1 // SPDX-License-Identifier: GPL-2.0 2 /* kernel/rwsem.c: R/W semaphores, public implementation 3 * 4 * Written by David Howells (dhowells@redhat.com). 5 * Derived from asm-i386/semaphore.h 6 * 7 * Writer lock-stealing by Alex Shi <alex.shi@intel.com> 8 * and Michel Lespinasse <walken@google.com> 9 * 10 * Optimistic spinning by Tim Chen <tim.c.chen@intel.com> 11 * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes. 12 * 13 * Rwsem count bit fields re-definition and rwsem rearchitecture by 14 * Waiman Long <longman@redhat.com> and 15 * Peter Zijlstra <peterz@infradead.org>. 16 */ 17 18 #include <linux/types.h> 19 #include <linux/kernel.h> 20 #include <linux/sched.h> 21 #include <linux/sched/rt.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/debug.h> 24 #include <linux/sched/wake_q.h> 25 #include <linux/sched/signal.h> 26 #include <linux/sched/clock.h> 27 #include <linux/export.h> 28 #include <linux/rwsem.h> 29 #include <linux/atomic.h> 30 #include <trace/events/lock.h> 31 32 #ifndef CONFIG_PREEMPT_RT 33 #include "lock_events.h" 34 35 /* 36 * The least significant 2 bits of the owner value has the following 37 * meanings when set. 38 * - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers 39 * - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock 40 * 41 * When the rwsem is reader-owned and a spinning writer has timed out, 42 * the nonspinnable bit will be set to disable optimistic spinning. 43 44 * When a writer acquires a rwsem, it puts its task_struct pointer 45 * into the owner field. It is cleared after an unlock. 46 * 47 * When a reader acquires a rwsem, it will also puts its task_struct 48 * pointer into the owner field with the RWSEM_READER_OWNED bit set. 49 * On unlock, the owner field will largely be left untouched. So 50 * for a free or reader-owned rwsem, the owner value may contain 51 * information about the last reader that acquires the rwsem. 52 * 53 * That information may be helpful in debugging cases where the system 54 * seems to hang on a reader owned rwsem especially if only one reader 55 * is involved. Ideally we would like to track all the readers that own 56 * a rwsem, but the overhead is simply too big. 57 * 58 * A fast path reader optimistic lock stealing is supported when the rwsem 59 * is previously owned by a writer and the following conditions are met: 60 * - rwsem is not currently writer owned 61 * - the handoff isn't set. 62 */ 63 #define RWSEM_READER_OWNED (1UL << 0) 64 #define RWSEM_NONSPINNABLE (1UL << 1) 65 #define RWSEM_OWNER_FLAGS_MASK (RWSEM_READER_OWNED | RWSEM_NONSPINNABLE) 66 67 #ifdef CONFIG_DEBUG_RWSEMS 68 # define DEBUG_RWSEMS_WARN_ON(c, sem) do { \ 69 if (!debug_locks_silent && \ 70 WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\ 71 #c, atomic_long_read(&(sem)->count), \ 72 (unsigned long) sem->magic, \ 73 atomic_long_read(&(sem)->owner), (long)current, \ 74 list_empty(&(sem)->wait_list) ? "" : "not ")) \ 75 debug_locks_off(); \ 76 } while (0) 77 #else 78 # define DEBUG_RWSEMS_WARN_ON(c, sem) 79 #endif 80 81 /* 82 * On 64-bit architectures, the bit definitions of the count are: 83 * 84 * Bit 0 - writer locked bit 85 * Bit 1 - waiters present bit 86 * Bit 2 - lock handoff bit 87 * Bits 3-7 - reserved 88 * Bits 8-62 - 55-bit reader count 89 * Bit 63 - read fail bit 90 * 91 * On 32-bit architectures, the bit definitions of the count are: 92 * 93 * Bit 0 - writer locked bit 94 * Bit 1 - waiters present bit 95 * Bit 2 - lock handoff bit 96 * Bits 3-7 - reserved 97 * Bits 8-30 - 23-bit reader count 98 * Bit 31 - read fail bit 99 * 100 * It is not likely that the most significant bit (read fail bit) will ever 101 * be set. This guard bit is still checked anyway in the down_read() fastpath 102 * just in case we need to use up more of the reader bits for other purpose 103 * in the future. 104 * 105 * atomic_long_fetch_add() is used to obtain reader lock, whereas 106 * atomic_long_cmpxchg() will be used to obtain writer lock. 107 * 108 * There are three places where the lock handoff bit may be set or cleared. 109 * 1) rwsem_mark_wake() for readers -- set, clear 110 * 2) rwsem_try_write_lock() for writers -- set, clear 111 * 3) rwsem_del_waiter() -- clear 112 * 113 * For all the above cases, wait_lock will be held. A writer must also 114 * be the first one in the wait_list to be eligible for setting the handoff 115 * bit. So concurrent setting/clearing of handoff bit is not possible. 116 */ 117 #define RWSEM_WRITER_LOCKED (1UL << 0) 118 #define RWSEM_FLAG_WAITERS (1UL << 1) 119 #define RWSEM_FLAG_HANDOFF (1UL << 2) 120 #define RWSEM_FLAG_READFAIL (1UL << (BITS_PER_LONG - 1)) 121 122 #define RWSEM_READER_SHIFT 8 123 #define RWSEM_READER_BIAS (1UL << RWSEM_READER_SHIFT) 124 #define RWSEM_READER_MASK (~(RWSEM_READER_BIAS - 1)) 125 #define RWSEM_WRITER_MASK RWSEM_WRITER_LOCKED 126 #define RWSEM_LOCK_MASK (RWSEM_WRITER_MASK|RWSEM_READER_MASK) 127 #define RWSEM_READ_FAILED_MASK (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\ 128 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL) 129 130 /* 131 * All writes to owner are protected by WRITE_ONCE() to make sure that 132 * store tearing can't happen as optimistic spinners may read and use 133 * the owner value concurrently without lock. Read from owner, however, 134 * may not need READ_ONCE() as long as the pointer value is only used 135 * for comparison and isn't being dereferenced. 136 */ 137 static inline void rwsem_set_owner(struct rw_semaphore *sem) 138 { 139 atomic_long_set(&sem->owner, (long)current); 140 } 141 142 static inline void rwsem_clear_owner(struct rw_semaphore *sem) 143 { 144 atomic_long_set(&sem->owner, 0); 145 } 146 147 /* 148 * Test the flags in the owner field. 149 */ 150 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags) 151 { 152 return atomic_long_read(&sem->owner) & flags; 153 } 154 155 /* 156 * The task_struct pointer of the last owning reader will be left in 157 * the owner field. 158 * 159 * Note that the owner value just indicates the task has owned the rwsem 160 * previously, it may not be the real owner or one of the real owners 161 * anymore when that field is examined, so take it with a grain of salt. 162 * 163 * The reader non-spinnable bit is preserved. 