xref: /openbmc/linux/kernel/locking/rwsem.c (revision e65e175b07bef5974045cc42238de99057669ca7)
1 // SPDX-License-Identifier: GPL-2.0
2 /* kernel/rwsem.c: R/W semaphores, public implementation
3  *
4  * Written by David Howells (dhowells@redhat.com).
5  * Derived from asm-i386/semaphore.h
6  *
7  * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
8  * and Michel Lespinasse <walken@google.com>
9  *
10  * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
11  * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
12  *
13  * Rwsem count bit fields re-definition and rwsem rearchitecture by
14  * Waiman Long <longman@redhat.com> and
15  * Peter Zijlstra <peterz@infradead.org>.
16  */
17 
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/sched.h>
21 #include <linux/sched/rt.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/clock.h>
27 #include <linux/export.h>
28 #include <linux/rwsem.h>
29 #include <linux/atomic.h>
30 #include <trace/events/lock.h>
31 
32 #ifndef CONFIG_PREEMPT_RT
33 #include "lock_events.h"
34 
35 /*
36  * The least significant 2 bits of the owner value has the following
37  * meanings when set.
38  *  - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers
39  *  - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock
40  *
41  * When the rwsem is reader-owned and a spinning writer has timed out,
42  * the nonspinnable bit will be set to disable optimistic spinning.
43 
44  * When a writer acquires a rwsem, it puts its task_struct pointer
45  * into the owner field. It is cleared after an unlock.
46  *
47  * When a reader acquires a rwsem, it will also puts its task_struct
48  * pointer into the owner field with the RWSEM_READER_OWNED bit set.
49  * On unlock, the owner field will largely be left untouched. So
50  * for a free or reader-owned rwsem, the owner value may contain
51  * information about the last reader that acquires the rwsem.
52  *
53  * That information may be helpful in debugging cases where the system
54  * seems to hang on a reader owned rwsem especially if only one reader
55  * is involved. Ideally we would like to track all the readers that own
56  * a rwsem, but the overhead is simply too big.
57  *
58  * A fast path reader optimistic lock stealing is supported when the rwsem
59  * is previously owned by a writer and the following conditions are met:
60  *  - rwsem is not currently writer owned
61  *  - the handoff isn't set.
62  */
63 #define RWSEM_READER_OWNED	(1UL << 0)
64 #define RWSEM_NONSPINNABLE	(1UL << 1)
65 #define RWSEM_OWNER_FLAGS_MASK	(RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
66 
67 #ifdef CONFIG_DEBUG_RWSEMS
68 # define DEBUG_RWSEMS_WARN_ON(c, sem)	do {			\
69 	if (!debug_locks_silent &&				\
70 	    WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
71 		#c, atomic_long_read(&(sem)->count),		\
72 		(unsigned long) sem->magic,			\
73 		atomic_long_read(&(sem)->owner), (long)current,	\
74 		list_empty(&(sem)->wait_list) ? "" : "not "))	\
75 			debug_locks_off();			\
76 	} while (0)
77 #else
78 # define DEBUG_RWSEMS_WARN_ON(c, sem)
79 #endif
80 
81 /*
82  * On 64-bit architectures, the bit definitions of the count are:
83  *
84  * Bit  0    - writer locked bit
85  * Bit  1    - waiters present bit
86  * Bit  2    - lock handoff bit
87  * Bits 3-7  - reserved
88  * Bits 8-62 - 55-bit reader count
89  * Bit  63   - read fail bit
90  *
91  * On 32-bit architectures, the bit definitions of the count are:
92  *
93  * Bit  0    - writer locked bit
94  * Bit  1    - waiters present bit
95  * Bit  2    - lock handoff bit
96  * Bits 3-7  - reserved
97  * Bits 8-30 - 23-bit reader count
98  * Bit  31   - read fail bit
99  *
100  * It is not likely that the most significant bit (read fail bit) will ever
101  * be set. This guard bit is still checked anyway in the down_read() fastpath
102  * just in case we need to use up more of the reader bits for other purpose
103  * in the future.
104  *
105  * atomic_long_fetch_add() is used to obtain reader lock, whereas
106  * atomic_long_cmpxchg() will be used to obtain writer lock.
107  *
108  * There are three places where the lock handoff bit may be set or cleared.
109  * 1) rwsem_mark_wake() for readers		-- set, clear
110  * 2) rwsem_try_write_lock() for writers	-- set, clear
111  * 3) rwsem_del_waiter()			-- clear
112  *
113  * For all the above cases, wait_lock will be held. A writer must also
114  * be the first one in the wait_list to be eligible for setting the handoff
115  * bit. So concurrent setting/clearing of handoff bit is not possible.
116  */
117 #define RWSEM_WRITER_LOCKED	(1UL << 0)
118 #define RWSEM_FLAG_WAITERS	(1UL << 1)
119 #define RWSEM_FLAG_HANDOFF	(1UL << 2)
120 #define RWSEM_FLAG_READFAIL	(1UL << (BITS_PER_LONG - 1))
121 
122 #define RWSEM_READER_SHIFT	8
123 #define RWSEM_READER_BIAS	(1UL << RWSEM_READER_SHIFT)
124 #define RWSEM_READER_MASK	(~(RWSEM_READER_BIAS - 1))
125 #define RWSEM_WRITER_MASK	RWSEM_WRITER_LOCKED
126 #define RWSEM_LOCK_MASK		(RWSEM_WRITER_MASK|RWSEM_READER_MASK)
127 #define RWSEM_READ_FAILED_MASK	(RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
128 				 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
129 
130 /*
131  * All writes to owner are protected by WRITE_ONCE() to make sure that
132  * store tearing can't happen as optimistic spinners may read and use
133  * the owner value concurrently without lock. Read from owner, however,
134  * may not need READ_ONCE() as long as the pointer value is only used
135  * for comparison and isn't being dereferenced.
136  *
137  * Both rwsem_{set,clear}_owner() functions should be in the same
138  * preempt disable section as the atomic op that changes sem->count.
139  */
140 static inline void rwsem_set_owner(struct rw_semaphore *sem)
141 {
142 	lockdep_assert_preemption_disabled();
143 	atomic_long_set(&sem->owner, (long)current);
144 }
145 
146 static inline void rwsem_clear_owner(struct rw_semaphore *sem)
147 {
148 	lockdep_assert_preemption_disabled();
149 	atomic_long_set(&sem->owner, 0);
150 }
151 
152 /*
153  * Test the flags in the owner field.
154  */
155 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags)
156 {
157 	return atomic_long_read(&sem->owner) & flags;
158 }
159 
160 /*
161  * The task_struct pointer of the last owning reader will be left in
162  * the owner field.
163  *
164  * Note that the owner value just indicates the task has owned the rwsem
165  * previously, it may not be the real owner or one of the real owners
166  * anymore when that field is examined, so take it with a grain of salt.
167  *
168  * The reader non-spinnable bit is preserved.
169  */
170 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
171 					    struct task_struct *owner)
172 {
173 	unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED |
174 		(atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE);
175 
176 	atomic_long_set(&sem->owner, val);
177 }
178 
179 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem)
180 {
181 	__rwsem_set_reader_owned(sem, current);
182 }
183 
184 /*
185  * Return true if the rwsem is owned by a reader.
