number to batch-wakeup waiting readers, even when writers are 359 * also present in the queue. This both limits the amount of work the 360 * waking thread must do and also prevents any potential counter overflow, 361 * however unlikely. 362 */ 363 #define MAX_READERS_WAKEUP 0x100 364 365 static inline void 366 rwsem_add_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter) 367 { 368 lockdep_assert_held(&sem->wait_lock); 369 list_add_tail(&waiter->list, &sem->wait_list); 370 /* caller will set RWSEM_FLAG_WAITERS */ 371 } 372 373 /* 374 * Remove a waiter from the wait_list and clear flags. 375 * 376 * Both rwsem_mark_wake() and rwsem_try_write_lock() contain a full 'copy' of 377 * this function. Modify with care. 378 */ 379 static inline void 380 rwsem_del_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter) 381 { 382 lockdep_assert_held(&sem->wait_lock); 383 list_del(&waiter->list); 384 if (likely(!list_empty(&sem->wait_list))) 385 return; 386 387 atomic_long_andnot(RWSEM_FLAG_HANDOFF | RWSEM_FLAG_WAITERS, &sem->count); 388 } 389 390 /* 391 * handle the lock release when processes blocked on it that can now run 392 * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must 393 * have been set. 394 * - there must be someone on the queue 395 * - the wait_lock must be held by the caller 396 * - tasks are marked for wakeup, the caller must later invoke wake_up_q() 397 * to actually wakeup the blocked task(s) and drop the reference count, 398 * preferably when the wait_lock is released 399 * - woken process blocks are discarded from the list after having task zeroed 400 * - writers are only marked woken if downgrading is false 401 * 402 * Implies rwsem_del_waiter() for all woken readers. 403 */ 404 static void rwsem_mark_wake(struct rw_semaphore *sem, 405 enum rwsem_wake_type wake_type, 406 struct wake_q_head *wake_q) 407 { 408 struct rwsem_waiter *waiter, *tmp; 409 long oldcount, woken = 0, adjustment = 0; 410 struct list_head wlist; 411 412 lockdep_assert_held(&sem->wait_lock); 413 414 /* 415 * Take a peek at the queue head waiter such that we can determine 416 * the wakeup(s) to perform. 417 */ 418 waiter = rwsem_first_waiter(sem); 419 420 if (waiter->type == RWSEM_WAITING_FOR_WRITE) { 421 if (wake_type == RWSEM_WAKE_ANY) { 422 /* 423 * Mark writer at the front of the queue for wakeup. 424 * Until the task is actually later awoken later by 425 * the caller, other writers are able to steal it. 426 * Readers, on the other hand, will block as they 427 * will notice the queued writer. 428 */ 429 wake_q_add(wake_q, waiter->task); 430 lockevent_inc(rwsem_wake_writer); 431 } 432 433 return; 434 } 435 436 /* 437 * No reader wakeup if there are too many of them already. 438 */ 439 if (unlikely(atomic_long_read(&sem->count) < 0)) 440 return; 441 442 /* 443 * Writers might steal the lock before we grant it to the next reader. 444 * We prefer to do the first reader grant before counting readers 445 * so we can bail out early if a writer stole the lock. 446 */ 447 if (wake_type != RWSEM_WAKE_READ_OWNED) { 448 struct task_struct *owner; 449 450 adjustment = RWSEM_READER_BIAS; 451 oldcount = atomic_long_fetch_add(adjustment, &sem->count); 452 if (unlikely(oldcount & RWSEM_WRITER_MASK)) { 453 /* 454 * When we've been waiting "too" long (for writers 455 * to give up the lock), request a HANDOFF to 456 * force the issue. 457 */ 458 if (!(oldcount & RWSEM_FLAG_HANDOFF) && 459 time_after(jiffies, waiter->timeout)) { 460 adjustment -= RWSEM_FLAG_HANDOFF; 461 lockevent_inc(rwsem_rlock_handoff); 462 } 463 464 atomic_long_add(-adjustment, &sem->count); 465 return; 466 } 467 /* 468 * Set it to reader-owned to give spinners an early 469 * indication that readers now have the lock. 470 * The reader nonspinnable bit seen at slowpath entry of 471 * the reader is copied over. 472 */ 473 owner = waiter->task; 474 __rwsem_set_reader_owned(sem, owner); 475 } 476 477 /* 478 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the 479 * queue. We know that the woken will be at least 1 as we accounted 480 * for above. Note we increment the 'active part' of the count by the 481 * number of readers before waking any processes up. 482 * 483 * This is an adaptation of the phase-fair R/W locks where at the 484 * reader phase (first waiter is a reader), all readers are eligible 485 * to acquire the lock at the same time irrespective of their order 486 * in the queue. The writers acquire the lock according to their 487 * order in the queue. 488 * 489 * We have to do wakeup in 2 passes to prevent the possibility that 490 * the reader count may be decremented before it is incremented. It 491 * is because the to-be-woken waiter may not have slept yet. So it 492 * may see waiter->task got cleared, finish its critical section and 493 * do an unlock before the reader count increment. 