xref: /openbmc/linux/kernel/locking/rwsem.c (revision dd3cb467)
1 // SPDX-License-Identifier: GPL-2.0
2 /* kernel/rwsem.c: R/W semaphores, public implementation
3  *
4  * Written by David Howells (dhowells@redhat.com).
5  * Derived from asm-i386/semaphore.h
6  *
7  * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
8  * and Michel Lespinasse <walken@google.com>
9  *
10  * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
11  * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
12  *
13  * Rwsem count bit fields re-definition and rwsem rearchitecture by
14  * Waiman Long <longman@redhat.com> and
15  * Peter Zijlstra <peterz@infradead.org>.
16  */
17 
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/sched.h>
21 #include <linux/sched/rt.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/clock.h>
27 #include <linux/export.h>
28 #include <linux/rwsem.h>
29 #include <linux/atomic.h>
30 #include <trace/events/lock.h>
31 
32 #ifndef CONFIG_PREEMPT_RT
33 #include "lock_events.h"
34 
35 /*
36  * The least significant 2 bits of the owner value has the following
37  * meanings when set.
38  *  - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers
39  *  - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock
40  *
41  * When the rwsem is reader-owned and a spinning writer has timed out,
42  * the nonspinnable bit will be set to disable optimistic spinning.
43 
44  * When a writer acquires a rwsem, it puts its task_struct pointer
45  * into the owner field. It is cleared after an unlock.
46  *
47  * When a reader acquires a rwsem, it will also puts its task_struct
48  * pointer into the owner field with the RWSEM_READER_OWNED bit set.
49  * On unlock, the owner field will largely be left untouched. So
50  * for a free or reader-owned rwsem, the owner value may contain
51  * information about the last reader that acquires the rwsem.
52  *
53  * That information may be helpful in debugging cases where the system
54  * seems to hang on a reader owned rwsem especially if only one reader
55  * is involved. Ideally we would like to track all the readers that own
56  * a rwsem, but the overhead is simply too big.
57  *
58  * A fast path reader optimistic lock stealing is supported when the rwsem
59  * is previously owned by a writer and the following conditions are met:
60  *  - rwsem is not currently writer owned
61  *  - the handoff isn't set.
62  */
63 #define RWSEM_READER_OWNED	(1UL << 0)
64 #define RWSEM_NONSPINNABLE	(1UL << 1)
65 #define RWSEM_OWNER_FLAGS_MASK	(RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
66 
67 #ifdef CONFIG_DEBUG_RWSEMS
68 # define DEBUG_RWSEMS_WARN_ON(c, sem)	do {			\
69 	if (!debug_locks_silent &&				\
70 	    WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
71 		#c, atomic_long_read(&(sem)->count),		\
72 		(unsigned long) sem->magic,			\
73 		atomic_long_read(&(sem)->owner), (long)current,	\
74 		list_empty(&(sem)->wait_list) ? "" : "not "))	\
75 			debug_locks_off();			\
76 	} while (0)
77 #else
78 # define DEBUG_RWSEMS_WARN_ON(c, sem)
79 #endif
80 
81 /*
82  * On 64-bit architectures, the bit definitions of the count are:
83  *
84  * Bit  0    - writer locked bit
85  * Bit  1    - waiters present bit
86  * Bit  2    - lock handoff bit
87  * Bits 3-7  - reserved
88  * Bits 8-62 - 55-bit reader count
89  * Bit  63   - read fail bit
90  *
91  * On 32-bit architectures, the bit definitions of the count are:
92  *
93  * Bit  0    - writer locked bit
94  * Bit  1    - waiters present bit
95  * Bit  2    - lock handoff bit
96  * Bits 3-7  - reserved
97  * Bits 8-30 - 23-bit reader count
98  * Bit  31   - read fail bit
99  *
100  * It is not likely that the most significant bit (read fail bit) will ever
101  * be set. This guard bit is still checked anyway in the down_read() fastpath
102  * just in case we need to use up more of the reader bits for other purpose
103  * in the future.