186  */
187 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
188 {
189 #ifdef CONFIG_DEBUG_RWSEMS
190 	/*
191 	 * Check the count to see if it is write-locked.
192 	 */
193 	long count = atomic_long_read(&sem->count);
194 
195 	if (count & RWSEM_WRITER_MASK)
196 		return false;
197 #endif
198 	return rwsem_test_oflags(sem, RWSEM_READER_OWNED);
199 }
200 
201 #ifdef CONFIG_DEBUG_RWSEMS
202 /*
203  * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there
204  * is a task pointer in owner of a reader-owned rwsem, it will be the
205  * real owner or one of the real owners. The only exception is when the
206  * unlock is done by up_read_non_owner().
207  */
208 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
209 {
210 	unsigned long val = atomic_long_read(&sem->owner);
211 
212 	while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) {
213 		if (atomic_long_try_cmpxchg(&sem->owner, &val,
214 					    val & RWSEM_OWNER_FLAGS_MASK))
215 			return;
216 	}
217 }
218 #else
219 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
220 {
221 }
222 #endif
223 
224 /*
225  * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
226  * remains set. Otherwise, the operation will be aborted.
227  */
228 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem)
229 {
230 	unsigned long owner = atomic_long_read(&sem->owner);
231 
232 	do {
233 		if (!(owner & RWSEM_READER_OWNED))
234 			break;
235 		if (owner & RWSEM_NONSPINNABLE)
236 			break;
237 	} while (!atomic_long_try_cmpxchg(&sem->owner, &owner,
238 					  owner | RWSEM_NONSPINNABLE));
239 }
240 
241 static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp)
242 {
243 	*cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count);
244 
245 	if (WARN_ON_ONCE(*cntp < 0))
246 		rwsem_set_nonspinnable(sem);
247 
248 	if (!(*cntp & RWSEM_READ_FAILED_MASK)) {
249 		rwsem_set_reader_owned(sem);
250 		return true;
251 	}
252 
253 	return false;
254 }
255 
256 static inline bool rwsem_write_trylock(struct rw_semaphore *sem)
257 {
258 	long tmp = RWSEM_UNLOCKED_VALUE;
259 	bool ret = false;
260 
261 	preempt_disable();
262 	if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) {
263 		rwsem_set_owner(sem);
264 		ret = true;
265 	}
266 
267 	preempt_enable();
268 	return ret;
269 }
270 
271 /*
272  * Return just the real task structure pointer of the owner
273  */
274 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem)
275 {
276 	return (struct task_struct *)
277 		(atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK);
278 }
279 
280 /*
281  * Return the real task structure pointer of the owner and the embedded
282  * flags in the owner. pflags must be non-NULL.
283  */
284 static inline struct task_struct *
285 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags)
286 {
287 	unsigned long owner = atomic_long_read(&sem->owner);
288 
289 	*pflags = owner & RWSEM_OWNER_FLAGS_MASK;
290 	return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK);
291 }
292 
293 /*
294  * Guide to the rw_semaphore's count field.
295  *
296  * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
297  * by a writer.
298  *
299  * The lock is owned by readers when
300  * (1) the RWSEM_WRITER_LOCKED isn't set in count,
301  * (2) some of the reader bits are set in count, and
302  * (3) the owner field has RWSEM_READ_OWNED bit set.
303  *
304  * Having some reader bits set is not enough to guarantee a readers owned
305  * lock as the readers may be in the process of backing out from the count
306  * and a writer has just released the lock. So another writer may steal
307  * the lock immediately after that.
308  */
309 
310 /*
311  * Initialize an rwsem:
312  */
313 void __init_rwsem(struct rw_semaphore *sem, const char *name,
314 		  struct lock_class_key *key)
315 {
316 #ifdef CONFIG_DEBUG_LOCK_ALLOC
317 	/*
318 	 * Make sure we are not reinitializing a held semaphore:
319 	 */
320 	debug_check_no_locks_freed((void *)sem, sizeof(*sem));
321 	lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
322 #endif
323 #ifdef CONFIG_DEBUG_RWSEMS
324 	sem->magic = sem;
325 #endif
326 	atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
327 	raw_spin_lock_init(&sem->wait_lock);
328 	INIT_LIST_HEAD(&sem->wait_list);
329 	atomic_long_set(&sem->owner, 0L);
330 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
331 	osq_lock_init(&sem->osq);
332 #endif
333 }
334 EXPORT_SYMBOL(__init_rwsem);
335 
336 enum rwsem_waiter_type {
337 	RWSEM_WAITING_FOR_WRITE,
338 	RWSEM_WAITING_FOR_READ
339 };
340 
341 struct rwsem_waiter {
342 	struct list_head list;
343 	struct task_struct *task;
344 	enum rwsem_waiter_type type;
345 	unsigned long timeout;
346 	bool handoff_set;
347 };
348 #define rwsem_first_waiter(sem) \
349 	list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
350 
351 enum rwsem_wake_type {
352 	RWSEM_WAKE_ANY,		/* Wake whatever's at head of wait list */
353 	RWSEM_WAKE_READERS,	/* Wake readers only */
354 	RWSEM_WAKE_READ_OWNED	/* Waker thread holds the read lock */
355 };
356 
357 /*
358  * The typical HZ value is either 250 or 1000. So set the minimum waiting
359  * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
360  * queue before initiating the handoff protocol.
361  */
362 #define RWSEM_WAIT_TIMEOUT	DIV_ROUND_UP(HZ, 250)
363 
364 /*
365  * Magic number to batch-wakeup waiting readers, even when writers are
366  * also present in the queue. This both limits the amount of work the
367  * waking thread must do and also prevents any potential counter overflow,
368  * however unlikely.
369  */
370 #define MAX_READERS_WAKEUP	0x100
371 
372 static inline void
373 rwsem_add_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
374 {
375 	lockdep_assert_held(&sem->wait_lock);
376 	list_add_tail(&waiter->list, &sem->wait_list);
377 	/* caller will set RWSEM_FLAG_WAITERS */
378 }
379 
380 /*
381  * Remove a waiter from the wait_list and clear flags.
382  *
383  * Both rwsem_mark_wake() and rwsem_try_write_lock() contain a full 'copy' of
384  * this function. Modify with care.
385  *
386  * Return: true if wait_list isn't empty and false otherwise
387  */
388 static inline bool
389 rwsem_del_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
390 {
391 	lockdep_assert_held(&sem->wait_lock);
392 	list_del(&waiter->list);
393 	if (likely(!list_empty(&sem->wait_list)))
394 		return true;
395 
396 	atomic_long_andnot(RWSEM_FLAG_HANDOFF | RWSEM_FLAG_WAITERS, &sem->count);
397 	return false;
398 }
399 
400 /*
401  * handle the lock release when processes blocked on it that can now run
402  * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
403  *   have been set.
404  * - there must be someone on the queue
405  * - the wait_lock must be held by the caller
406  * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
407  *   to actually wakeup the blocked task(s) and drop the reference count,
408  *   preferably when the wait_lock is released
409  * - woken process blocks are discarded from the list after having task zeroed
410  * - writers are only marked woken if downgrading is false
411  *
412  * Implies rwsem_del_waiter() for all woken readers.