494 * 495 * 1) Collect the read-waiters in a separate list, count them and 496 * fully increment the reader count in rwsem. 497 * 2) For each waiters in the new list, clear waiter->task and 498 * put them into wake_q to be woken up later. 499 */ 500 INIT_LIST_HEAD(&wlist); 501 list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) { 502 if (waiter->type == RWSEM_WAITING_FOR_WRITE) 503 continue; 504 505 woken++; 506 list_move_tail(&waiter->list, &wlist); 507 508 /* 509 * Limit # of readers that can be woken up per wakeup call. 510 */ 511 if (unlikely(woken >= MAX_READERS_WAKEUP)) 512 break; 513 } 514 515 adjustment = woken * RWSEM_READER_BIAS - adjustment; 516 lockevent_cond_inc(rwsem_wake_reader, woken); 517 518 oldcount = atomic_long_read(&sem->count); 519 if (list_empty(&sem->wait_list)) { 520 /* 521 * Combined with list_move_tail() above, this implies 522 * rwsem_del_waiter(). 523 */ 524 adjustment -= RWSEM_FLAG_WAITERS; 525 if (oldcount & RWSEM_FLAG_HANDOFF) 526 adjustment -= RWSEM_FLAG_HANDOFF; 527 } else if (woken) { 528 /* 529 * When we've woken a reader, we no longer need to force 530 * writers to give up the lock and we can clear HANDOFF. 531 */ 532 if (oldcount & RWSEM_FLAG_HANDOFF) 533 adjustment -= RWSEM_FLAG_HANDOFF; 534 } 535 536 if (adjustment) 537 atomic_long_add(adjustment, &sem->count); 538 539 /* 2nd pass */ 540 list_for_each_entry_safe(waiter, tmp, &wlist, list) { 541 struct task_struct *tsk; 542 543 tsk = waiter->task; 544 get_task_struct(tsk); 545 546 /* 547 * Ensure calling get_task_struct() before setting the reader 548 * waiter to nil such that rwsem_down_read_slowpath() cannot 549 * race with do_exit() by always holding a reference count 550 * to the task to wakeup. 551 */ 552 smp_store_release(&waiter->task, NULL); 553 /* 554 * Ensure issuing the wakeup (either by us or someone else) 555 * after setting the reader waiter to nil. 556 */ 557 wake_q_add_safe(wake_q, tsk); 558 } 559 } 560 561 /* 562 * This function must be called with the sem->wait_lock held to prevent 563 * race conditions between checking the rwsem wait list and setting the 564 * sem->count accordingly. 565 * 566 * Implies rwsem_del_waiter() on success. 567 */ 568 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem, 569 struct rwsem_waiter *waiter) 570 { 571 bool first = rwsem_first_waiter(sem) == waiter; 572 long count, new; 573 574 lockdep_assert_held(&sem->wait_lock); 575 576 count = atomic_long_read(&sem->count); 577 do { 578 bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF); 579 580 if (has_handoff) { 581 if (!first) 582 return false; 583 584 /* First waiter inherits a previously set handoff bit */ 585 waiter->handoff_set = true; 586 } 587 588 new = count; 589 590 if (count & RWSEM_LOCK_MASK) { 591 if (has_handoff || (!rt_task(waiter->task) && 592 !time_after(jiffies, waiter->timeout))) 593 return false; 594 595 new |= RWSEM_FLAG_HANDOFF; 596 } else { 597 new |= RWSEM_WRITER_LOCKED; 598 new &= ~RWSEM_FLAG_HANDOFF; 599 600 if (list_is_singular(&sem->wait_list)) 601 new &= ~RWSEM_FLAG_WAITERS; 602 } 603 } while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new)); 604 605 /* 606 * We have either acquired the lock with handoff bit cleared or 607 * set the handoff bit. 608 */ 609 if (new & RWSEM_FLAG_HANDOFF) { 610 waiter->handoff_set = true; 611 lockevent_inc(rwsem_wlock_handoff); 612 return false; 613 } 614 615 /* 616 * Have rwsem_try_write_lock() fully imply rwsem_del_waiter() on 617 * success. 618 */ 619 list_del(&waiter->list); 620 rwsem_set_owner(sem); 621 return true; 622 } 623 624 /* 625 * The rwsem_spin_on_owner() function returns the following 4 values 626 * depending on the lock owner state. 627 * OWNER_NULL : owner is currently NULL 628 * OWNER_WRITER: when owner changes and is a writer 629 * OWNER_READER: when owner changes and the new owner may be a reader. 630 * OWNER_NONSPINNABLE: 631 * when optimistic spinning has to stop because either the 632 * owner stops running, is unknown, or its timeslice has 633 * been used up. 634 */ 635 enum owner_state { 636 OWNER_NULL = 1 << 0, 637 OWNER_WRITER = 1 << 1, 638 OWNER_READER = 1 << 2, 639 OWNER_NONSPINNABLE = 1 << 3, 640 }; 641 642 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER 643 /* 644 * Try to acquire write lock before the writer has been put on wait queue. 