164 */ 165 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem, 166 struct task_struct *owner) 167 { 168 unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED | 169 (atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE); 170 171 atomic_long_set(&sem->owner, val); 172 } 173 174 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem) 175 { 176 __rwsem_set_reader_owned(sem, current); 177 } 178 179 /* 180 * Return true if the rwsem is owned by a reader. 181 */ 182 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem) 183 { 184 #ifdef CONFIG_DEBUG_RWSEMS 185 /* 186 * Check the count to see if it is write-locked. 187 */ 188 long count = atomic_long_read(&sem->count); 189 190 if (count & RWSEM_WRITER_MASK) 191 return false; 192 #endif 193 return rwsem_test_oflags(sem, RWSEM_READER_OWNED); 194 } 195 196 #ifdef CONFIG_DEBUG_RWSEMS 197 /* 198 * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there 199 * is a task pointer in owner of a reader-owned rwsem, it will be the 200 * real owner or one of the real owners. The only exception is when the 201 * unlock is done by up_read_non_owner(). 202 */ 203 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) 204 { 205 unsigned long val = atomic_long_read(&sem->owner); 206 207 while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) { 208 if (atomic_long_try_cmpxchg(&sem->owner, &val, 209 val & RWSEM_OWNER_FLAGS_MASK)) 210 return; 211 } 212 } 213 #else 214 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) 215 { 216 } 217 #endif 218 219 /* 220 * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag 221 * remains set. Otherwise, the operation will be aborted. 222 */ 223 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem) 224 { 225 unsigned long owner = atomic_long_read(&sem->owner); 226 227 do { 228 if (!(owner & RWSEM_READER_OWNED)) 229 break; 230 if (owner & RWSEM_NONSPINNABLE) 231 break; 232 } while (!atomic_long_try_cmpxchg(&sem->owner, &owner, 233 owner | RWSEM_NONSPINNABLE)); 234 } 235 236 static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp) 237 { 238 *cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count); 239 240 if (WARN_ON_ONCE(*cntp < 0)) 241 rwsem_set_nonspinnable(sem); 242 243 if (!(*cntp & RWSEM_READ_FAILED_MASK)) { 244 rwsem_set_reader_owned(sem); 245 return true; 246 } 247 248 return false; 249 } 250 251 static inline bool rwsem_write_trylock(struct rw_semaphore *sem) 252 { 253 long tmp = RWSEM_UNLOCKED_VALUE; 254 255 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) { 256 rwsem_set_owner(sem); 257 return true; 258 } 259 260 return false; 261 } 262 263 /* 264 * Return just the real task structure pointer of the owner 265 */ 266 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem) 267 { 268 return (struct task_struct *) 269 (atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK); 270 } 271 272 /* 273 * Return the real task structure pointer of the owner and the embedded 274 * flags in the owner. pflags must be non-NULL. 275 */ 276 static inline struct task_struct * 277 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags) 278 { 279 unsigned long owner = atomic_long_read(&sem->owner); 280 281 *pflags = owner & RWSEM_OWNER_FLAGS_MASK; 282 return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK); 283 } 284 285 /* 286 * Guide to the rw_semaphore's count field. 287 * 288 * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned 289 * by a writer. 290 * 291 * The lock is owned by readers when 292 * (1) the RWSEM_WRITER_LOCKED isn't set in count, 293 * (2) some of the reader bits are set in count, and 294 * (3) the owner field has RWSEM_READ_OWNED bit set. 295 * 296 * Having some reader bits set is not enough to guarantee a readers owned 297 * lock as the readers may be in the process of backing out from the count 298 * and a writer has just released the lock. So another writer may steal 299 * the lock immediately after that. 300 */ 301 302 /* 303 * Initialize an rwsem: 304 */ 305 void __init_rwsem(struct rw_semaphore *sem, const char *name, 306 struct lock_class_key *key) 307 { 308 #ifdef CONFIG_DEBUG_LOCK_ALLOC 309 /* 310 * Make sure we are not reinitializing a held semaphore: 311 */ 312 debug_check_no_locks_freed((void *)sem, sizeof(*sem)); 313 lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP); 314 #endif 315 #ifdef CONFIG_DEBUG_RWSEMS 316 sem->magic = sem; 317 #endif 318 atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE); 319 raw_spin_lock_init(&sem->wait_lock); 320 INIT_LIST_HEAD(&sem->wait_list); 321 atomic_long_set(&sem->owner, 0L); 322 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER 323 osq_lock_init(&sem->osq); 324 #endif 325 } 326 EXPORT_SYMBOL(__init_rwsem); 327 328 enum rwsem_waiter_type { 329 RWSEM_WAITING_FOR_WRITE, 330 RWSEM_WAITING_FOR_READ 331 }; 332 333 struct rwsem_waiter { 334 struct list_head list; 335 struct task_struct *task; 336 enum rwsem_waiter_type type; 337 unsigned long timeout; 338 339 /* Writer only, not initialized in reader */ 340 bool handoff_set; 341 }; 342 #define rwsem_first_waiter(sem) \ 343 list_first_entry(&sem->wait_list, struct rwsem_waiter, list) 344 345 enum rwsem_wake_type { 346 RWSEM_WAKE_ANY, /* Wake whatever's at head of wait list */ 347 RWSEM_WAKE_READERS, /* Wake readers only */ 348 RWSEM_WAKE_READ_OWNED /* Waker thread holds the read lock */ 349 }; 350 351 /* 352 * The typical HZ value is either 250 or 1000. So set the minimum waiting 353 * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait 354 * queue before initiating the handoff protocol. 355 */ 356 #define RWSEM_WAIT_TIMEOUT DIV_ROUND_UP(HZ, 250) 357 358 /* 359 * Magic number to batch-wakeup waiting readers, even when writers are 360 * also present in the queue. This both limits the amount of work the 361 * waking thread must do and also prevents any potential counter overflow, 362 * however unlikely. 363 */ 364 #define MAX_READERS_WAKEUP 0x100 365 366 static inline void 367 rwsem_add_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter) 368 { 369 lockdep_assert_held(&sem->wait_lock); 370 list_add_tail(&waiter->list, &sem->wait_list); 371 /* caller will set RWSEM_FLAG_WAITERS */ 372 } 373 374 /* 375 * Remove a waiter from the wait_list and clear flags. 