413  */
414 static void rwsem_mark_wake(struct rw_semaphore *sem,
415 			    enum rwsem_wake_type wake_type,
416 			    struct wake_q_head *wake_q)
417 {
418 	struct rwsem_waiter *waiter, *tmp;
419 	long oldcount, woken = 0, adjustment = 0;
420 	struct list_head wlist;
421 
422 	lockdep_assert_held(&sem->wait_lock);
423 
424 	/*
425 	 * Take a peek at the queue head waiter such that we can determine
426 	 * the wakeup(s) to perform.
427 	 */
428 	waiter = rwsem_first_waiter(sem);
429 
430 	if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
431 		if (wake_type == RWSEM_WAKE_ANY) {
432 			/*
433 			 * Mark writer at the front of the queue for wakeup.
434 			 * Until the task is actually later awoken later by
435 			 * the caller, other writers are able to steal it.
436 			 * Readers, on the other hand, will block as they
437 			 * will notice the queued writer.
438 			 */
439 			wake_q_add(wake_q, waiter->task);
440 			lockevent_inc(rwsem_wake_writer);
441 		}
442 
443 		return;
444 	}
445 
446 	/*
447 	 * No reader wakeup if there are too many of them already.
448 	 */
449 	if (unlikely(atomic_long_read(&sem->count) < 0))
450 		return;
451 
452 	/*
453 	 * Writers might steal the lock before we grant it to the next reader.
454 	 * We prefer to do the first reader grant before counting readers
455 	 * so we can bail out early if a writer stole the lock.
456 	 */
457 	if (wake_type != RWSEM_WAKE_READ_OWNED) {
458 		struct task_struct *owner;
459 
460 		adjustment = RWSEM_READER_BIAS;
461 		oldcount = atomic_long_fetch_add(adjustment, &sem->count);
462 		if (unlikely(oldcount & RWSEM_WRITER_MASK)) {
463 			/*
464 			 * When we've been waiting "too" long (for writers
465 			 * to give up the lock), request a HANDOFF to
466 			 * force the issue.
467 			 */
468 			if (time_after(jiffies, waiter->timeout)) {
469 				if (!(oldcount & RWSEM_FLAG_HANDOFF)) {
470 					adjustment -= RWSEM_FLAG_HANDOFF;
471 					lockevent_inc(rwsem_rlock_handoff);
472 				}
473 				waiter->handoff_set = true;
474 			}
475 
476 			atomic_long_add(-adjustment, &sem->count);
477 			return;
478 		}
479 		/*
480 		 * Set it to reader-owned to give spinners an early
481 		 * indication that readers now have the lock.
482 		 * The reader nonspinnable bit seen at slowpath entry of
483 		 * the reader is copied over.
484 		 */
485 		owner = waiter->task;
486 		__rwsem_set_reader_owned(sem, owner);
487 	}
488 
489 	/*
490 	 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
491 	 * queue. We know that the woken will be at least 1 as we accounted
492 	 * for above. Note we increment the 'active part' of the count by the
493 	 * number of readers before waking any processes up.
494 	 *
495 	 * This is an adaptation of the phase-fair R/W locks where at the
496 	 * reader phase (first waiter is a reader), all readers are eligible
497 	 * to acquire the lock at the same time irrespective of their order
498 	 * in the queue. The writers acquire the lock according to their
499 	 * order in the queue.
500 	 *
501 	 * We have to do wakeup in 2 passes to prevent the possibility that
502 	 * the reader count may be decremented before it is incremented. It
503 	 * is because the to-be-woken waiter may not have slept yet. So it
504 	 * may see waiter->task got cleared, finish its critical section and
505 	 * do an unlock before the reader count increment.
506 	 *
507 	 * 1) Collect the read-waiters in a separate list, count them and
508 	 *    fully increment the reader count in rwsem.
509 	 * 2) For each waiters in the new list, clear waiter->task and
510 	 *    put them into wake_q to be woken up later.
511 	 */
512 	INIT_LIST_HEAD(&wlist);
513 	list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
514 		if (waiter->type == RWSEM_WAITING_FOR_WRITE)
515 			continue;
516 
517 		woken++;
518 		list_move_tail(&waiter->list, &wlist);
519 
520 		/*
521 		 * Limit # of readers that can be woken up per wakeup call.
522 		 */
523 		if (unlikely(woken >= MAX_READERS_WAKEUP))
524 			break;
525 	}
526 
527 	adjustment = woken * RWSEM_READER_BIAS - adjustment;
528 	lockevent_cond_inc(rwsem_wake_reader, woken);
529 
530 	oldcount = atomic_long_read(&sem->count);
531 	if (list_empty(&sem->wait_list)) {
532 		/*
533 		 * Combined with list_move_tail() above, this implies
534 		 * rwsem_del_waiter().
535 		 */
536 		adjustment -= RWSEM_FLAG_WAITERS;
537 		if (oldcount & RWSEM_FLAG_HANDOFF)
538 			adjustment -= RWSEM_FLAG_HANDOFF;
539 	} else if (woken) {
540 		/*
541 		 * When we've woken a reader, we no longer need to force
542 		 * writers to give up the lock and we can clear HANDOFF.
543 		 */
544 		if (oldcount & RWSEM_FLAG_HANDOFF)
545 			adjustment -= RWSEM_FLAG_HANDOFF;
546 	}
547 
548 	if (adjustment)
549 		atomic_long_add(adjustment, &sem->count);
550 
551 	/* 2nd pass */
552 	list_for_each_entry_safe(waiter, tmp, &wlist, list) {
553 		struct task_struct *tsk;
554 
555 		tsk = waiter->task;
556 		get_task_struct(tsk);
557 
558 		/*
559 		 * Ensure calling get_task_struct() before setting the reader
560 		 * waiter to nil such that rwsem_down_read_slowpath() cannot
561 		 * race with do_exit() by always holding a reference count
562 		 * to the task to wakeup.
563 		 */
564 		smp_store_release(&waiter->task, NULL);
565 		/*
566 		 * Ensure issuing the wakeup (either by us or someone else)
567 		 * after setting the reader waiter to nil.
568 		 */
569 		wake_q_add_safe(wake_q, tsk);
570 	}
571 }
572 
573 /*
574  * Remove a waiter and try to wake up other waiters in the wait queue
575  * This function is called from the out_nolock path of both the reader and
576  * writer slowpaths with wait_lock held. It releases the wait_lock and
577  * optionally wake up waiters before it returns.
578  */
579 static inline void
580 rwsem_del_wake_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter,
581 		      struct wake_q_head *wake_q)
582 		      __releases(&sem->wait_lock)
583 {
584 	bool first = rwsem_first_waiter(sem) == waiter;
585 
586 	wake_q_init(wake_q);
587 
588 	/*
589 	 * If the wait_list isn't empty and the waiter to be deleted is
590 	 * the first waiter, we wake up the remaining waiters as they may
591 	 * be eligible to acquire or spin on the lock.
592 	 */
593 	if (rwsem_del_waiter(sem, waiter) && first)
594 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, wake_q);
595 	raw_spin_unlock_irq(&sem->wait_lock);
596 	if (!wake_q_empty(wake_q))
597 		wake_up_q(wake_q);
598 }
599 
600 /*
601  * This function must be called with the sem->wait_lock held to prevent
602  * race conditions between checking the rwsem wait list and setting the
603  * sem->count accordingly.