645 */ 646 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem) 647 { 648 long count = atomic_long_read(&sem->count); 649 650 while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) { 651 if (atomic_long_try_cmpxchg_acquire(&sem->count, &count, 652 count | RWSEM_WRITER_LOCKED)) { 653 rwsem_set_owner(sem); 654 lockevent_inc(rwsem_opt_lock); 655 return true; 656 } 657 } 658 return false; 659 } 660 661 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem) 662 { 663 struct task_struct *owner; 664 unsigned long flags; 665 bool ret = true; 666 667 if (need_resched()) { 668 lockevent_inc(rwsem_opt_fail); 669 return false; 670 } 671 672 preempt_disable(); 673 /* 674 * Disable preemption is equal to the RCU read-side crital section, 675 * thus the task_strcut structure won't go away. 676 */ 677 owner = rwsem_owner_flags(sem, &flags); 678 /* 679 * Don't check the read-owner as the entry may be stale. 680 */ 681 if ((flags & RWSEM_NONSPINNABLE) || 682 (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner))) 683 ret = false; 684 preempt_enable(); 685 686 lockevent_cond_inc(rwsem_opt_fail, !ret); 687 return ret; 688 } 689 690 #define OWNER_SPINNABLE (OWNER_NULL | OWNER_WRITER | OWNER_READER) 691 692 static inline enum owner_state 693 rwsem_owner_state(struct task_struct *owner, unsigned long flags) 694 { 695 if (flags & RWSEM_NONSPINNABLE) 696 return OWNER_NONSPINNABLE; 697 698 if (flags & RWSEM_READER_OWNED) 699 return OWNER_READER; 700 701 return owner ? OWNER_WRITER : OWNER_NULL; 702 } 703 704 static noinline enum owner_state 705 rwsem_spin_on_owner(struct rw_semaphore *sem) 706 { 707 struct task_struct *new, *owner; 708 unsigned long flags, new_flags; 709 enum owner_state state; 710 711 lockdep_assert_preemption_disabled(); 712 713 owner = rwsem_owner_flags(sem, &flags); 714 state = rwsem_owner_state(owner, flags); 715 if (state != OWNER_WRITER) 716 return state; 717 718 for (;;) { 719 /* 720 * When a waiting writer set the handoff flag, it may spin 721 * on the owner as well. Once that writer acquires the lock, 722 * we can spin on it. So we don't need to quit even when the 723 * handoff bit is set. 724 */ 725 new = rwsem_owner_flags(sem, &new_flags); 726 if ((new != owner) || (new_flags != flags)) { 727 state = rwsem_owner_state(new, new_flags); 728 break; 729 } 730 731 /* 732 * Ensure we emit the owner->on_cpu, dereference _after_ 733 * checking sem->owner still matches owner, if that fails, 734 * owner might point to free()d memory, if it still matches, 735 * our spinning context already disabled preemption which is 736 * equal to RCU read-side crital section ensures the memory 737 * stays valid. 738 */ 739 barrier(); 740 741 if (need_resched() || !owner_on_cpu(owner)) { 742 state = OWNER_NONSPINNABLE; 743 break; 744 } 745 746 cpu_relax(); 747 } 748 749 return state; 750 } 751 752 /* 753 * Calculate reader-owned rwsem spinning threshold for writer 754 * 755 * The more readers own the rwsem, the longer it will take for them to 756 * wind down and free the rwsem. So the empirical formula used to 757 * determine the actual spinning time limit here is: 758 * 759 * Spinning threshold = (10 + nr_readers/2)us 760 * 761 * The limit is capped to a maximum of 25us (30 readers). This is just 762 * a heuristic and is subjected to change in the future. 763 */ 764 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem) 765 { 766 long count = atomic_long_read(&sem->count); 767 int readers = count >> RWSEM_READER_SHIFT; 768 u64 delta; 769 770 if (readers > 30) 771 readers = 30; 772 delta = (20 + readers) * NSEC_PER_USEC / 2; 773 774 return sched_clock() + delta; 775 } 776 777 static bool rwsem_optimistic_spin(struct rw_semaphore *sem) 778 { 779 bool taken = false; 780 int prev_owner_state = OWNER_NULL; 781 int loop = 0; 782 u64 rspin_threshold = 0; 783 784 preempt_disable(); 785 786 /* sem->wait_lock should not be held when doing optimistic spinning */ 787 if (!osq_lock(&sem->osq)) 788 goto done; 789 790 /* 791 * Optimistically spin on the owner field and attempt to acquire the 792 * lock whenever the owner changes. Spinning will be stopped when: 793 * 1) the owning writer isn't running; or 794 * 2) readers own the lock and spinning time has exceeded limit. 795 */ 796 for (;;) { 797 enum owner_state owner_state; 798 799 owner_state = rwsem_spin_on_owner(sem); 800 if (!(owner_state & OWNER_SPINNABLE)) 801 break; 802 803 /* 804 * Try to acquire the lock 805 */ 806 taken = rwsem_try_write_lock_unqueued(sem); 807 808 if (taken) 809 break; 810 811 /* 812 * Time-based reader-owned rwsem optimistic spinning 813 */ 814 if (owner_state == OWNER_READER) { 815 /* 816 * Re-initialize rspin_threshold every time when 817 * the owner state changes from non-reader to reader. 818 * This allows a writer to steal the lock in between 819 * 2 reader phases and have the threshold reset at 820 * the beginning of the 2nd reader phase. 