376 * 377 * Both rwsem_mark_wake() and rwsem_try_write_lock() contain a full 'copy' of 378 * this function. Modify with care. 379 * 380 * Return: true if wait_list isn't empty and false otherwise 381 */ 382 static inline bool 383 rwsem_del_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter) 384 { 385 lockdep_assert_held(&sem->wait_lock); 386 list_del(&waiter->list); 387 if (likely(!list_empty(&sem->wait_list))) 388 return true; 389 390 atomic_long_andnot(RWSEM_FLAG_HANDOFF | RWSEM_FLAG_WAITERS, &sem->count); 391 return false; 392 } 393 394 /* 395 * handle the lock release when processes blocked on it that can now run 396 * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must 397 * have been set. 398 * - there must be someone on the queue 399 * - the wait_lock must be held by the caller 400 * - tasks are marked for wakeup, the caller must later invoke wake_up_q() 401 * to actually wakeup the blocked task(s) and drop the reference count, 402 * preferably when the wait_lock is released 403 * - woken process blocks are discarded from the list after having task zeroed 404 * - writers are only marked woken if downgrading is false 405 * 406 * Implies rwsem_del_waiter() for all woken readers. 407 */ 408 static void rwsem_mark_wake(struct rw_semaphore *sem, 409 enum rwsem_wake_type wake_type, 410 struct wake_q_head *wake_q) 411 { 412 struct rwsem_waiter *waiter, *tmp; 413 long oldcount, woken = 0, adjustment = 0; 414 struct list_head wlist; 415 416 lockdep_assert_held(&sem->wait_lock); 417 418 /* 419 * Take a peek at the queue head waiter such that we can determine 420 * the wakeup(s) to perform. 421 */ 422 waiter = rwsem_first_waiter(sem); 423 424 if (waiter->type == RWSEM_WAITING_FOR_WRITE) { 425 if (wake_type == RWSEM_WAKE_ANY) { 426 /* 427 * Mark writer at the front of the queue for wakeup. 428 * Until the task is actually later awoken later by 429 * the caller, other writers are able to steal it. 430 * Readers, on the other hand, will block as they 431 * will notice the queued writer. 432 */ 433 wake_q_add(wake_q, waiter->task); 434 lockevent_inc(rwsem_wake_writer); 435 } 436 437 return; 438 } 439 440 /* 441 * No reader wakeup if there are too many of them already. 442 */ 443 if (unlikely(atomic_long_read(&sem->count) < 0)) 444 return; 445 446 /* 447 * Writers might steal the lock before we grant it to the next reader. 448 * We prefer to do the first reader grant before counting readers 449 * so we can bail out early if a writer stole the lock. 450 */ 451 if (wake_type != RWSEM_WAKE_READ_OWNED) { 452 struct task_struct *owner; 453 454 adjustment = RWSEM_READER_BIAS; 455 oldcount = atomic_long_fetch_add(adjustment, &sem->count); 456 if (unlikely(oldcount & RWSEM_WRITER_MASK)) { 457 /* 458 * When we've been waiting "too" long (for writers 459 * to give up the lock), request a HANDOFF to 460 * force the issue. 461 */ 462 if (!(oldcount & RWSEM_FLAG_HANDOFF) && 463 time_after(jiffies, waiter->timeout)) { 464 adjustment -= RWSEM_FLAG_HANDOFF; 465 lockevent_inc(rwsem_rlock_handoff); 466 } 467 468 atomic_long_add(-adjustment, &sem->count); 469 return; 470 } 471 /* 472 * Set it to reader-owned to give spinners an early 473 * indication that readers now have the lock. 474 * The reader nonspinnable bit seen at slowpath entry of 475 * the reader is copied over. 476 */ 477 owner = waiter->task; 478 __rwsem_set_reader_owned(sem, owner); 479 } 480 481 /* 482 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the 483 * queue. We know that the woken will be at least 1 as we accounted 484 * for above. Note we increment the 'active part' of the count by the 485 * number of readers before waking any processes up. 486 * 487 * This is an adaptation of the phase-fair R/W locks where at the 488 * reader phase (first waiter is a reader), all readers are eligible 489 * to acquire the lock at the same time irrespective of their order 490 * in the queue. The writers acquire the lock according to their 491 * order in the queue. 492 * 493 * We have to do wakeup in 2 passes to prevent the possibility that 494 * the reader count may be decremented before it is incremented. It 495 * is because the to-be-woken waiter may not have slept yet. So it 496 * may see waiter->task got cleared, finish its critical section and 497 * do an unlock before the reader count increment. 498 * 499 * 1) Collect the read-waiters in a separate list, count them and 500 * fully increment the reader count in rwsem. 501 * 2) For each waiters in the new list, clear waiter->task and 502 * put them into wake_q to be woken up later. 503 */ 504 INIT_LIST_HEAD(&wlist); 505 list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) { 506 if (waiter->type == RWSEM_WAITING_FOR_WRITE) 507 continue; 508 509 woken++; 510 list_move_tail(&waiter->list, &wlist); 511 512 /* 513 * Limit # of readers that can be woken up per wakeup call. 514 */ 515 if (unlikely(woken >= MAX_READERS_WAKEUP)) 516 break; 517 } 518 519 adjustment = woken * RWSEM_READER_BIAS - adjustment; 520 lockevent_cond_inc(rwsem_wake_reader, woken); 521 522 oldcount = atomic_long_read(&sem->count); 523 if (list_empty(&sem->wait_list)) { 524 /* 525 * Combined with list_move_tail() above, this implies 526 * rwsem_del_waiter(). 527 */ 528 adjustment -= RWSEM_FLAG_WAITERS; 529 if (oldcount & RWSEM_FLAG_HANDOFF) 530 adjustment -= RWSEM_FLAG_HANDOFF; 531 } else if (woken) { 532 /* 533 * When we've woken a reader, we no longer need to force 534 * writers to give up the lock and we can clear HANDOFF. 535 */ 536 if (oldcount & RWSEM_FLAG_HANDOFF) 537 adjustment -= RWSEM_FLAG_HANDOFF; 538 } 539 540 if (adjustment) 541 atomic_long_add(adjustment, &sem->count); 542 543 /* 2nd pass */ 544 list_for_each_entry_safe(waiter, tmp, &wlist, list) { 545 struct task_struct *tsk; 546 547 tsk = waiter->task; 548 get_task_struct(tsk); 549 550 /* 551 * Ensure calling get_task_struct() before setting the reader 552 * waiter to nil such that rwsem_down_read_slowpath() cannot 553 * race with do_exit() by always holding a reference count 554 * to the task to wakeup. 555 */ 556 smp_store_release(&waiter->task, NULL); 557 /* 558 * Ensure issuing the wakeup (either by us or someone else) 559 * after setting the reader waiter to nil. 560 */ 561 wake_q_add_safe(wake_q, tsk); 562 } 563 } 564 565 /* 566 * Remove a waiter and try to wake up other waiters in the wait queue 567 * This function is called from the out_nolock path of both the reader and 568 * writer slowpaths with wait_lock held. It releases the wait_lock and 569 * optionally wake up waiters before it returns. 