604  *
605  * Implies rwsem_del_waiter() on success.
606  */
607 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
608 					struct rwsem_waiter *waiter)
609 {
610 	struct rwsem_waiter *first = rwsem_first_waiter(sem);
611 	long count, new;
612 
613 	lockdep_assert_held(&sem->wait_lock);
614 
615 	count = atomic_long_read(&sem->count);
616 	do {
617 		bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF);
618 
619 		if (has_handoff) {
620 			/*
621 			 * Honor handoff bit and yield only when the first
622 			 * waiter is the one that set it. Otherwisee, we
623 			 * still try to acquire the rwsem.
624 			 */
625 			if (first->handoff_set && (waiter != first))
626 				return false;
627 
628 			/*
629 			 * First waiter can inherit a previously set handoff
630 			 * bit and spin on rwsem if lock acquisition fails.
631 			 */
632 			if (waiter == first)
633 				waiter->handoff_set = true;
634 		}
635 
636 		new = count;
637 
638 		if (count & RWSEM_LOCK_MASK) {
639 			if (has_handoff || (!rt_task(waiter->task) &&
640 					    !time_after(jiffies, waiter->timeout)))
641 				return false;
642 
643 			new |= RWSEM_FLAG_HANDOFF;
644 		} else {
645 			new |= RWSEM_WRITER_LOCKED;
646 			new &= ~RWSEM_FLAG_HANDOFF;
647 
648 			if (list_is_singular(&sem->wait_list))
649 				new &= ~RWSEM_FLAG_WAITERS;
650 		}
651 	} while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new));
652 
653 	/*
654 	 * We have either acquired the lock with handoff bit cleared or
655 	 * set the handoff bit.
656 	 */
657 	if (new & RWSEM_FLAG_HANDOFF) {
658 		waiter->handoff_set = true;
659 		lockevent_inc(rwsem_wlock_handoff);
660 		return false;
661 	}
662 
663 	/*
664 	 * Have rwsem_try_write_lock() fully imply rwsem_del_waiter() on
665 	 * success.
666 	 */
667 	list_del(&waiter->list);
668 	rwsem_set_owner(sem);
669 	return true;
670 }
671 
672 /*
673  * The rwsem_spin_on_owner() function returns the following 4 values
674  * depending on the lock owner state.
675  *   OWNER_NULL  : owner is currently NULL
676  *   OWNER_WRITER: when owner changes and is a writer
677  *   OWNER_READER: when owner changes and the new owner may be a reader.
678  *   OWNER_NONSPINNABLE:
679  *		   when optimistic spinning has to stop because either the
680  *		   owner stops running, is unknown, or its timeslice has
681  *		   been used up.
682  */
683 enum owner_state {
684 	OWNER_NULL		= 1 << 0,
685 	OWNER_WRITER		= 1 << 1,
686 	OWNER_READER		= 1 << 2,
687 	OWNER_NONSPINNABLE	= 1 << 3,
688 };
689 
690 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
691 /*
692  * Try to acquire write lock before the writer has been put on wait queue.
693  */
694 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
695 {
696 	long count = atomic_long_read(&sem->count);
697 
698 	while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) {
699 		if (atomic_long_try_cmpxchg_acquire(&sem->count, &count,
700 					count | RWSEM_WRITER_LOCKED)) {
701 			rwsem_set_owner(sem);
702 			lockevent_inc(rwsem_opt_lock);
703 			return true;
704 		}
705 	}
706 	return false;
707 }
708 
709 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
710 {
711 	struct task_struct *owner;
712 	unsigned long flags;
713 	bool ret = true;
714 
715 	if (need_resched()) {
716 		lockevent_inc(rwsem_opt_fail);
717 		return false;
718 	}
719 
720 	preempt_disable();
721 	/*
722 	 * Disable preemption is equal to the RCU read-side crital section,
723 	 * thus the task_strcut structure won't go away.
724 	 */
725 	owner = rwsem_owner_flags(sem, &flags);
726 	/*
727 	 * Don't check the read-owner as the entry may be stale.
728 	 */
729 	if ((flags & RWSEM_NONSPINNABLE) ||
730 	    (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner)))
731 		ret = false;
732 	preempt_enable();
733 
734 	lockevent_cond_inc(rwsem_opt_fail, !ret);
735 	return ret;
736 }
737 
738 #define OWNER_SPINNABLE		(OWNER_NULL | OWNER_WRITER | OWNER_READER)
739 
740 static inline enum owner_state
741 rwsem_owner_state(struct task_struct *owner, unsigned long flags)
742 {
743 	if (flags & RWSEM_NONSPINNABLE)
744 		return OWNER_NONSPINNABLE;
745 
746 	if (flags & RWSEM_READER_OWNED)
747 		return OWNER_READER;
748 
749 	return owner ? OWNER_WRITER : OWNER_NULL;
750 }
751 
752 static noinline enum owner_state
753 rwsem_spin_on_owner(struct rw_semaphore *sem)
754 {
755 	struct task_struct *new, *owner;
756 	unsigned long flags, new_flags;
757 	enum owner_state state;
758 
759 	lockdep_assert_preemption_disabled();
760 
761 	owner = rwsem_owner_flags(sem, &flags);
762 	state = rwsem_owner_state(owner, flags);
763 	if (state != OWNER_WRITER)
764 		return state;
765 
766 	for (;;) {
767 		/*
768 		 * When a waiting writer set the handoff flag, it may spin
769 		 * on the owner as well. Once that writer acquires the lock,
770 		 * we can spin on it. So we don't need to quit even when the
771 		 * handoff bit is set.
772 		 */
773 		new = rwsem_owner_flags(sem, &new_flags);
774 		if ((new != owner) || (new_flags != flags)) {
775 			state = rwsem_owner_state(new, new_flags);
776 			break;
777 		}
778 
779 		/*
780 		 * Ensure we emit the owner->on_cpu, dereference _after_
781 		 * checking sem->owner still matches owner, if that fails,
782 		 * owner might point to free()d memory, if it still matches,
783 		 * our spinning context already disabled preemption which is
784 		 * equal to RCU read-side crital section ensures the memory
785 		 * stays valid.
786 		 */
787 		barrier();
788 
789 		if (need_resched() || !owner_on_cpu(owner)) {
790 			state = OWNER_NONSPINNABLE;
791 			break;
792 		}
793 
794 		cpu_relax();
795 	}
796 
797 	return state;
798 }
799 
800 /*
801  * Calculate reader-owned rwsem spinning threshold for writer
802  *
803  * The more readers own the rwsem, the longer it will take for them to
804  * wind down and free the rwsem. So the empirical formula used to
805  * determine the actual spinning time limit here is:
806  *
807  *   Spinning threshold = (10 + nr_readers/2)us
808  *
809  * The limit is capped to a maximum of 25us (30 readers). This is just
810  * a heuristic and is subjected to change in the future.