821 */ 822 if (prev_owner_state != OWNER_READER) { 823 if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)) 824 break; 825 rspin_threshold = rwsem_rspin_threshold(sem); 826 loop = 0; 827 } 828 829 /* 830 * Check time threshold once every 16 iterations to 831 * avoid calling sched_clock() too frequently so 832 * as to reduce the average latency between the times 833 * when the lock becomes free and when the spinner 834 * is ready to do a trylock. 835 */ 836 else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) { 837 rwsem_set_nonspinnable(sem); 838 lockevent_inc(rwsem_opt_nospin); 839 break; 840 } 841 } 842 843 /* 844 * An RT task cannot do optimistic spinning if it cannot 845 * be sure the lock holder is running or live-lock may 846 * happen if the current task and the lock holder happen 847 * to run in the same CPU. However, aborting optimistic 848 * spinning while a NULL owner is detected may miss some 849 * opportunity where spinning can continue without causing 850 * problem. 851 * 852 * There are 2 possible cases where an RT task may be able 853 * to continue spinning. 854 * 855 * 1) The lock owner is in the process of releasing the 856 * lock, sem->owner is cleared but the lock has not 857 * been released yet. 858 * 2) The lock was free and owner cleared, but another 859 * task just comes in and acquire the lock before 860 * we try to get it. The new owner may be a spinnable 861 * writer. 862 * 863 * To take advantage of two scenarios listed above, the RT 864 * task is made to retry one more time to see if it can 865 * acquire the lock or continue spinning on the new owning 866 * writer. Of course, if the time lag is long enough or the 867 * new owner is not a writer or spinnable, the RT task will 868 * quit spinning. 869 * 870 * If the owner is a writer, the need_resched() check is 871 * done inside rwsem_spin_on_owner(). If the owner is not 872 * a writer, need_resched() check needs to be done here. 873 */ 874 if (owner_state != OWNER_WRITER) { 875 if (need_resched()) 876 break; 877 if (rt_task(current) && 878 (prev_owner_state != OWNER_WRITER)) 879 break; 880 } 881 prev_owner_state = owner_state; 882 883 /* 884 * The cpu_relax() call is a compiler barrier which forces 885 * everything in this loop to be re-loaded. We don't need 886 * memory barriers as we'll eventually observe the right 887 * values at the cost of a few extra spins. 888 */ 889 cpu_relax(); 890 } 891 osq_unlock(&sem->osq); 892 done: 893 preempt_enable(); 894 lockevent_cond_inc(rwsem_opt_fail, !taken); 895 return taken; 896 } 897 898 /* 899 * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should 900 * only be called when the reader count reaches 0. 901 */ 902 static inline void clear_nonspinnable(struct rw_semaphore *sem) 903 { 904 if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)) 905 atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner); 906 } 907 908 #else 909 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem) 910 { 911 return false; 912 } 913 914 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem) 915 { 916 return false; 917 } 918 919 static inline void clear_nonspinnable(struct rw_semaphore *sem) { } 920 921 static inline enum owner_state 922 rwsem_spin_on_owner(struct rw_semaphore *sem) 923 { 924 return OWNER_NONSPINNABLE; 925 } 926 #endif 927 928 /* 929 * Wait for the read lock to be granted 930 */ 931 static struct rw_semaphore __sched * 932 rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state) 933 { 934 long adjustment = -RWSEM_READER_BIAS; 935 long rcnt = (count >> RWSEM_READER_SHIFT); 936 struct rwsem_waiter waiter; 937 DEFINE_WAKE_Q(wake_q); 938 bool wake = false; 939 940 /* 941 * To prevent a constant stream of readers from starving a sleeping 942 * waiter, don't attempt optimistic lock stealing if the lock is 943 * currently owned by readers. 944 */ 945 if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) && 946 (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED)) 947 goto queue; 948 949 /* 950 * Reader optimistic lock stealing. 951 */ 952 if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) { 953 rwsem_set_reader_owned(sem); 954 lockevent_inc(rwsem_rlock_steal); 955 956 /* 957 * Wake up other readers in the wait queue if it is 958 * the first reader. 959 */ 960 if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) { 961 raw_spin_lock_irq(&sem->wait_lock); 962 if (!list_empty(&sem->wait_list)) 963 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, 964 &wake_q); 965 raw_spin_unlock_irq(&sem->wait_lock); 966 wake_up_q(&wake_q); 967 } 968 return sem; 969 } 970 971 queue: 972 waiter.task = current; 973 waiter.type = RWSEM_WAITING_FOR_READ; 974 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT; 975 976 raw_spin_lock_irq(&sem->wait_lock); 977 if (list_empty(&sem->wait_list)) { 978 /* 979 * In case the wait queue is empty and the lock isn't owned 980 * by a writer or has the handoff bit set, this reader can 981 * exit the slowpath and return immediately as its 982 * RWSEM_READER_BIAS has already been set in the count. 