570 */ 571 static inline void 572 rwsem_del_wake_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter, 573 struct wake_q_head *wake_q) 574 __releases(&sem->wait_lock) 575 { 576 bool first = rwsem_first_waiter(sem) == waiter; 577 578 wake_q_init(wake_q); 579 580 /* 581 * If the wait_list isn't empty and the waiter to be deleted is 582 * the first waiter, we wake up the remaining waiters as they may 583 * be eligible to acquire or spin on the lock. 584 */ 585 if (rwsem_del_waiter(sem, waiter) && first) 586 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, wake_q); 587 raw_spin_unlock_irq(&sem->wait_lock); 588 if (!wake_q_empty(wake_q)) 589 wake_up_q(wake_q); 590 } 591 592 /* 593 * This function must be called with the sem->wait_lock held to prevent 594 * race conditions between checking the rwsem wait list and setting the 595 * sem->count accordingly. 596 * 597 * Implies rwsem_del_waiter() on success. 598 */ 599 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem, 600 struct rwsem_waiter *waiter) 601 { 602 bool first = rwsem_first_waiter(sem) == waiter; 603 long count, new; 604 605 lockdep_assert_held(&sem->wait_lock); 606 607 count = atomic_long_read(&sem->count); 608 do { 609 bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF); 610 611 if (has_handoff) { 612 if (!first) 613 return false; 614 615 /* First waiter inherits a previously set handoff bit */ 616 waiter->handoff_set = true; 617 } 618 619 new = count; 620 621 if (count & RWSEM_LOCK_MASK) { 622 if (has_handoff || (!rt_task(waiter->task) && 623 !time_after(jiffies, waiter->timeout))) 624 return false; 625 626 new |= RWSEM_FLAG_HANDOFF; 627 } else { 628 new |= RWSEM_WRITER_LOCKED; 629 new &= ~RWSEM_FLAG_HANDOFF; 630 631 if (list_is_singular(&sem->wait_list)) 632 new &= ~RWSEM_FLAG_WAITERS; 633 } 634 } while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new)); 635 636 /* 637 * We have either acquired the lock with handoff bit cleared or 638 * set the handoff bit. 639 */ 640 if (new & RWSEM_FLAG_HANDOFF) { 641 waiter->handoff_set = true; 642 lockevent_inc(rwsem_wlock_handoff); 643 return false; 644 } 645 646 /* 647 * Have rwsem_try_write_lock() fully imply rwsem_del_waiter() on 648 * success. 649 */ 650 list_del(&waiter->list); 651 rwsem_set_owner(sem); 652 return true; 653 } 654 655 /* 656 * The rwsem_spin_on_owner() function returns the following 4 values 657 * depending on the lock owner state. 658 * OWNER_NULL : owner is currently NULL 659 * OWNER_WRITER: when owner changes and is a writer 660 * OWNER_READER: when owner changes and the new owner may be a reader. 661 * OWNER_NONSPINNABLE: 662 * when optimistic spinning has to stop because either the 663 * owner stops running, is unknown, or its timeslice has 664 * been used up. 665 */ 666 enum owner_state { 667 OWNER_NULL = 1 << 0, 668 OWNER_WRITER = 1 << 1, 669 OWNER_READER = 1 << 2, 670 OWNER_NONSPINNABLE = 1 << 3, 671 }; 672 673 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER 674 /* 675 * Try to acquire write lock before the writer has been put on wait queue. 676 */ 677 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem) 678 { 679 long count = atomic_long_read(&sem->count); 680 681 while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) { 682 if (atomic_long_try_cmpxchg_acquire(&sem->count, &count, 683 count | RWSEM_WRITER_LOCKED)) { 684 rwsem_set_owner(sem); 685 lockevent_inc(rwsem_opt_lock); 686 return true; 687 } 688 } 689 return false; 690 } 691 692 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem) 693 { 694 struct task_struct *owner; 695 unsigned long flags; 696 bool ret = true; 697 698 if (need_resched()) { 699 lockevent_inc(rwsem_opt_fail); 700 return false; 701 } 702 703 preempt_disable(); 704 /* 705 * Disable preemption is equal to the RCU read-side crital section, 706 * thus the task_strcut structure won't go away. 707 */ 708 owner = rwsem_owner_flags(sem, &flags); 709 /* 710 * Don't check the read-owner as the entry may be stale. 711 */ 712 if ((flags & RWSEM_NONSPINNABLE) || 713 (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner))) 714 ret = false; 715 preempt_enable(); 716 717 lockevent_cond_inc(rwsem_opt_fail, !ret); 718 return ret; 719 } 720 721 #define OWNER_SPINNABLE (OWNER_NULL | OWNER_WRITER | OWNER_READER) 722 723 static inline enum owner_state 724 rwsem_owner_state(struct task_struct *owner, unsigned long flags) 725 { 726 if (flags & RWSEM_NONSPINNABLE) 727 return OWNER_NONSPINNABLE; 728 729 if (flags & RWSEM_READER_OWNED) 730 return OWNER_READER; 731 732 return owner ? OWNER_WRITER : OWNER_NULL; 733 } 734 735 static noinline enum owner_state 736 rwsem_spin_on_owner(struct rw_semaphore *sem) 737 { 738 struct task_struct *new, *owner; 739 unsigned long flags, new_flags; 740 enum owner_state state; 741 742 lockdep_assert_preemption_disabled(); 743 744 owner = rwsem_owner_flags(sem, &flags); 745 state = rwsem_owner_state(owner, flags); 746 if (state != OWNER_WRITER) 747 return state; 748 749 for (;;) { 750 /* 751 * When a waiting writer set the handoff flag, it may spin 752 * on the owner as well. Once that writer acquires the lock, 753 * we can spin on it. So we don't need to quit even when the 754 * handoff bit is set. 755 */ 756 new = rwsem_owner_flags(sem, &new_flags); 757 if ((new != owner) || (new_flags != flags)) { 758 state = rwsem_owner_state(new, new_flags); 759 break; 760 } 761 762 /* 763 * Ensure we emit the owner->on_cpu, dereference _after_ 764 * checking sem->owner still matches owner, if that fails, 765 * owner might point to free()d memory, if it still matches, 766 * our spinning context already disabled preemption which is 767 * equal to RCU read-side crital section ensures the memory 768 * stays valid. 769 */ 770 barrier(); 771 772 if (need_resched() || !owner_on_cpu(owner)) { 773 state = OWNER_NONSPINNABLE; 774 break; 775 } 776 777 cpu_relax(); 778 } 779 780 return state; 781 } 782 783 /* 784 * Calculate reader-owned rwsem spinning threshold for writer 785 * 786 * The more readers own the rwsem, the longer it will take for them to 787 * wind down and free the rwsem. So the empirical formula used to 788 * determine the actual spinning time limit here is: 789 * 790 * Spinning threshold = (10 + nr_readers/2)us 791 * 792 * The limit is capped to a maximum of 25us (30 readers). This is just 793 * a heuristic and is subjected to change in the future. 