811  */
812 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem)
813 {
814 	long count = atomic_long_read(&sem->count);
815 	int readers = count >> RWSEM_READER_SHIFT;
816 	u64 delta;
817 
818 	if (readers > 30)
819 		readers = 30;
820 	delta = (20 + readers) * NSEC_PER_USEC / 2;
821 
822 	return sched_clock() + delta;
823 }
824 
825 static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
826 {
827 	bool taken = false;
828 	int prev_owner_state = OWNER_NULL;
829 	int loop = 0;
830 	u64 rspin_threshold = 0;
831 
832 	preempt_disable();
833 
834 	/* sem->wait_lock should not be held when doing optimistic spinning */
835 	if (!osq_lock(&sem->osq))
836 		goto done;
837 
838 	/*
839 	 * Optimistically spin on the owner field and attempt to acquire the
840 	 * lock whenever the owner changes. Spinning will be stopped when:
841 	 *  1) the owning writer isn't running; or
842 	 *  2) readers own the lock and spinning time has exceeded limit.
843 	 */
844 	for (;;) {
845 		enum owner_state owner_state;
846 
847 		owner_state = rwsem_spin_on_owner(sem);
848 		if (!(owner_state & OWNER_SPINNABLE))
849 			break;
850 
851 		/*
852 		 * Try to acquire the lock
853 		 */
854 		taken = rwsem_try_write_lock_unqueued(sem);
855 
856 		if (taken)
857 			break;
858 
859 		/*
860 		 * Time-based reader-owned rwsem optimistic spinning
861 		 */
862 		if (owner_state == OWNER_READER) {
863 			/*
864 			 * Re-initialize rspin_threshold every time when
865 			 * the owner state changes from non-reader to reader.
866 			 * This allows a writer to steal the lock in between
867 			 * 2 reader phases and have the threshold reset at
868 			 * the beginning of the 2nd reader phase.
869 			 */
870 			if (prev_owner_state != OWNER_READER) {
871 				if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
872 					break;
873 				rspin_threshold = rwsem_rspin_threshold(sem);
874 				loop = 0;
875 			}
876 
877 			/*
878 			 * Check time threshold once every 16 iterations to
879 			 * avoid calling sched_clock() too frequently so
880 			 * as to reduce the average latency between the times
881 			 * when the lock becomes free and when the spinner
882 			 * is ready to do a trylock.
883 			 */
884 			else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) {
885 				rwsem_set_nonspinnable(sem);
886 				lockevent_inc(rwsem_opt_nospin);
887 				break;
888 			}
889 		}
890 
891 		/*
892 		 * An RT task cannot do optimistic spinning if it cannot
893 		 * be sure the lock holder is running or live-lock may
894 		 * happen if the current task and the lock holder happen
895 		 * to run in the same CPU. However, aborting optimistic
896 		 * spinning while a NULL owner is detected may miss some
897 		 * opportunity where spinning can continue without causing
898 		 * problem.
899 		 *
900 		 * There are 2 possible cases where an RT task may be able
901 		 * to continue spinning.
902 		 *
903 		 * 1) The lock owner is in the process of releasing the
904 		 *    lock, sem->owner is cleared but the lock has not
905 		 *    been released yet.
906 		 * 2) The lock was free and owner cleared, but another
907 		 *    task just comes in and acquire the lock before
908 		 *    we try to get it. The new owner may be a spinnable
909 		 *    writer.
910 		 *
911 		 * To take advantage of two scenarios listed above, the RT
912 		 * task is made to retry one more time to see if it can
913 		 * acquire the lock or continue spinning on the new owning
914 		 * writer. Of course, if the time lag is long enough or the
915 		 * new owner is not a writer or spinnable, the RT task will
916 		 * quit spinning.
917 		 *
918 		 * If the owner is a writer, the need_resched() check is
919 		 * done inside rwsem_spin_on_owner(). If the owner is not
920 		 * a writer, need_resched() check needs to be done here.
921 		 */
922 		if (owner_state != OWNER_WRITER) {
923 			if (need_resched())
924 				break;
925 			if (rt_task(current) &&
926 			   (prev_owner_state != OWNER_WRITER))
927 				break;
928 		}
929 		prev_owner_state = owner_state;
930 
931 		/*
932 		 * The cpu_relax() call is a compiler barrier which forces
933 		 * everything in this loop to be re-loaded. We don't need
934 		 * memory barriers as we'll eventually observe the right
935 		 * values at the cost of a few extra spins.
936 		 */
937 		cpu_relax();
938 	}
939 	osq_unlock(&sem->osq);
940 done:
941 	preempt_enable();
942 	lockevent_cond_inc(rwsem_opt_fail, !taken);
943 	return taken;
944 }
945 
946 /*
947  * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should
948  * only be called when the reader count reaches 0.
949  */
950 static inline void clear_nonspinnable(struct rw_semaphore *sem)
951 {
952 	if (unlikely(rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)))
953 		atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner);
954 }
955 
956 #else
957 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
958 {
959 	return false;
960 }
961 
962 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem)
963 {
964 	return false;
965 }
966 
967 static inline void clear_nonspinnable(struct rw_semaphore *sem) { }
968 
969 static inline enum owner_state
970 rwsem_spin_on_owner(struct rw_semaphore *sem)
971 {
972 	return OWNER_NONSPINNABLE;
973 }
974 #endif
975 
976 /*
977  * Prepare to wake up waiter(s) in the wait queue by putting them into the
978  * given wake_q if the rwsem lock owner isn't a writer. If rwsem is likely
979  * reader-owned, wake up read lock waiters in queue front or wake up any
980  * front waiter otherwise.
981 
982  * This is being called from both reader and writer slow paths.
983  */
984 static inline void rwsem_cond_wake_waiter(struct rw_semaphore *sem, long count,
985 					  struct wake_q_head *wake_q)
986 {
987 	enum rwsem_wake_type wake_type;
988 
989 	if (count & RWSEM_WRITER_MASK)
990 		return;
991 
992 	if (count & RWSEM_READER_MASK) {
993 		wake_type = RWSEM_WAKE_READERS;
994 	} else {
995 		wake_type = RWSEM_WAKE_ANY;
996 		clear_nonspinnable(sem);
997 	}
998 	rwsem_mark_wake(sem, wake_type, wake_q);
999 }
1000 
1001 /*
1002  * Wait for the read lock to be granted
1003  */
1004 static struct rw_semaphore __sched *
1005 rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state)
1006 {
1007 	long adjustment = -RWSEM_READER_BIAS;
1008 	long rcnt = (count >> RWSEM_READER_SHIFT);
1009 	struct rwsem_waiter waiter;
1010 	DEFINE_WAKE_Q(wake_q);
1011 
1012 	/*
1013 	 * To prevent a constant stream of readers from starving a sleeping
1014 	 * waiter, don't attempt optimistic lock stealing if the lock is
1015 	 * currently owned by readers.
1016 	 */
1017 	if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) &&
1018 	    (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED))
1019 		goto queue;
1020 
1021 	/*
1022 	 * Reader optimistic lock stealing.
1023 	 */
1024 	if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) {
1025 		rwsem_set_reader_owned(sem);
1026 		lockevent_inc(rwsem_rlock_steal);
1027 
1028 		/*
1029 		 * Wake up other readers in the wait queue if it is
1030 		 * the first reader.