983 */ 984 if (!(atomic_long_read(&sem->count) & 985 (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))) { 986 /* Provide lock ACQUIRE */ 987 smp_acquire__after_ctrl_dep(); 988 raw_spin_unlock_irq(&sem->wait_lock); 989 rwsem_set_reader_owned(sem); 990 lockevent_inc(rwsem_rlock_fast); 991 return sem; 992 } 993 adjustment += RWSEM_FLAG_WAITERS; 994 } 995 rwsem_add_waiter(sem, &waiter); 996 997 /* we're now waiting on the lock, but no longer actively locking */ 998 count = atomic_long_add_return(adjustment, &sem->count); 999 1000 /* 1001 * If there are no active locks, wake the front queued process(es). 1002 * 1003 * If there are no writers and we are first in the queue, 1004 * wake our own waiter to join the existing active readers ! 1005 */ 1006 if (!(count & RWSEM_LOCK_MASK)) { 1007 clear_nonspinnable(sem); 1008 wake = true; 1009 } 1010 if (wake || (!(count & RWSEM_WRITER_MASK) && 1011 (adjustment & RWSEM_FLAG_WAITERS))) 1012 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); 1013 1014 raw_spin_unlock_irq(&sem->wait_lock); 1015 wake_up_q(&wake_q); 1016 1017 /* wait to be given the lock */ 1018 for (;;) { 1019 set_current_state(state); 1020 if (!smp_load_acquire(&waiter.task)) { 1021 /* Matches rwsem_mark_wake()'s smp_store_release(). */ 1022 break; 1023 } 1024 if (signal_pending_state(state, current)) { 1025 raw_spin_lock_irq(&sem->wait_lock); 1026 if (waiter.task) 1027 goto out_nolock; 1028 raw_spin_unlock_irq(&sem->wait_lock); 1029 /* Ordered by sem->wait_lock against rwsem_mark_wake(). */ 1030 break; 1031 } 1032 schedule(); 1033 lockevent_inc(rwsem_sleep_reader); 1034 } 1035 1036 __set_current_state(TASK_RUNNING); 1037 lockevent_inc(rwsem_rlock); 1038 return sem; 1039 1040 out_nolock: 1041 rwsem_del_waiter(sem, &waiter); 1042 raw_spin_unlock_irq(&sem->wait_lock); 1043 __set_current_state(TASK_RUNNING); 1044 lockevent_inc(rwsem_rlock_fail); 1045 return ERR_PTR(-EINTR); 1046 } 1047 1048 /* 1049 * Wait until we successfully acquire the write lock 1050 */ 1051 static struct rw_semaphore * 1052 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state) 1053 { 1054 long count; 1055 struct rwsem_waiter waiter; 1056 DEFINE_WAKE_Q(wake_q); 1057 1058 /* do optimistic spinning and steal lock if possible */ 1059 if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) { 1060 /* rwsem_optimistic_spin() implies ACQUIRE on success */ 1061 return sem; 1062 } 1063 1064 /* 1065 * Optimistic spinning failed, proceed to the slowpath 1066 * and block until we can acquire the sem. 1067 */ 1068 waiter.task = current; 1069 waiter.type = RWSEM_WAITING_FOR_WRITE; 1070 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT; 1071 waiter.handoff_set = false; 1072 1073 raw_spin_lock_irq(&sem->wait_lock); 1074 rwsem_add_waiter(sem, &waiter); 1075 1076 /* we're now waiting on the lock */ 1077 if (rwsem_first_waiter(sem) != &waiter) { 1078 count = atomic_long_read(&sem->count); 1079 1080 /* 1081 * If there were already threads queued before us and: 1082 * 1) there are no active locks, wake the front 1083 * queued process(es) as the handoff bit might be set. 1084 * 2) there are no active writers and some readers, the lock 1085 * must be read owned; so we try to wake any read lock 1086 * waiters that were queued ahead of us. 1087 */ 1088 if (count & RWSEM_WRITER_MASK) 1089 goto wait; 1090 1091 rwsem_mark_wake(sem, (count & RWSEM_READER_MASK) 1092 ? RWSEM_WAKE_READERS 1093 : RWSEM_WAKE_ANY, &wake_q); 1094 1095 if (!wake_q_empty(&wake_q)) { 1096 /* 1097 * We want to minimize wait_lock hold time especially 1098 * when a large number of readers are to be woken up. 1099 */ 1100 raw_spin_unlock_irq(&sem->wait_lock); 1101 wake_up_q(&wake_q); 1102 wake_q_init(&wake_q); /* Used again, reinit */ 1103 raw_spin_lock_irq(&sem->wait_lock); 1104 } 1105 } else { 1106 atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count); 1107 } 1108 1109 wait: 1110 /* wait until we successfully acquire the lock */ 1111 set_current_state(state); 1112 for (;;) { 1113 if (rwsem_try_write_lock(sem, &waiter)) { 1114 /* rwsem_try_write_lock() implies ACQUIRE on success */ 1115 break; 1116 } 1117 1118 raw_spin_unlock_irq(&sem->wait_lock); 1119 1120 if (signal_pending_state(state, current)) 1121 goto out_nolock; 1122 1123 /* 1124 * After setting the handoff bit and failing to acquire 1125 * the lock, attempt to spin on owner to accelerate lock 1126 * transfer. If the previous owner is a on-cpu writer and it 1127 * has just released the lock, OWNER_NULL will be returned. 1128 * In this case, we attempt to acquire the lock again 1129 * without sleeping. 