794 */ 795 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem) 796 { 797 long count = atomic_long_read(&sem->count); 798 int readers = count >> RWSEM_READER_SHIFT; 799 u64 delta; 800 801 if (readers > 30) 802 readers = 30; 803 delta = (20 + readers) * NSEC_PER_USEC / 2; 804 805 return sched_clock() + delta; 806 } 807 808 static bool rwsem_optimistic_spin(struct rw_semaphore *sem) 809 { 810 bool taken = false; 811 int prev_owner_state = OWNER_NULL; 812 int loop = 0; 813 u64 rspin_threshold = 0; 814 815 preempt_disable(); 816 817 /* sem->wait_lock should not be held when doing optimistic spinning */ 818 if (!osq_lock(&sem->osq)) 819 goto done; 820 821 /* 822 * Optimistically spin on the owner field and attempt to acquire the 823 * lock whenever the owner changes. Spinning will be stopped when: 824 * 1) the owning writer isn't running; or 825 * 2) readers own the lock and spinning time has exceeded limit. 826 */ 827 for (;;) { 828 enum owner_state owner_state; 829 830 owner_state = rwsem_spin_on_owner(sem); 831 if (!(owner_state & OWNER_SPINNABLE)) 832 break; 833 834 /* 835 * Try to acquire the lock 836 */ 837 taken = rwsem_try_write_lock_unqueued(sem); 838 839 if (taken) 840 break; 841 842 /* 843 * Time-based reader-owned rwsem optimistic spinning 844 */ 845 if (owner_state == OWNER_READER) { 846 /* 847 * Re-initialize rspin_threshold every time when 848 * the owner state changes from non-reader to reader. 849 * This allows a writer to steal the lock in between 850 * 2 reader phases and have the threshold reset at 851 * the beginning of the 2nd reader phase. 852 */ 853 if (prev_owner_state != OWNER_READER) { 854 if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)) 855 break; 856 rspin_threshold = rwsem_rspin_threshold(sem); 857 loop = 0; 858 } 859 860 /* 861 * Check time threshold once every 16 iterations to 862 * avoid calling sched_clock() too frequently so 863 * as to reduce the average latency between the times 864 * when the lock becomes free and when the spinner 865 * is ready to do a trylock. 866 */ 867 else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) { 868 rwsem_set_nonspinnable(sem); 869 lockevent_inc(rwsem_opt_nospin); 870 break; 871 } 872 } 873 874 /* 875 * An RT task cannot do optimistic spinning if it cannot 876 * be sure the lock holder is running or live-lock may 877 * happen if the current task and the lock holder happen 878 * to run in the same CPU. However, aborting optimistic 879 * spinning while a NULL owner is detected may miss some 880 * opportunity where spinning can continue without causing 881 * problem. 882 * 883 * There are 2 possible cases where an RT task may be able 884 * to continue spinning. 885 * 886 * 1) The lock owner is in the process of releasing the 887 * lock, sem->owner is cleared but the lock has not 888 * been released yet. 889 * 2) The lock was free and owner cleared, but another 890 * task just comes in and acquire the lock before 891 * we try to get it. The new owner may be a spinnable 892 * writer. 893 * 894 * To take advantage of two scenarios listed above, the RT 895 * task is made to retry one more time to see if it can 896 * acquire the lock or continue spinning on the new owning 897 * writer. Of course, if the time lag is long enough or the 898 * new owner is not a writer or spinnable, the RT task will 899 * quit spinning. 900 * 901 * If the owner is a writer, the need_resched() check is 902 * done inside rwsem_spin_on_owner(). If the owner is not 903 * a writer, need_resched() check needs to be done here. 904 */ 905 if (owner_state != OWNER_WRITER) { 906 if (need_resched()) 907 break; 908 if (rt_task(current) && 909 (prev_owner_state != OWNER_WRITER)) 910 break; 911 } 912 prev_owner_state = owner_state; 913 914 /* 915 * The cpu_relax() call is a compiler barrier which forces 916 * everything in this loop to be re-loaded. We don't need 917 * memory barriers as we'll eventually observe the right 918 * values at the cost of a few extra spins. 919 */ 920 cpu_relax(); 921 } 922 osq_unlock(&sem->osq); 923 done: 924 preempt_enable(); 925 lockevent_cond_inc(rwsem_opt_fail, !taken); 926 return taken; 927 } 928 929 /* 930 * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should 931 * only be called when the reader count reaches 0. 932 */ 933 static inline void clear_nonspinnable(struct rw_semaphore *sem) 934 { 935 if (unlikely(rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))) 936 atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner); 937 } 938 939 #else 940 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem) 941 { 942 return false; 943 } 944 945 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem) 946 { 947 return false; 948 } 949 950 static inline void clear_nonspinnable(struct rw_semaphore *sem) { } 951 952 static inline enum owner_state 953 rwsem_spin_on_owner(struct rw_semaphore *sem) 954 { 955 return OWNER_NONSPINNABLE; 956 } 957 #endif 958 959 /* 960 * Prepare to wake up waiter(s) in the wait queue by putting them into the 961 * given wake_q if the rwsem lock owner isn't a writer. If rwsem is likely 962 * reader-owned, wake up read lock waiters in queue front or wake up any 963 * front waiter otherwise. 964 965 * This is being called from both reader and writer slow paths. 966 */ 967 static inline void rwsem_cond_wake_waiter(struct rw_semaphore *sem, long count, 968 struct wake_q_head *wake_q) 969 { 970 enum rwsem_wake_type wake_type; 971 972 if (count & RWSEM_WRITER_MASK) 973 return; 974 975 if (count & RWSEM_READER_MASK) { 976 wake_type = RWSEM_WAKE_READERS; 977 } else { 978 wake_type = RWSEM_WAKE_ANY; 979 clear_nonspinnable(sem); 980 } 981 rwsem_mark_wake(sem, wake_type, wake_q); 982 } 983 984 /* 985 * Wait for the read lock to be granted 986 */ 987 static struct rw_semaphore __sched * 988 rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state) 989 { 990 long adjustment = -RWSEM_READER_BIAS; 991 long rcnt = (count >> RWSEM_READER_SHIFT); 992 struct rwsem_waiter waiter; 993 DEFINE_WAKE_Q(wake_q); 994 995 /* 996 * To prevent a constant stream of readers from starving a sleeping 997 * waiter, don't attempt optimistic lock stealing if the lock is 998 * currently owned by readers. 999 */ 1000 if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) && 1001 (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED)) 1002 goto queue; 1003 1004 /* 1005 * Reader optimistic lock stealing. 