1031 		 */
1032 		if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) {
1033 			raw_spin_lock_irq(&sem->wait_lock);
1034 			if (!list_empty(&sem->wait_list))
1035 				rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED,
1036 						&wake_q);
1037 			raw_spin_unlock_irq(&sem->wait_lock);
1038 			wake_up_q(&wake_q);
1039 		}
1040 		return sem;
1041 	}
1042 
1043 queue:
1044 	waiter.task = current;
1045 	waiter.type = RWSEM_WAITING_FOR_READ;
1046 	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1047 	waiter.handoff_set = false;
1048 
1049 	raw_spin_lock_irq(&sem->wait_lock);
1050 	if (list_empty(&sem->wait_list)) {
1051 		/*
1052 		 * In case the wait queue is empty and the lock isn't owned
1053 		 * by a writer, this reader can exit the slowpath and return
1054 		 * immediately as its RWSEM_READER_BIAS has already been set
1055 		 * in the count.
1056 		 */
1057 		if (!(atomic_long_read(&sem->count) & RWSEM_WRITER_MASK)) {
1058 			/* Provide lock ACQUIRE */
1059 			smp_acquire__after_ctrl_dep();
1060 			raw_spin_unlock_irq(&sem->wait_lock);
1061 			rwsem_set_reader_owned(sem);
1062 			lockevent_inc(rwsem_rlock_fast);
1063 			return sem;
1064 		}
1065 		adjustment += RWSEM_FLAG_WAITERS;
1066 	}
1067 	rwsem_add_waiter(sem, &waiter);
1068 
1069 	/* we're now waiting on the lock, but no longer actively locking */
1070 	count = atomic_long_add_return(adjustment, &sem->count);
1071 
1072 	rwsem_cond_wake_waiter(sem, count, &wake_q);
1073 	raw_spin_unlock_irq(&sem->wait_lock);
1074 
1075 	if (!wake_q_empty(&wake_q))
1076 		wake_up_q(&wake_q);
1077 
1078 	trace_contention_begin(sem, LCB_F_READ);
1079 
1080 	/* wait to be given the lock */
1081 	for (;;) {
1082 		set_current_state(state);
1083 		if (!smp_load_acquire(&waiter.task)) {
1084 			/* Matches rwsem_mark_wake()'s smp_store_release(). */
1085 			break;
1086 		}
1087 		if (signal_pending_state(state, current)) {
1088 			raw_spin_lock_irq(&sem->wait_lock);
1089 			if (waiter.task)
1090 				goto out_nolock;
1091 			raw_spin_unlock_irq(&sem->wait_lock);
1092 			/* Ordered by sem->wait_lock against rwsem_mark_wake(). */
1093 			break;
1094 		}
1095 		schedule();
1096 		lockevent_inc(rwsem_sleep_reader);
1097 	}
1098 
1099 	__set_current_state(TASK_RUNNING);
1100 	lockevent_inc(rwsem_rlock);
1101 	trace_contention_end(sem, 0);
1102 	return sem;
1103 
1104 out_nolock:
1105 	rwsem_del_wake_waiter(sem, &waiter, &wake_q);
1106 	__set_current_state(TASK_RUNNING);
1107 	lockevent_inc(rwsem_rlock_fail);
1108 	trace_contention_end(sem, -EINTR);
1109 	return ERR_PTR(-EINTR);
1110 }
1111 
1112 /*
1113  * Wait until we successfully acquire the write lock
1114  */
1115 static struct rw_semaphore __sched *
1116 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state)
1117 {
1118 	struct rwsem_waiter waiter;
1119 	DEFINE_WAKE_Q(wake_q);
1120 
1121 	/* do optimistic spinning and steal lock if possible */
1122 	if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) {
1123 		/* rwsem_optimistic_spin() implies ACQUIRE on success */
1124 		return sem;
1125 	}
1126 
1127 	/*
1128 	 * Optimistic spinning failed, proceed to the slowpath
1129 	 * and block until we can acquire the sem.
1130 	 */
1131 	waiter.task = current;
1132 	waiter.type = RWSEM_WAITING_FOR_WRITE;
1133 	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1134 	waiter.handoff_set = false;
1135 
1136 	raw_spin_lock_irq(&sem->wait_lock);
1137 	rwsem_add_waiter(sem, &waiter);
1138 
1139 	/* we're now waiting on the lock */
1140 	if (rwsem_first_waiter(sem) != &waiter) {
1141 		rwsem_cond_wake_waiter(sem, atomic_long_read(&sem->count),
1142 				       &wake_q);
1143 		if (!wake_q_empty(&wake_q)) {
1144 			/*
1145 			 * We want to minimize wait_lock hold time especially
1146 			 * when a large number of readers are to be woken up.
1147 			 */
1148 			raw_spin_unlock_irq(&sem->wait_lock);
1149 			wake_up_q(&wake_q);
1150 			raw_spin_lock_irq(&sem->wait_lock);
1151 		}
1152 	} else {
1153 		atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count);
1154 	}
1155 
1156 	/* wait until we successfully acquire the lock */
1157 	set_current_state(state);
1158 	trace_contention_begin(sem, LCB_F_WRITE);
1159 
1160 	for (;;) {
1161 		if (rwsem_try_write_lock(sem, &waiter)) {
1162 			/* rwsem_try_write_lock() implies ACQUIRE on success */
1163 			break;
1164 		}
1165 
1166 		raw_spin_unlock_irq(&sem->wait_lock);
1167 
1168 		if (signal_pending_state(state, current))
1169 			goto out_nolock;
1170 
1171 		/*
1172 		 * After setting the handoff bit and failing to acquire
1173 		 * the lock, attempt to spin on owner to accelerate lock
1174 		 * transfer. If the previous owner is a on-cpu writer and it
1175 		 * has just released the lock, OWNER_NULL will be returned.
1176 		 * In this case, we attempt to acquire the lock again
1177 		 * without sleeping.