104  *
105  * atomic_long_fetch_add() is used to obtain reader lock, whereas
106  * atomic_long_cmpxchg() will be used to obtain writer lock.
107  *
108  * There are three places where the lock handoff bit may be set or cleared.
109  * 1) rwsem_mark_wake() for readers		-- set, clear
110  * 2) rwsem_try_write_lock() for writers	-- set, clear
111  * 3) rwsem_del_waiter()			-- clear
112  *
113  * For all the above cases, wait_lock will be held. A writer must also
114  * be the first one in the wait_list to be eligible for setting the handoff
115  * bit. So concurrent setting/clearing of handoff bit is not possible.
116  */
117 #define RWSEM_WRITER_LOCKED	(1UL << 0)
118 #define RWSEM_FLAG_WAITERS	(1UL << 1)
119 #define RWSEM_FLAG_HANDOFF	(1UL << 2)
120 #define RWSEM_FLAG_READFAIL	(1UL << (BITS_PER_LONG - 1))
121 
122 #define RWSEM_READER_SHIFT	8
123 #define RWSEM_READER_BIAS	(1UL << RWSEM_READER_SHIFT)
124 #define RWSEM_READER_MASK	(~(RWSEM_READER_BIAS - 1))
125 #define RWSEM_WRITER_MASK	RWSEM_WRITER_LOCKED
126 #define RWSEM_LOCK_MASK		(RWSEM_WRITER_MASK|RWSEM_READER_MASK)
127 #define RWSEM_READ_FAILED_MASK	(RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
128 				 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
129 
130 /*
131  * All writes to owner are protected by WRITE_ONCE() to make sure that
132  * store tearing can't happen as optimistic spinners may read and use
133  * the owner value concurrently without lock. Read from owner, however,
134  * may not need READ_ONCE() as long as the pointer value is only used
135  * for comparison and isn't being dereferenced.
136  */
137 static inline void rwsem_set_owner(struct rw_semaphore *sem)
138 {
139 	atomic_long_set(&sem->owner, (long)current);
140 }
141 
142 static inline void rwsem_clear_owner(struct rw_semaphore *sem)
143 {
144 	atomic_long_set(&sem->owner, 0);
145 }
146 
147 /*
148  * Test the flags in the owner field.
149  */
150 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags)
151 {
152 	return atomic_long_read(&sem->owner) & flags;
153 }
154 
155 /*
156  * The task_struct pointer of the last owning reader will be left in
157  * the owner field.
158  *
159  * Note that the owner value just indicates the task has owned the rwsem
160  * previously, it may not be the real owner or one of the real owners
161  * anymore when that field is examined, so take it with a grain of salt.
162  *
163  * The reader non-spinnable bit is preserved.
164  */
165 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
166 					    struct task_struct *owner)
167 {
168 	unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED |
169 		(atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE);
170 
171 	atomic_long_set(&sem->owner, val);
172 }
173 
174 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem)
175 {
176 	__rwsem_set_reader_owned(sem, current);
177 }
178 
179 /*
180  * Return true if the rwsem is owned by a reader.
181  */
182 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
183 {
184 #ifdef CONFIG_DEBUG_RWSEMS
185 	/*
186 	 * Check the count to see if it is write-locked.
187 	 */
188 	long count = atomic_long_read(&sem->count);
189 
190 	if (count & RWSEM_WRITER_MASK)
191 		return false;
192 #endif
193 	return rwsem_test_oflags(sem, RWSEM_READER_OWNED);
194 }
195 
196 #ifdef CONFIG_DEBUG_RWSEMS
197 /*
198  * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there
199  * is a task pointer in owner of a reader-owned rwsem, it will be the
200  * real owner or one of the real owners. The only exception is when the
201  * unlock is done by up_read_non_owner().
202  */
203 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
204 {
205 	unsigned long val = atomic_long_read(&sem->owner);
206 
207 	while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) {
208 		if (atomic_long_try_cmpxchg(&sem->owner, &val,
209 					    val & RWSEM_OWNER_FLAGS_MASK))
210 			return;
211 	}
212 }
213 #else
214 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
215 {
216 }
217 #endif
218 
219 /*
220  * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
221  * remains set. Otherwise, the operation will be aborted.