1130 */ 1131 if (waiter.handoff_set) { 1132 enum owner_state owner_state; 1133 1134 preempt_disable(); 1135 owner_state = rwsem_spin_on_owner(sem); 1136 preempt_enable(); 1137 1138 if (owner_state == OWNER_NULL) 1139 goto trylock_again; 1140 } 1141 1142 schedule(); 1143 lockevent_inc(rwsem_sleep_writer); 1144 set_current_state(state); 1145 trylock_again: 1146 raw_spin_lock_irq(&sem->wait_lock); 1147 } 1148 __set_current_state(TASK_RUNNING); 1149 raw_spin_unlock_irq(&sem->wait_lock); 1150 lockevent_inc(rwsem_wlock); 1151 return sem; 1152 1153 out_nolock: 1154 __set_current_state(TASK_RUNNING); 1155 raw_spin_lock_irq(&sem->wait_lock); 1156 rwsem_del_waiter(sem, &waiter); 1157 if (!list_empty(&sem->wait_list)) 1158 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); 1159 raw_spin_unlock_irq(&sem->wait_lock); 1160 wake_up_q(&wake_q); 1161 lockevent_inc(rwsem_wlock_fail); 1162 return ERR_PTR(-EINTR); 1163 } 1164 1165 /* 1166 * handle waking up a waiter on the semaphore 1167 * - up_read/up_write has decremented the active part of count if we come here 1168 */ 1169 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem) 1170 { 1171 unsigned long flags; 1172 DEFINE_WAKE_Q(wake_q); 1173 1174 raw_spin_lock_irqsave(&sem->wait_lock, flags); 1175 1176 if (!list_empty(&sem->wait_list)) 1177 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); 1178 1179 raw_spin_unlock_irqrestore(&sem->wait_lock, flags); 1180 wake_up_q(&wake_q); 1181 1182 return sem; 1183 } 1184 1185 /* 1186 * downgrade a write lock into a read lock 1187 * - caller incremented waiting part of count and discovered it still negative 1188 * - just wake up any readers at the front of the queue 1189 */ 1190 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem) 1191 { 1192 unsigned long flags; 1193 DEFINE_WAKE_Q(wake_q); 1194 1195 raw_spin_lock_irqsave(&sem->wait_lock, flags); 1196 1197 if (!list_empty(&sem->wait_list)) 1198 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q); 1199 1200 raw_spin_unlock_irqrestore(&sem->wait_lock, flags); 1201 wake_up_q(&wake_q); 1202 1203 return sem; 1204 } 1205 1206 /* 1207 * lock for reading 1208 */ 1209 static inline int __down_read_common(struct rw_semaphore *sem, int state) 1210 { 1211 long count; 1212 1213 if (!rwsem_read_trylock(sem, &count)) { 1214 if (IS_ERR(rwsem_down_read_slowpath(sem, count, state))) 1215 return -EINTR; 1216 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1217 } 1218 return 0; 1219 } 1220 1221 static inline void __down_read(struct rw_semaphore *sem) 1222 { 1223 __down_read_common(sem, TASK_UNINTERRUPTIBLE); 1224 } 1225 1226 static inline int __down_read_interruptible(struct rw_semaphore *sem) 1227 { 1228 return __down_read_common(sem, TASK_INTERRUPTIBLE); 1229 } 1230 1231 static inline int __down_read_killable(struct rw_semaphore *sem) 1232 { 1233 return __down_read_common(sem, TASK_KILLABLE); 1234 } 1235 1236 static inline int __down_read_trylock(struct rw_semaphore *sem) 1237 { 1238 long tmp; 1239 1240 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1241 1242 tmp = atomic_long_read(&sem->count); 1243 while (!(tmp & RWSEM_READ_FAILED_MASK)) { 1244 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, 1245 tmp + RWSEM_READER_BIAS)) { 1246 rwsem_set_reader_owned(sem); 1247 return 1; 1248 } 1249 } 1250 return 0; 1251 } 1252 1253 /* 1254 * lock for writing 1255 */ 1256 static inline int __down_write_common(struct rw_semaphore *sem, int state) 1257 { 1258 if (unlikely(!rwsem_write_trylock(sem))) { 1259 if (IS_ERR(rwsem_down_write_slowpath(sem, state))) 1260 return -EINTR; 1261 } 1262 1263 return 0; 1264 } 1265 1266 static inline void __down_write(struct rw_semaphore *sem) 1267 { 1268 __down_write_common(sem, TASK_UNINTERRUPTIBLE); 1269 } 1270 1271 static inline int __down_write_killable(struct rw_semaphore *sem) 1272 { 1273 return __down_write_common(sem, TASK_KILLABLE); 1274 } 1275 1276 static inline int __down_write_trylock(struct rw_semaphore *sem) 1277 { 1278 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1279 return rwsem_write_trylock(sem); 1280 } 1281 1282 /* 1283 * unlock after reading 1284 */ 1285 static inline void __up_read(struct rw_semaphore *sem) 1286 { 1287 long tmp; 1288 1289 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1290 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1291 1292 rwsem_clear_reader_owned(sem); 1293 tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count); 1294 DEBUG_RWSEMS_WARN_ON(tmp < 0, sem); 1295 if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) == 1296 RWSEM_FLAG_WAITERS)) { 1297 clear_nonspinnable(sem); 1298 rwsem_wake(sem); 1299 } 1300 } 1301 1302 /* 1303 * unlock after writing 1304 */ 1305 static inline void __up_write(struct rw_semaphore *sem) 1306 { 1307 long tmp; 1308 1309 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1310 /* 1311 * sem->owner may differ from current if the ownership is transferred 1312 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits. 1313 */ 1314 DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) && 1315 !