1178 		 */
1179 		if (waiter.handoff_set) {
1180 			enum owner_state owner_state;
1181 
1182 			preempt_disable();
1183 			owner_state = rwsem_spin_on_owner(sem);
1184 			preempt_enable();
1185 
1186 			if (owner_state == OWNER_NULL)
1187 				goto trylock_again;
1188 		}
1189 
1190 		schedule();
1191 		lockevent_inc(rwsem_sleep_writer);
1192 		set_current_state(state);
1193 trylock_again:
1194 		raw_spin_lock_irq(&sem->wait_lock);
1195 	}
1196 	__set_current_state(TASK_RUNNING);
1197 	raw_spin_unlock_irq(&sem->wait_lock);
1198 	lockevent_inc(rwsem_wlock);
1199 	trace_contention_end(sem, 0);
1200 	return sem;
1201 
1202 out_nolock:
1203 	__set_current_state(TASK_RUNNING);
1204 	raw_spin_lock_irq(&sem->wait_lock);
1205 	rwsem_del_wake_waiter(sem, &waiter, &wake_q);
1206 	lockevent_inc(rwsem_wlock_fail);
1207 	trace_contention_end(sem, -EINTR);
1208 	return ERR_PTR(-EINTR);
1209 }
1210 
1211 /*
1212  * handle waking up a waiter on the semaphore
1213  * - up_read/up_write has decremented the active part of count if we come here
1214  */
1215 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem)
1216 {
1217 	unsigned long flags;
1218 	DEFINE_WAKE_Q(wake_q);
1219 
1220 	raw_spin_lock_irqsave(&sem->wait_lock, flags);
1221 
1222 	if (!list_empty(&sem->wait_list))
1223 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1224 
1225 	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1226 	wake_up_q(&wake_q);
1227 
1228 	return sem;
1229 }
1230 
1231 /*
1232  * downgrade a write lock into a read lock
1233  * - caller incremented waiting part of count and discovered it still negative
1234  * - just wake up any readers at the front of the queue
1235  */
1236 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
1237 {
1238 	unsigned long flags;
1239 	DEFINE_WAKE_Q(wake_q);
1240 
1241 	raw_spin_lock_irqsave(&sem->wait_lock, flags);
1242 
1243 	if (!list_empty(&sem->wait_list))
1244 		rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
1245 
1246 	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1247 	wake_up_q(&wake_q);
1248 
1249 	return sem;
1250 }
1251 
1252 /*
1253  * lock for reading
1254  */
1255 static inline int __down_read_common(struct rw_semaphore *sem, int state)
1256 {
1257 	long count;
1258 
1259 	if (!rwsem_read_trylock(sem, &count)) {
1260 		if (IS_ERR(rwsem_down_read_slowpath(sem, count, state)))
1261 			return -EINTR;
1262 		DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1263 	}
1264 	return 0;
1265 }
1266 
1267 static inline void __down_read(struct rw_semaphore *sem)
1268 {
1269 	__down_read_common(sem, TASK_UNINTERRUPTIBLE);
1270 }
1271 
1272 static inline int __down_read_interruptible(struct rw_semaphore *sem)
1273 {
1274 	return __down_read_common(sem, TASK_INTERRUPTIBLE);
1275 }
1276 
1277 static inline int __down_read_killable(struct rw_semaphore *sem)
1278 {
1279 	return __down_read_common(sem, TASK_KILLABLE);
1280 }
1281 
1282 static inline int __down_read_trylock(struct rw_semaphore *sem)
1283 {
1284 	long tmp;
1285 
1286 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1287 
1288 	tmp = atomic_long_read(&sem->count);
1289 	while (!(tmp & RWSEM_READ_FAILED_MASK)) {
1290 		if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1291 						    tmp + RWSEM_READER_BIAS)) {
1292 			rwsem_set_reader_owned(sem);
1293 			return 1;
1294 		}
1295 	}
1296 	return 0;
1297 }
1298 
1299 /*
1300  * lock for writing
1301  */
1302 static inline int __down_write_common(struct rw_semaphore *sem, int state)
1303 {
1304 	if (unlikely(!rwsem_write_trylock(sem))) {
1305 		if (IS_ERR(rwsem_down_write_slowpath(sem, state)))
1306 			return -EINTR;
1307 	}
1308 
1309 	return 0;
1310 }
1311 
1312 static inline void __down_write(struct rw_semaphore *sem)
1313 {
1314 	__down_write_common(sem, TASK_UNINTERRUPTIBLE);
1315 }
1316 
1317 static inline int __down_write_killable(struct rw_semaphore *sem)
1318 {
1319 	return __down_write_common(sem, TASK_KILLABLE);
1320 }
1321 
1322 static inline int __down_write_trylock(struct rw_semaphore *sem)
1323 {
1324 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1325 	return rwsem_write_trylock(sem);
1326 }
1327 
1328 /*
1329  * unlock after reading
1330  */
1331 static inline void __up_read(struct rw_semaphore *sem)
1332 {
1333 	long tmp;
1334 
1335 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1336 	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1337 
1338 	rwsem_clear_reader_owned(sem);
1339 	tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count);
1340 	DEBUG_RWSEMS_WARN_ON(tmp < 0, sem);
1341 	if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) ==
1342 		      RWSEM_FLAG_WAITERS)) {
1343 		clear_nonspinnable(sem);
1344 		rwsem_wake(sem);
1345 	}
1346 }
1347 
1348 /*
1349  * unlock after writing
1350  */
1351 static inline void __up_write(struct rw_semaphore *sem)
1352 {
1353 	long tmp;
1354 
1355 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1356 	/*
1357 	 * sem->owner may differ from current if the ownership is transferred
1358 	 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
1359 	 */
1360 	DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) &&
1361 			    !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem);
1362 
1363 	preempt_disable();
1364 	rwsem_clear_owner(sem);
1365 	tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count);
1366 	preempt_enable();
1367 	if (unlikely(tmp & RWSEM_FLAG_WAITERS))
1368 		rwsem_wake(sem);
1369 }
1370 
1371 /*
1372  * downgrade write lock to read lock
1373  */
1374 static inline void __downgrade_write(struct rw_semaphore *sem)
1375 {
1376 	long tmp;
1377 
1378 	/*
1379 	 * When downgrading from exclusive to shared ownership,
1380 	 * anything inside the write-locked region cannot leak
1381 	 * into the read side. In contrast, anything in the
1382 	 * read-locked region is ok to be re-ordered into the
1383 	 * write side. As such, rely on RELEASE semantics.