1006 */ 1007 if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) { 1008 rwsem_set_reader_owned(sem); 1009 lockevent_inc(rwsem_rlock_steal); 1010 1011 /* 1012 * Wake up other readers in the wait queue if it is 1013 * the first reader. 1014 */ 1015 if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) { 1016 raw_spin_lock_irq(&sem->wait_lock); 1017 if (!list_empty(&sem->wait_list)) 1018 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, 1019 &wake_q); 1020 raw_spin_unlock_irq(&sem->wait_lock); 1021 wake_up_q(&wake_q); 1022 } 1023 return sem; 1024 } 1025 1026 queue: 1027 waiter.task = current; 1028 waiter.type = RWSEM_WAITING_FOR_READ; 1029 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT; 1030 1031 raw_spin_lock_irq(&sem->wait_lock); 1032 if (list_empty(&sem->wait_list)) { 1033 /* 1034 * In case the wait queue is empty and the lock isn't owned 1035 * by a writer, this reader can exit the slowpath and return 1036 * immediately as its RWSEM_READER_BIAS has already been set 1037 * in the count. 1038 */ 1039 if (!(atomic_long_read(&sem->count) & RWSEM_WRITER_MASK)) { 1040 /* Provide lock ACQUIRE */ 1041 smp_acquire__after_ctrl_dep(); 1042 raw_spin_unlock_irq(&sem->wait_lock); 1043 rwsem_set_reader_owned(sem); 1044 lockevent_inc(rwsem_rlock_fast); 1045 return sem; 1046 } 1047 adjustment += RWSEM_FLAG_WAITERS; 1048 } 1049 rwsem_add_waiter(sem, &waiter); 1050 1051 /* we're now waiting on the lock, but no longer actively locking */ 1052 count = atomic_long_add_return(adjustment, &sem->count); 1053 1054 rwsem_cond_wake_waiter(sem, count, &wake_q); 1055 raw_spin_unlock_irq(&sem->wait_lock); 1056 1057 if (!wake_q_empty(&wake_q)) 1058 wake_up_q(&wake_q); 1059 1060 trace_contention_begin(sem, LCB_F_READ); 1061 1062 /* wait to be given the lock */ 1063 for (;;) { 1064 set_current_state(state); 1065 if (!smp_load_acquire(&waiter.task)) { 1066 /* Matches rwsem_mark_wake()'s smp_store_release(). */ 1067 break; 1068 } 1069 if (signal_pending_state(state, current)) { 1070 raw_spin_lock_irq(&sem->wait_lock); 1071 if (waiter.task) 1072 goto out_nolock; 1073 raw_spin_unlock_irq(&sem->wait_lock); 1074 /* Ordered by sem->wait_lock against rwsem_mark_wake(). */ 1075 break; 1076 } 1077 schedule(); 1078 lockevent_inc(rwsem_sleep_reader); 1079 } 1080 1081 __set_current_state(TASK_RUNNING); 1082 lockevent_inc(rwsem_rlock); 1083 trace_contention_end(sem, 0); 1084 return sem; 1085 1086 out_nolock: 1087 rwsem_del_wake_waiter(sem, &waiter, &wake_q); 1088 __set_current_state(TASK_RUNNING); 1089 lockevent_inc(rwsem_rlock_fail); 1090 trace_contention_end(sem, -EINTR); 1091 return ERR_PTR(-EINTR); 1092 } 1093 1094 /* 1095 * Wait until we successfully acquire the write lock 1096 */ 1097 static struct rw_semaphore __sched * 1098 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state) 1099 { 1100 struct rwsem_waiter waiter; 1101 DEFINE_WAKE_Q(wake_q); 1102 1103 /* do optimistic spinning and steal lock if possible */ 1104 if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) { 1105 /* rwsem_optimistic_spin() implies ACQUIRE on success */ 1106 return sem; 1107 } 1108 1109 /* 1110 * Optimistic spinning failed, proceed to the slowpath 1111 * and block until we can acquire the sem. 1112 */ 1113 waiter.task = current; 1114 waiter.type = RWSEM_WAITING_FOR_WRITE; 1115 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT; 1116 waiter.handoff_set = false; 1117 1118 raw_spin_lock_irq(&sem->wait_lock); 1119 rwsem_add_waiter(sem, &waiter); 1120 1121 /* we're now waiting on the lock */ 1122 if (rwsem_first_waiter(sem) != &waiter) { 1123 rwsem_cond_wake_waiter(sem, atomic_long_read(&sem->count), 1124 &wake_q); 1125 if (!wake_q_empty(&wake_q)) { 1126 /* 1127 * We want to minimize wait_lock hold time especially 1128 * when a large number of readers are to be woken up. 1129 */ 1130 raw_spin_unlock_irq(&sem->wait_lock); 1131 wake_up_q(&wake_q); 1132 raw_spin_lock_irq(&sem->wait_lock); 1133 } 1134 } else { 1135 atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count); 1136 } 1137 1138 /* wait until we successfully acquire the lock */ 1139 set_current_state(state); 1140 trace_contention_begin(sem, LCB_F_WRITE); 1141 1142 for (;;) { 1143 if (rwsem_try_write_lock(sem, &waiter)) { 1144 /* rwsem_try_write_lock() implies ACQUIRE on success */ 1145 break; 1146 } 1147 1148 raw_spin_unlock_irq(&sem->wait_lock); 1149 1150 if (signal_pending_state(state, current)) 1151 goto out_nolock; 1152 1153 /* 1154 * After setting the handoff bit and failing to acquire 1155 * the lock, attempt to spin on owner to accelerate lock 1156 * transfer. If the previous owner is a on-cpu writer and it 1157 * has just released the lock, OWNER_NULL will be returned. 1158 * In this case, we attempt to acquire the lock again 1159 * without sleeping. 1160 */ 1161 if (waiter.handoff_set) { 1162 enum owner_state owner_state; 1163 1164 preempt_disable(); 1165 owner_state = rwsem_spin_on_owner(sem); 1166 preempt_enable(); 1167 1168 if (owner_state == OWNER_NULL) 1169 goto trylock_again; 1170 } 1171 1172 schedule(); 1173 lockevent_inc(rwsem_sleep_writer); 1174 set_current_state(state); 1175 trylock_again: 1176 raw_spin_lock_irq(&sem->wait_lock); 1177 } 1178 __set_current_state(TASK_RUNNING); 1179 raw_spin_unlock_irq(&sem->wait_lock); 1180 lockevent_inc(rwsem_wlock); 1181 trace_contention_end(sem, 0); 1182 return sem; 1183 1184 out_nolock: 1185 __set_current_state(TASK_RUNNING); 1186 raw_spin_lock_irq(&sem->wait_lock); 1187 rwsem_del_wake_waiter(sem, &waiter, &wake_q); 1188 lockevent_inc(rwsem_wlock_fail); 1189 trace_contention_end(sem, -EINTR); 1190 return ERR_PTR(-EINTR); 1191 } 1192 1193 /* 1194 * handle waking up a waiter on the semaphore 1195 * - up_read/up_write has decremented the active part of count if we come here 1196 */ 1197 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem) 1198 { 1199 unsigned long flags; 1200 DEFINE_WAKE_Q(wake_q); 1201 1202 raw_spin_lock_irqsave(&sem->wait_lock, flags); 1203 1204 if (!list_empty(&sem->wait_list)) 1205 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); 1206 1207 raw_spin_unlock_irqrestore(&sem->wait_lock, flags); 1208 wake_up_q(&wake_q); 1209 1210 return sem; 1211 } 1212 1213 /* 1214 * downgrade a write lock into a read lock 1215 * - caller incremented