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem); 1316 1317 rwsem_clear_owner(sem); 1318 tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count); 1319 if (unlikely(tmp & RWSEM_FLAG_WAITERS)) 1320 rwsem_wake(sem); 1321 } 1322 1323 /* 1324 * downgrade write lock to read lock 1325 */ 1326 static inline void __downgrade_write(struct rw_semaphore *sem) 1327 { 1328 long tmp; 1329 1330 /* 1331 * When downgrading from exclusive to shared ownership, 1332 * anything inside the write-locked region cannot leak 1333 * into the read side. In contrast, anything in the 1334 * read-locked region is ok to be re-ordered into the 1335 * write side. As such, rely on RELEASE semantics. 1336 */ 1337 DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem); 1338 tmp = atomic_long_fetch_add_release( 1339 -RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count); 1340 rwsem_set_reader_owned(sem); 1341 if (tmp & RWSEM_FLAG_WAITERS) 1342 rwsem_downgrade_wake(sem); 1343 } 1344 1345 #else /* !CONFIG_PREEMPT_RT */ 1346 1347 #define RT_MUTEX_BUILD_MUTEX 1348 #include "rtmutex.c" 1349 1350 #define rwbase_set_and_save_current_state(state) \ 1351 set_current_state(state) 1352 1353 #define rwbase_restore_current_state() \ 1354 __set_current_state(TASK_RUNNING) 1355 1356 #define rwbase_rtmutex_lock_state(rtm, state) \ 1357 __rt_mutex_lock(rtm, state) 1358 1359 #define rwbase_rtmutex_slowlock_locked(rtm, state) \ 1360 __rt_mutex_slowlock_locked(rtm, NULL, state) 1361 1362 #define rwbase_rtmutex_unlock(rtm) \ 1363 __rt_mutex_unlock(rtm) 1364 1365 #define rwbase_rtmutex_trylock(rtm) \ 1366 __rt_mutex_trylock(rtm) 1367 1368 #define rwbase_signal_pending_state(state, current) \ 1369 signal_pending_state(state, current) 1370 1371 #define rwbase_schedule() \ 1372 schedule() 1373 1374 #include "rwbase_rt.c" 1375 1376 void __init_rwsem(struct rw_semaphore *sem, const char *name, 1377 struct lock_class_key *key) 1378 { 1379 init_rwbase_rt(&(sem)->rwbase); 1380 1381 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1382 debug_check_no_locks_freed((void *)sem, sizeof(*sem)); 1383 lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP); 1384 #endif 1385 } 1386 EXPORT_SYMBOL(__init_rwsem); 1387 1388 static inline void __down_read(struct rw_semaphore *sem) 1389 { 1390 rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE); 1391 } 1392 1393 static inline int __down_read_interruptible(struct rw_semaphore *sem) 1394 { 1395 return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE); 1396 } 1397 1398 static inline int __down_read_killable(struct rw_semaphore *sem) 1399 { 1400 return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE); 1401 } 1402 1403 static inline int __down_read_trylock(struct rw_semaphore *sem) 1404 { 1405 return rwbase_read_trylock(&sem->rwbase); 1406 } 1407 1408 static inline void __up_read(struct rw_semaphore *sem) 1409 { 1410 rwbase_read_unlock(&sem->rwbase, TASK_NORMAL); 1411 } 1412 1413 static inline void __sched __down_write(struct rw_semaphore *sem) 1414 { 1415 rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE); 1416 } 1417 1418 static inline int __sched __down_write_killable(struct rw_semaphore *sem) 1419 { 1420 return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE); 1421 } 1422 1423 static inline int __down_write_trylock(struct rw_semaphore *sem) 1424 { 1425 return rwbase_write_trylock(&sem->rwbase); 1426 } 1427 1428 static inline void __up_write(struct rw_semaphore *sem) 1429 { 1430 rwbase_write_unlock(&sem->rwbase); 1431 } 1432 1433 static inline void __downgrade_write(struct rw_semaphore *sem) 1434 { 1435 rwbase_write_downgrade(&sem->rwbase); 1436 } 1437 1438 /* Debug stubs for the common API */ 1439 #define DEBUG_RWSEMS_WARN_ON(c, sem) 1440 1441 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem, 1442 struct task_struct *owner) 1443 { 1444 } 1445 1446 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem) 1447 { 1448 int count = atomic_read(&sem->rwbase.readers); 1449 1450 return count < 0 && count != READER_BIAS; 1451 } 1452 1453 #endif /* CONFIG_PREEMPT_RT */ 1454 1455 /* 1456 * lock for reading 1457 */ 1458 void __sched down_read(struct rw_semaphore *sem) 1459 { 1460 might_sleep(); 1461 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1462 1463 LOCK_CONTENDED(sem, __down_read_trylock, __down_read); 1464 } 1465 EXPORT_SYMBOL(down_read); 1466 1467 int __sched down_read_interruptible(struct rw_semaphore *sem) 1468 { 1469 might_sleep(); 