222  */
223 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem)
224 {
225 	unsigned long owner = atomic_long_read(&sem->owner);
226 
227 	do {
228 		if (!(owner & RWSEM_READER_OWNED))
229 			break;
230 		if (owner & RWSEM_NONSPINNABLE)
231 			break;
232 	} while (!atomic_long_try_cmpxchg(&sem->owner, &owner,
233 					  owner | RWSEM_NONSPINNABLE));
234 }
235 
236 static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp)
237 {
238 	*cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count);
239 
240 	if (WARN_ON_ONCE(*cntp < 0))
241 		rwsem_set_nonspinnable(sem);
242 
243 	if (!(*cntp & RWSEM_READ_FAILED_MASK)) {
244 		rwsem_set_reader_owned(sem);
245 		return true;
246 	}
247 
248 	return false;
249 }
250 
251 static inline bool rwsem_write_trylock(struct rw_semaphore *sem)
252 {
253 	long tmp = RWSEM_UNLOCKED_VALUE;
254 
255 	if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) {
256 		rwsem_set_owner(sem);
257 		return true;
258 	}
259 
260 	return false;
261 }
262 
263 /*
264  * Return just the real task structure pointer of the owner
265  */
266 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem)
267 {
268 	return (struct task_struct *)
269 		(atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK);
270 }
271 
272 /*
273  * Return the real task structure pointer of the owner and the embedded
274  * flags in the owner. pflags must be non-NULL.
275  */
276 static inline struct task_struct *
277 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags)
278 {
279 	unsigned long owner = atomic_long_read(&sem->owner);
280 
281 	*pflags = owner & RWSEM_OWNER_FLAGS_MASK;
282 	return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK);
283 }
284 
285 /*
286  * Guide to the rw_semaphore's count field.
287  *
288  * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
289  * by a writer.
290  *
291  * The lock is owned by readers when
292  * (1) the RWSEM_WRITER_LOCKED isn't set in count,
293  * (2) some of the reader bits are set in count, and
294  * (3) the owner field has RWSEM_READ_OWNED bit set.
295  *
296  * Having some reader bits set is not enough to guarantee a readers owned
297  * lock as the readers may be in the process of backing out from the count
298  * and a writer has just released the lock. So another writer may steal
299  * the lock immediately after that.
300  */
301 
302 /*
303  * Initialize an rwsem:
304  */
305 void __init_rwsem(struct rw_semaphore *sem, const char *name,
306 		  struct lock_class_key *key)
307 {
308 #ifdef CONFIG_DEBUG_LOCK_ALLOC
309 	/*
310 	 * Make sure we are not reinitializing a held semaphore:
311 	 */
312 	debug_check_no_locks_freed((void *)sem, sizeof(*sem));
313 	lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
314 #endif
315 #ifdef CONFIG_DEBUG_RWSEMS
316 	sem->magic = sem;
317 #endif
318 	atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
319 	raw_spin_lock_init(&sem->wait_lock);
320 	INIT_LIST_HEAD(&sem->wait_list);
321 	atomic_long_set(&sem->owner, 0L);
322 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
323 	osq_lock_init(&sem->osq);
324 #endif
325 }
326 EXPORT_SYMBOL(__init_rwsem);
327 
328 enum rwsem_waiter_type {
329 	RWSEM_WAITING_FOR_WRITE,
330 	RWSEM_WAITING_FOR_READ
331 };
332 
333 struct rwsem_waiter {
334 	struct list_head list;
335 	struct task_struct *task;
336 	enum rwsem_waiter_type type;
337 	unsigned long timeout;
338 	bool handoff_set;
339 };
340 #define rwsem_first_waiter(sem) \
341 	list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
342 
343 enum rwsem_wake_type {
344 	RWSEM_WAKE_ANY,		/* Wake whatever's at head of wait list */
345 	RWSEM_WAKE_READERS,	/* Wake readers only */
346 	RWSEM_WAKE_READ_OWNED	/* Waker thread holds the read lock */
347 };
348 
349 /*
350  * The typical HZ value is either 250 or 1000. So set the minimum waiting
351  * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
352  * queue before initiating the handoff protocol.