waiting part of count and discovered it still negative 1216 * - just wake up any readers at the front of the queue 1217 */ 1218 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem) 1219 { 1220 unsigned long flags; 1221 DEFINE_WAKE_Q(wake_q); 1222 1223 raw_spin_lock_irqsave(&sem->wait_lock, flags); 1224 1225 if (!list_empty(&sem->wait_list)) 1226 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q); 1227 1228 raw_spin_unlock_irqrestore(&sem->wait_lock, flags); 1229 wake_up_q(&wake_q); 1230 1231 return sem; 1232 } 1233 1234 /* 1235 * lock for reading 1236 */ 1237 static inline int __down_read_common(struct rw_semaphore *sem, int state) 1238 { 1239 long count; 1240 1241 if (!rwsem_read_trylock(sem, &count)) { 1242 if (IS_ERR(rwsem_down_read_slowpath(sem, count, state))) 1243 return -EINTR; 1244 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1245 } 1246 return 0; 1247 } 1248 1249 static inline void __down_read(struct rw_semaphore *sem) 1250 { 1251 __down_read_common(sem, TASK_UNINTERRUPTIBLE); 1252 } 1253 1254 static inline int __down_read_interruptible(struct rw_semaphore *sem) 1255 { 1256 return __down_read_common(sem, TASK_INTERRUPTIBLE); 1257 } 1258 1259 static inline int __down_read_killable(struct rw_semaphore *sem) 1260 { 1261 return __down_read_common(sem, TASK_KILLABLE); 1262 } 1263 1264 static inline int __down_read_trylock(struct rw_semaphore *sem) 1265 { 1266 long tmp; 1267 1268 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1269 1270 tmp = atomic_long_read(&sem->count); 1271 while (!(tmp & RWSEM_READ_FAILED_MASK)) { 1272 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, 1273 tmp + RWSEM_READER_BIAS)) { 1274 rwsem_set_reader_owned(sem); 1275 return 1; 1276 } 1277 } 1278 return 0; 1279 } 1280 1281 /* 1282 * lock for writing 1283 */ 1284 static inline int __down_write_common(struct rw_semaphore *sem, int state) 1285 { 1286 if (unlikely(!rwsem_write_trylock(sem))) { 1287 if (IS_ERR(rwsem_down_write_slowpath(sem, state))) 1288 return -EINTR; 1289 } 1290 1291 return 0; 1292 } 1293 1294 static inline void __down_write(struct rw_semaphore *sem) 1295 { 1296 __down_write_common(sem, TASK_UNINTERRUPTIBLE); 1297 } 1298 1299 static inline int __down_write_killable(struct rw_semaphore *sem) 1300 { 1301 return __down_write_common(sem, TASK_KILLABLE); 1302 } 1303 1304 static inline int __down_write_trylock(struct rw_semaphore *sem) 1305 { 1306 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1307 return rwsem_write_trylock(sem); 1308 } 1309 1310 /* 1311 * unlock after reading 1312 */ 1313 static inline void __up_read(struct rw_semaphore *sem) 1314 { 1315 long tmp; 1316 1317 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1318 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1319 1320 rwsem_clear_reader_owned(sem); 1321 tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count); 1322 DEBUG_RWSEMS_WARN_ON(tmp < 0, sem); 1323 if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) == 1324 RWSEM_FLAG_WAITERS)) { 1325 clear_nonspinnable(sem); 1326 rwsem_wake(sem); 1327 } 1328 } 1329 1330 /* 1331 * unlock after writing 1332 */ 1333 static inline void __up_write(struct rw_semaphore *sem) 1334 { 1335 long tmp; 1336 1337 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1338 /* 1339 * sem->owner may differ from current if the ownership is transferred 1340 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits. 1341 */ 1342 DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) && 1343 !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem); 1344 1345 rwsem_clear_owner(sem); 1346 tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count); 1347 if (unlikely(tmp & RWSEM_FLAG_WAITERS)) 1348 rwsem_wake(sem); 1349 } 1350 1351 /* 1352 * downgrade write lock to read lock 1353 */ 1354 static inline void __downgrade_write(struct rw_semaphore *sem) 1355 { 1356 long tmp; 1357 1358 /* 1359 * When downgrading from exclusive to shared ownership, 1360 * anything inside the write-locked region cannot leak 1361 * into the read side. In contrast, anything in the 1362 * read-locked region is ok to be re-ordered into the 1363 * write side. As such, rely on RELEASE semantics. 1364 */ 1365 DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem); 1366 tmp = atomic_long_fetch_add_release( 1367 -RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count); 1368 rwsem_set_reader_owned(sem); 1369 if (tmp & RWSEM_FLAG_WAITERS) 1370 rwsem_downgrade_wake(sem); 1371 } 1372 1373 #else /* !CONFIG_PREEMPT_RT */ 1374 1375 #define RT_MUTEX_BUILD_MUTEX 1376 #include "rtmutex.c" 1377 1378 #define rwbase_set_and_save_current_state(state) \ 1379 set_current_state(state) 1380 1381 #define rwbase_restore_current_state() \ 1382 __set_current_state(TASK_RUNNING) 1383 1384 #define rwbase_rtmutex_lock_state(rtm, state) \ 1385 __rt_mutex_lock(rtm, state) 1386 1387 #define rwbase_rtmutex_slowlock_locked(rtm, state) \ 1388 __rt_mutex_slowlock_locked(rtm, NULL, state) 1389 1390 #define rwbase_rtmutex_unlock(rtm) \ 1391 __rt_mutex_unlock(rtm) 1392 1393 #define rwbase_rtmutex_trylock(rtm) \ 1394 __rt_mutex_trylock(rtm) 1395 1396 #define rwbase_signal_pending_state(state, current) \ 1397 signal_pending_state(state, current) 1398 1399 #define rwbase_schedule() \ 1400 schedule() 1401 1402 #include "rwbase_rt.c" 1403 1404 void __init_rwsem(struct rw_semaphore *sem, const char *name, 1405 struct lock_class_key *key) 1406 { 1407 init_rwbase_rt(&(sem)->rwbase); 1408 1409 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1410 debug_check_no_locks_freed((void *)sem, sizeof(*sem)); 1411 lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP); 1412 #endif 1413 } 1414 EXPORT_SYMBOL(__init_rwsem); 1415 1416 static inline void __down_read(struct rw_semaphore *sem) 1417 { 1418 rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE); 1419 } 1420 1421 static inline int __down_read_interruptible(struct rw_semaphore *sem) 1422 { 1423 return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE); 1424 } 1425 1426 static inline int __down_read_killable(struct rw_semaphore *sem) 1427 { 1428 return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE); 1429 } 1430 1431 static inline int __down_read_trylock(struct rw_semaphore *sem) 1432 { 1433 return rwbase_read_trylock(&sem->rwbase); 1434 } 1435 1436 static inline void __up_read(struct rw_semaphore *sem) 1437 { 1438 rwbase_read_unlock(&sem->rwbase, TASK_NORMAL); 1439 } 1440 1441 static inline void __sched __down_write(struct rw_semaphore *sem) 1442 { 1443 rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE); 1444 } 1445 1446 static inline int __sched __down_write_killable(struct rw_semaphore *sem) 1447 { 1448 return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE); 1449 } 1450 1451 static inline int __down_write_trylock(struct rw_semaphore *sem) 1452 { 1453 return rwbase_write_trylock(&sem->rwbase); 1454 } 1455 1456 static inline void __up_write(struct rw_semaphore *sem) 1457 { 1458 rwbase_write_unlock(&sem->rwbase); 1459 } 1460 1461 static inline void __downgrade_write(struct rw_semaphore *sem) 1462 { 1463 rwbase_write_downgrade(&sem->rwbase); 1464 } 1465 1466 /* Debug stubs for the common API */ 1467 #define DEBUG_RWSEMS_WARN_ON(c, sem) 1468 1469 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem, 1470 struct task_struct *owner) 1471 { 1472 } 1473 1474 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem) 1475 { 1476 int count = atomic_read(&sem->rwbase.readers); 1477 1478 return count < 0 && count != READER_BIAS; 1479 } 1480 1481 #endif /* CONFIG_PREEMPT_RT */ 1482 1483 /* 1484 * lock for reading 1485 */ 1486 void __sched down_read(struct rw_semaphore *sem) 1487 { 1488 might_sleep(); 1489 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1490 1491 LOCK_CONTENDED(sem, __down_read_trylock, __down_read); 1492 } 1493 EXPORT_SYMBOL(down_read); 1494 1495 int __sched down_read_interruptible(struct rw_semaphore *sem) 1496 { 1497 might_sleep(); 1498 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1499 1500 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) { 1501 rwsem_release(&sem->dep_map, _RET_IP_); 1502 return -EINTR; 1503 } 1504 1505 return 0; 1506 } 1507 EXPORT_SYMBOL(down_read_interruptible); 1508 1509 int __sched down_read_killable(struct rw_semaphore *sem) 1510 { 1511 might_sleep(); 1512 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1513 1514 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) { 1515 rwsem_release(&sem->dep_map, _RET_IP_); 1516 return -EINTR; 1517 } 1518 1519 return 0; 1520 } 1521 EXPORT_SYMBOL(down_read_killable); 1522 1523 /* 1524 * trylock for reading -- returns 1 if successful, 0 if contention 1525 */ 1526 int down_read_trylock(struct rw_semaphore *sem) 1527 { 1528 int ret = __down_read_trylock(sem); 1529 1530 if (ret == 1) 1531 rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_); 1532 return ret; 1533 } 1534 EXPORT_SYMBOL(down_read_trylock); 1535 1536 /* 1537 * lock for writing 1538 */ 1539 void __sched down_write(struct rw_semaphore *sem) 1540 { 1541 might_sleep(); 1542 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); 1543 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1544 } 1545 EXPORT_SYMBOL(down_write); 1546 1547 /* 1548 * lock for writing 1549 */ 1550 int __sched down_write_killable(struct rw_semaphore *sem) 1551 { 1552 might_sleep(); 1553 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); 1554 1555 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, 1556 __down_write_killable)) { 1557 rwsem_release(&sem->dep_map, _RET_IP_); 1558 return -EINTR; 1559 } 1560 1561 return 0; 1562 } 1563 EXPORT_SYMBOL(down_write_killable); 1564 1565 /* 1566 * trylock for writing -- returns 1 if successful, 0 if contention 1567 */ 1568 int down_write_trylock(struct rw_semaphore *sem) 1569 { 1570 int ret = __down_write_trylock(sem); 1571 1572 if (ret == 1) 1573 rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_); 1574 1575 return ret; 1576 } 1577 EXPORT_SYMBOL(down_write_trylock); 1578 1579 /* 1580 * release a read lock 1581 */ 1582 void up_read(struct rw_semaphore *sem) 1583 { 1584 rwsem_release(&sem->dep_map, _RET_IP_); 1585 __up_read(sem); 1586 } 1587 EXPORT_SYMBOL(up_read); 1588 1589 /* 1590 * release a write lock 1591 */ 1592 void up_write(struct rw_semaphore *sem) 1593 { 1594 rwsem_release(&sem->dep_map, _RET_IP_); 1595 __up_write(sem); 1596 } 1597 EXPORT_SYMBOL(up_write); 1598 1599 /* 1600 * downgrade write lock to read lock 1601 */ 1602 void downgrade_write(struct rw_semaphore *sem) 1603 { 1604 lock_downgrade(&sem->dep_map, _RET_IP_); 1605 __downgrade_write(sem); 1606 } 1607 EXPORT_SYMBOL(downgrade_write); 1608 1609 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1610 1611 void down_read_nested(struct rw_semaphore *sem, int subclass) 1612 { 1613 might_sleep(); 1614 rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_); 1615 LOCK_CONTENDED(sem, __down_read_trylock, __down_read); 1616 } 1617 EXPORT_SYMBOL(down_read_nested); 1618 1619 int down_read_killable_nested(struct rw_semaphore *sem, int subclass) 1620 { 1621 might_sleep(); 1622 rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_); 1623 1624 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) { 1625 rwsem_release(&sem->dep_map, _RET_IP_); 1626 return -EINTR; 1627 } 1628 1629 return 0; 1630 } 1631 EXPORT_SYMBOL(down_read_killable_nested); 1632 1633 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest) 1634 { 1635 might_sleep(); 1636 rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_); 1637 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1638 } 1639 EXPORT_SYMBOL(_down_write_nest_lock); 1640 1641 void down_read_non_owner(struct rw_semaphore *sem) 1642 { 1643 might_sleep(); 1644 __down_read(sem); 1645 __rwsem_set_reader_owned(sem, NULL); 1646 } 1647 EXPORT_SYMBOL(down_read_non_owner); 1648 1649 void down_write_nested(struct rw_semaphore *sem, int subclass) 1650 { 1651 might_sleep(); 1652 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); 1653 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1654 } 1655 EXPORT_SYMBOL(down_write_nested); 1656 1657 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass) 1658 { 1659 might_sleep(); 1660 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); 1661 1662 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, 1663 __down_write_killable)) { 1664 rwsem_release(&sem->dep_map, _RET_IP_); 1665 return -EINTR; 1666 } 1667 1668 return 0; 1669 } 1670 EXPORT_SYMBOL(down_write_killable_nested); 1671 1672 void up_read_non_owner(struct rw_semaphore *sem) 1673 { 1674 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1675 __up_read(sem); 1676 } 1677 EXPORT_SYMBOL(up_read_non_owner); 1678 1679 #endif 1680