1384 	 */
1385 	DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem);
1386 	tmp = atomic_long_fetch_add_release(
1387 		-RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count);
1388 	rwsem_set_reader_owned(sem);
1389 	if (tmp & RWSEM_FLAG_WAITERS)
1390 		rwsem_downgrade_wake(sem);
1391 }
1392 
1393 #else /* !CONFIG_PREEMPT_RT */
1394 
1395 #define RT_MUTEX_BUILD_MUTEX
1396 #include "rtmutex.c"
1397 
1398 #define rwbase_set_and_save_current_state(state)	\
1399 	set_current_state(state)
1400 
1401 #define rwbase_restore_current_state()			\
1402 	__set_current_state(TASK_RUNNING)
1403 
1404 #define rwbase_rtmutex_lock_state(rtm, state)		\
1405 	__rt_mutex_lock(rtm, state)
1406 
1407 #define rwbase_rtmutex_slowlock_locked(rtm, state)	\
1408 	__rt_mutex_slowlock_locked(rtm, NULL, state)
1409 
1410 #define rwbase_rtmutex_unlock(rtm)			\
1411 	__rt_mutex_unlock(rtm)
1412 
1413 #define rwbase_rtmutex_trylock(rtm)			\
1414 	__rt_mutex_trylock(rtm)
1415 
1416 #define rwbase_signal_pending_state(state, current)	\
1417 	signal_pending_state(state, current)
1418 
1419 #define rwbase_schedule()				\
1420 	schedule()
1421 
1422 #include "rwbase_rt.c"
1423 
1424 void __init_rwsem(struct rw_semaphore *sem, const char *name,
1425 		  struct lock_class_key *key)
1426 {
1427 	init_rwbase_rt(&(sem)->rwbase);
1428 
1429 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1430 	debug_check_no_locks_freed((void *)sem, sizeof(*sem));
1431 	lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
1432 #endif
1433 }
1434 EXPORT_SYMBOL(__init_rwsem);
1435 
1436 static inline void __down_read(struct rw_semaphore *sem)
1437 {
1438 	rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1439 }
1440 
1441 static inline int __down_read_interruptible(struct rw_semaphore *sem)
1442 {
1443 	return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE);
1444 }
1445 
1446 static inline int __down_read_killable(struct rw_semaphore *sem)
1447 {
1448 	return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE);
1449 }
1450 
1451 static inline int __down_read_trylock(struct rw_semaphore *sem)
1452 {
1453 	return rwbase_read_trylock(&sem->rwbase);
1454 }
1455 
1456 static inline void __up_read(struct rw_semaphore *sem)
1457 {
1458 	rwbase_read_unlock(&sem->rwbase, TASK_NORMAL);
1459 }
1460 
1461 static inline void __sched __down_write(struct rw_semaphore *sem)
1462 {
1463 	rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1464 }
1465 
1466 static inline int __sched __down_write_killable(struct rw_semaphore *sem)
1467 {
1468 	return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE);
1469 }
1470 
1471 static inline int __down_write_trylock(struct rw_semaphore *sem)
1472 {
1473 	return rwbase_write_trylock(&sem->rwbase);
1474 }
1475 
1476 static inline void __up_write(struct rw_semaphore *sem)
1477 {
1478 	rwbase_write_unlock(&sem->rwbase);
1479 }
1480 
1481 static inline void __downgrade_write(struct rw_semaphore *sem)
1482 {
1483 	rwbase_write_downgrade(&sem->rwbase);
1484 }
1485 
1486 /* Debug stubs for the common API */
1487 #define DEBUG_RWSEMS_WARN_ON(c, sem)
1488 
1489 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
1490 					    struct task_struct *owner)
1491 {
1492 }
1493 
1494 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
1495 {
1496 	int count = atomic_read(&sem->rwbase.readers);
1497 
1498 	return count < 0 && count != READER_BIAS;
1499 }
1500 
1501 #endif /* CONFIG_PREEMPT_RT */
1502 
1503 /*
1504  * lock for reading
1505  */
1506 void __sched down_read(struct rw_semaphore *sem)
1507 {
1508 	might_sleep();
1509 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1510 
1511 	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1512 }
1513 EXPORT_SYMBOL(down_read);
1514 
1515 int __sched down_read_interruptible(struct rw_semaphore *sem)
1516 {
1517 	might_sleep();
1518 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1519 
1520 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) {
1521 		rwsem_release(&sem->dep_map, _RET_IP_);
1522 		return -EINTR;
1523 	}
1524 
1525 	return 0;
1526 }
1527 EXPORT_SYMBOL(down_read_interruptible);
1528 
1529 int __sched down_read_killable(struct rw_semaphore *sem)
1530 {
1531 	might_sleep();
1532 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1533 
1534 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1535 		rwsem_release(&sem->dep_map, _RET_IP_);
1536 		return -EINTR;
1537 	}
1538 
1539 	return 0;
1540 }
1541 EXPORT_SYMBOL(down_read_killable);
1542 
1543 /*
1544  * trylock for reading -- returns 1 if successful, 0 if contention
1545  */
1546 int down_read_trylock(struct rw_semaphore *sem)
1547 {
1548 	int ret = __down_read_trylock(sem);
1549 
1550 	if (ret == 1)
1551 		rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_);
1552 	return ret;
1553 }
1554 EXPORT_SYMBOL(down_read_trylock);
1555 
1556 /*
1557  * lock for writing
1558  */
1559 void __sched down_write(struct rw_semaphore *sem)
1560 {
1561 	might_sleep();
1562 	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1563 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1564 }
1565 EXPORT_SYMBOL(down_write);
1566 
1567 /*
1568  * lock for writing
1569  */
1570 int __sched down_write_killable(struct rw_semaphore *sem)
1571 {
1572 	might_sleep();
1573 	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1574 
1575 	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1576 				  __down_write_killable)) {
1577 		rwsem_release(&sem->dep_map, _RET_IP_);
1578 		return -EINTR;
1579 	}
1580 
1581 	return 0;
1582 }
1583 EXPORT_SYMBOL(down_write_killable);
1584 
1585 /*
1586  * trylock for writing -- returns 1 if successful, 0 if contention
1587  */
1588 int down_write_trylock(struct rw_semaphore *sem)
1589 {
1590 	int ret = __down_write_trylock(sem);
1591 
1592 	if (ret == 1)
1593 		rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_);
1594 
1595 	return ret;
1596 }
1597 EXPORT_SYMBOL(down_write_trylock);
1598 
1599 /*
1600  * release a read lock
1601  */
1602 void up_read(struct rw_semaphore *sem)
1603 {
1604 	rwsem_release(&sem->dep_map, _RET_IP_);
1605 	__up_read(sem);
1606 }
1607 EXPORT_SYMBOL(up_read);
1608 
1609 /*
1610  * release a write lock
1611  */
1612 void up_write(struct rw_semaphore *sem)
1613 {
1614 	rwsem_release(&sem->dep_map, _RET_IP_);
1615 	__up_write(sem);
1616 }
1617 EXPORT_SYMBOL(up_write);
1618 
1619 /*
1620  * downgrade write lock to read lock
1621  */
1622 void downgrade_write(struct rw_semaphore *sem)
1623 {
1624 	lock_downgrade(&sem->dep_map, _RET_IP_);
1625 	__downgrade_write(sem);
1626 }
1627 EXPORT_SYMBOL(downgrade_write);
1628 
1629 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1630 
1631 void down_read_nested(struct rw_semaphore *sem, int subclass)
1632 {
1633 	might_sleep();
1634 	rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1635 	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1636 }
1637 EXPORT_SYMBOL(down_read_nested);
1638 
1639 int down_read_killable_nested(struct rw_semaphore *sem, int subclass)
1640 {
1641 	might_sleep();
1642 	rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1643 
1644 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1645 		rwsem_release(&sem->dep_map, _RET_IP_);
1646 		return -EINTR;
1647 	}
1648 
1649 	return 0;
1650 }
1651 EXPORT_SYMBOL(down_read_killable_nested);
1652 
1653 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest)
1654 {
1655 	might_sleep();
1656 	rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_);
1657 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1658 }
1659 EXPORT_SYMBOL(_down_write_nest_lock);
1660 
1661 void down_read_non_owner(struct rw_semaphore *sem)
1662 {
1663 	might_sleep();
1664 	__down_read(sem);
1665 	__rwsem_set_reader_owned(sem, NULL);
1666 }
1667 EXPORT_SYMBOL(down_read_non_owner);
1668 
1669 void down_write_nested(struct rw_semaphore *sem, int subclass)
1670 {
1671 	might_sleep();
1672 	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1673 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1674 }
1675 EXPORT_SYMBOL(down_write_nested);
1676 
1677 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass)
1678 {
1679 	might_sleep();
1680 	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1681 
1682 	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1683 				  __down_write_killable)) {
1684 		rwsem_release(&sem->dep_map, _RET_IP_);
1685 		return -EINTR;
1686 	}
1687 
1688 	return 0;
1689 }
1690 EXPORT_SYMBOL(down_write_killable_nested);
1691 
1692 void up_read_non_owner(struct rw_semaphore *sem)
1693 {
1694 	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1695 	__up_read(sem);
1696 }
1697 EXPORT_SYMBOL(up_read_non_owner);
1698 
1699 #endif
1700