353  */
354 #define RWSEM_WAIT_TIMEOUT	DIV_ROUND_UP(HZ, 250)
355 
356 /*
357  * Magic number to batch-wakeup waiting readers, even when writers are
358  * also present in the queue. This both limits the amount of work the
359  * waking thread must do and also prevents any potential counter overflow,
360  * however unlikely.
361  */
362 #define MAX_READERS_WAKEUP	0x100
363 
364 static inline void
365 rwsem_add_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
366 {
367 	lockdep_assert_held(&sem->wait_lock);
368 	list_add_tail(&waiter->list, &sem->wait_list);
369 	/* caller will set RWSEM_FLAG_WAITERS */
370 }
371 
372 /*
373  * Remove a waiter from the wait_list and clear flags.
374  *
375  * Both rwsem_mark_wake() and rwsem_try_write_lock() contain a full 'copy' of
376  * this function. Modify with care.
377  *
378  * Return: true if wait_list isn't empty and false otherwise
379  */
380 static inline bool
381 rwsem_del_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
382 {
383 	lockdep_assert_held(&sem->wait_lock);
384 	list_del(&waiter->list);
385 	if (likely(!list_empty(&sem->wait_list)))
386 		return true;
387 
388 	atomic_long_andnot(RWSEM_FLAG_HANDOFF | RWSEM_FLAG_WAITERS, &sem->count);
389 	return false;
390 }
391 
392 /*
393  * handle the lock release when processes blocked on it that can now run
394  * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
395  *   have been set.
396  * - there must be someone on the queue
397  * - the wait_lock must be held by the caller
398  * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
399  *   to actually wakeup the blocked task(s) and drop the reference count,
400  *   preferably when the wait_lock is released
401  * - woken process blocks are discarded from the list after having task zeroed
402  * - writers are only marked woken if downgrading is false
403  *
404  * Implies rwsem_del_waiter() for all woken readers.
405  */
406 static void rwsem_mark_wake(struct rw_semaphore *sem,
407 			    enum rwsem_wake_type wake_type,
408 			    struct wake_q_head *wake_q)
409 {
410 	struct rwsem_waiter *waiter, *tmp;
411 	long oldcount, woken = 0, adjustment = 0;
412 	struct list_head wlist;
413 
414 	lockdep_assert_held(&sem->wait_lock);
415 
416 	/*
417 	 * Take a peek at the queue head waiter such that we can determine
418 	 * the wakeup(s) to perform.
419 	 */
420 	waiter = rwsem_first_waiter(sem);
421 
422 	if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
423 		if (wake_type == RWSEM_WAKE_ANY) {
424 			/*
425 			 * Mark writer at the front of the queue for wakeup.
426 			 * Until the task is actually later awoken later by
427 			 * the caller, other writers are able to steal it.
428 			 * Readers, on the other hand, will block as they
429 			 * will notice the queued writer.
430 			 */
431 			wake_q_add(wake_q, waiter->task);
432 			lockevent_inc(rwsem_wake_writer);
433 		}
434 
435 		return;
436 	}
437 
438 	/*
439 	 * No reader wakeup if there are too many of them already.
440 	 */
441 	if (unlikely(atomic_long_read(&sem->count) < 0))
442 		return;
443 
444 	/*
445 	 * Writers might steal the lock before we grant it to the next reader.
446 	 * We prefer to do the first reader grant before counting readers
447 	 * so we can bail out early if a writer stole the lock.
448 	 */
449 	if (wake_type != RWSEM_WAKE_READ_OWNED) {
450 		struct task_struct *owner;
451 
452 		adjustment = RWSEM_READER_BIAS;
453 		oldcount = atomic_long_fetch_add(adjustment, &sem->count);
454 		if (unlikely(oldcount & RWSEM_WRITER_MASK)) {
455 			/*
456 			 * When we've been waiting "too" long (for writers
457 			 * to give up the lock), request a HANDOFF to
458 			 * force the issue.