1470 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1471 1472 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) { 1473 rwsem_release(&sem->dep_map, _RET_IP_); 1474 return -EINTR; 1475 } 1476 1477 return 0; 1478 } 1479 EXPORT_SYMBOL(down_read_interruptible); 1480 1481 int __sched down_read_killable(struct rw_semaphore *sem) 1482 { 1483 might_sleep(); 1484 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1485 1486 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) { 1487 rwsem_release(&sem->dep_map, _RET_IP_); 1488 return -EINTR; 1489 } 1490 1491 return 0; 1492 } 1493 EXPORT_SYMBOL(down_read_killable); 1494 1495 /* 1496 * trylock for reading -- returns 1 if successful, 0 if contention 1497 */ 1498 int down_read_trylock(struct rw_semaphore *sem) 1499 { 1500 int ret = __down_read_trylock(sem); 1501 1502 if (ret == 1) 1503 rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_); 1504 return ret; 1505 } 1506 EXPORT_SYMBOL(down_read_trylock); 1507 1508 /* 1509 * lock for writing 1510 */ 1511 void __sched down_write(struct rw_semaphore *sem) 1512 { 1513 might_sleep(); 1514 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); 1515 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1516 } 1517 EXPORT_SYMBOL(down_write); 1518 1519 /* 1520 * lock for writing 1521 */ 1522 int __sched down_write_killable(struct rw_semaphore *sem) 1523 { 1524 might_sleep(); 1525 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); 1526 1527 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, 1528 __down_write_killable)) { 1529 rwsem_release(&sem->dep_map, _RET_IP_); 1530 return -EINTR; 1531 } 1532 1533 return 0; 1534 } 1535 EXPORT_SYMBOL(down_write_killable); 1536 1537 /* 1538 * trylock for writing -- returns 1 if successful, 0 if contention 1539 */ 1540 int down_write_trylock(struct rw_semaphore *sem) 1541 { 1542 int ret = __down_write_trylock(sem); 1543 1544 if (ret == 1) 1545 rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_); 1546 1547 return ret; 1548 } 1549 EXPORT_SYMBOL(down_write_trylock); 1550 1551 /* 1552 * release a read lock 1553 */ 1554 void up_read(struct rw_semaphore *sem) 1555 { 1556 rwsem_release(&sem->dep_map, _RET_IP_); 1557 __up_read(sem); 1558 } 1559 EXPORT_SYMBOL(up_read); 1560 1561 /* 1562 * release a write lock 1563 */ 1564 void up_write(struct rw_semaphore *sem) 1565 { 1566 rwsem_release(&sem->dep_map, _RET_IP_); 1567 __up_write(sem); 1568 } 1569 EXPORT_SYMBOL(up_write); 1570 1571 /* 1572 * downgrade write lock to read lock 1573 */ 1574 void downgrade_write(struct rw_semaphore *sem) 1575 { 1576 lock_downgrade(&sem->dep_map, _RET_IP_); 1577 __downgrade_write(sem); 1578 } 1579 EXPORT_SYMBOL(downgrade_write); 1580 1581 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1582 1583 void down_read_nested(struct rw_semaphore *sem, int subclass) 1584 { 1585 might_sleep(); 1586 rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_); 1587 LOCK_CONTENDED(sem, __down_read_trylock, __down_read); 1588 } 1589 EXPORT_SYMBOL(down_read_nested); 1590 1591 int down_read_killable_nested(struct rw_semaphore *sem, int subclass) 1592 { 1593 might_sleep(); 1594 rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_); 1595 1596 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) { 1597 rwsem_release(&sem->dep_map, _RET_IP_); 1598 return -EINTR; 1599 } 1600 1601 return 0; 1602 } 1603 EXPORT_SYMBOL(down_read_killable_nested); 1604 1605 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest) 1606 { 1607 might_sleep(); 1608 rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_); 1609 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1610 } 1611 EXPORT_SYMBOL(_down_write_nest_lock); 1612 1613 void down_read_non_owner(struct rw_semaphore *sem) 1614 { 1615 might_sleep(); 1616 __down_read(sem); 1617 __rwsem_set_reader_owned(sem, NULL); 1618 } 1619 EXPORT_SYMBOL(down_read_non_owner); 1620 1621 void down_write_nested(struct rw_semaphore *sem, int subclass) 1622 { 1623 might_sleep(); 1624 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); 1625 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1626 } 1627 EXPORT_SYMBOL(down_write_nested); 1628 1629 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass) 1630 { 1631 might_sleep(); 1632 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); 1633 1634 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, 1635 __down_write_killable)) { 1636 rwsem_release(&sem->dep_map, _RET_IP_); 1637 return -EINTR; 1638 } 1639 1640 return 0; 1641 } 1642 EXPORT_SYMBOL(down_write_killable_nested); 1643 1644 void up_read_non_owner(struct rw_semaphore *sem) 1645 { 1646 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1647 __up_read(sem); 1648 } 1649 EXPORT_SYMBOL(up_read_non_owner); 1650 1651 #endif 1652