459 			 */
460 			if (time_after(jiffies, waiter->timeout)) {
461 				if (!(oldcount & RWSEM_FLAG_HANDOFF)) {
462 					adjustment -= RWSEM_FLAG_HANDOFF;
463 					lockevent_inc(rwsem_rlock_handoff);
464 				}
465 				waiter->handoff_set = true;
466 			}
467 
468 			atomic_long_add(-adjustment, &sem->count);
469 			return;
470 		}
471 		/*
472 		 * Set it to reader-owned to give spinners an early
473 		 * indication that readers now have the lock.
474 		 * The reader nonspinnable bit seen at slowpath entry of
475 		 * the reader is copied over.
476 		 */
477 		owner = waiter->task;
478 		__rwsem_set_reader_owned(sem, owner);
479 	}
480 
481 	/*
482 	 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
483 	 * queue. We know that the woken will be at least 1 as we accounted
484 	 * for above. Note we increment the 'active part' of the count by the
485 	 * number of readers before waking any processes up.
486 	 *
487 	 * This is an adaptation of the phase-fair R/W locks where at the
488 	 * reader phase (first waiter is a reader), all readers are eligible
489 	 * to acquire the lock at the same time irrespective of their order
490 	 * in the queue. The writers acquire the lock according to their
491 	 * order in the queue.
492 	 *
493 	 * We have to do wakeup in 2 passes to prevent the possibility that
494 	 * the reader count may be decremented before it is incremented. It
495 	 * is because the to-be-woken waiter may not have slept yet. So it
496 	 * may see waiter->task got cleared, finish its critical section and
497 	 * do an unlock before the reader count increment.
498 	 *
499 	 * 1) Collect the read-waiters in a separate list, count them and
500 	 *    fully increment the reader count in rwsem.
501 	 * 2) For each waiters in the new list, clear waiter->task and
502 	 *    put them into wake_q to be woken up later.
503 	 */
504 	INIT_LIST_HEAD(&wlist);
505 	list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
506 		if (waiter->type == RWSEM_WAITING_FOR_WRITE)
507 			continue;
508 
509 		woken++;
510 		list_move_tail(&waiter->list, &wlist);
511 
512 		/*
513 		 * Limit # of readers that can be woken up per wakeup call.
514 		 */
515 		if (unlikely(woken >= MAX_READERS_WAKEUP))
516 			break;
517 	}
518 
519 	adjustment = woken * RWSEM_READER_BIAS - adjustment;
520 	lockevent_cond_inc(rwsem_wake_reader, woken);
521 
522 	oldcount = atomic_long_read(&sem->count);
523 	if (list_empty(&sem->wait_list)) {
524 		/*
525 		 * Combined with list_move_tail() above, this implies
526 		 * rwsem_del_waiter().
527 		 */
528 		adjustment -= RWSEM_FLAG_WAITERS;
529 		if (oldcount & RWSEM_FLAG_HANDOFF)
530 			adjustment -= RWSEM_FLAG_HANDOFF;
531 	} else if (woken) {
532 		/*
533 		 * When we've woken a reader, we no longer need to force
534 		 * writers to give up the lock and we can clear HANDOFF.
535 		 */
536 		if (oldcount & RWSEM_FLAG_HANDOFF)
537 			adjustment -= RWSEM_FLAG_HANDOFF;
538 	}
539 
540 	if (adjustment)
541 		atomic_long_add(adjustment, &sem->count);
542 
543 	/* 2nd pass */
544 	list_for_each_entry_safe(waiter, tmp, &wlist, list) {
545 		struct task_struct *tsk;
546 
547 		tsk = waiter->task;
548 		get_task_struct(tsk);
549 
550 		/*
551 		 * Ensure calling get_task_struct() before setting the reader
552 		 * waiter to nil such that rwsem_down_read_slowpath() cannot
553 		 * race with do_exit() by always holding a reference count
554 		 * to the task to wakeup.
555 		 */
556 		smp_store_release(&waiter->task, NULL);
557 		/*
558 		 * Ensure issuing the wakeup (either by us or someone else)
559 		 * after setting the reader waiter to nil.
560 		 */
561 		wake_q_add_safe(wake_q, tsk);
562 	}
563 }
564 
565 /*
566  * Remove a waiter and try to wake up other waiters in the wait queue
567  * This function is called from the out_nolock path of both the reader and
568  * writer slowpaths with wait_lock held. It releases the wait_lock and
569  * optionally wake up waiters before it returns.
570  */
571 static inline void
572 rwsem_del_wake_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter,
573 		      struct wake_q_head *wake_q)
574 		      __releases(&sem->wait_lock)
575 {
576 	bool first = rwsem_first_waiter(sem) == waiter;
577 
578 	wake_q_init(wake_q);
579 
580 	/*
581 	 * If the wait_list isn't empty and the waiter to be deleted is
582 	 * the first waiter, we wake up the remaining waiters as they may
583 	 * be eligible to acquire or spin on the lock.
584 	 */
585 	if (rwsem_del_waiter(sem, waiter) && first)
586 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, wake_q);
587 	raw_spin_unlock_irq(&sem->wait_lock);
588 	if (!wake_q_empty(wake_q))
589 		wake_up_q(wake_q);
590 }
591 
592 /*
593  * This function must be called with the sem->wait_lock held to prevent
594  * race conditions between checking the rwsem wait list and setting the
595  * sem->count accordingly.
596  *
597  * Implies rwsem_del_waiter() on success.
598  */
599 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
600 					struct rwsem_waiter *waiter)
601 {
602 	struct rwsem_waiter *first = rwsem_first_waiter(sem);
603 	long count, new;
604 
605 	lockdep_assert_held(&sem->wait_lock);
606 
607 	count = atomic_long_read(&sem->count);
608 	do {
609 		bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF);
610 
611 		if (has_handoff) {
612 			/*
613 			 * Honor handoff bit and yield only when the first
614 			 * waiter is the one that set it. Otherwisee, we
615 			 * still try to acquire the rwsem.
616 			 */
617 			if (first->handoff_set && (waiter != first))
618 				return false;
619 
620 			/*
621 			 * First waiter can inherit a previously set handoff
622 			 * bit and spin on rwsem if lock acquisition fails.
623 			 */
624 			if (waiter == first)
625 				waiter->handoff_set = true;
626 		}
627 
628 		new = count;
629 
630 		if (count & RWSEM_LOCK_MASK) {
631 			if (has_handoff || (!rt_task(waiter->task) &&
632 					    !time_after(jiffies, waiter->timeout)))
633 				return false;
634 
635 			new |= RWSEM_FLAG_HANDOFF;
636 		} else {
637 			new |= RWSEM_WRITER_LOCKED;
638 			new &= ~RWSEM_FLAG_HANDOFF;
639 
640 			if (list_is_singular(&sem->wait_list))
641 				new &= ~RWSEM_FLAG_WAITERS;
642 		}
643 	} while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new));
644 
645 	/*
646 	 * We have either acquired the lock with handoff bit cleared or
647 	 * set the handoff bit.
648 	 */
649 	if (new & RWSEM_FLAG_HANDOFF) {
650 		waiter->handoff_set = true;
651 		lockevent_inc(rwsem_wlock_handoff);
652 		return false;
653 	}
654 
655 	/*
656 	 * Have rwsem_try_write_lock() fully imply rwsem_del_waiter() on
657 	 * success.
658 	 */
659 	list_del(&waiter->list);
660 	rwsem_set_owner(sem);
661 	return true;
662 }
663 
664 /*
665  * The rwsem_spin_on_owner() function returns the following 4 values
666  * depending on the lock owner state.
667  *   OWNER_NULL  : owner is currently NULL
668  *   OWNER_WRITER: when owner changes and is a writer
669  *   OWNER_READER: when owner changes and the new owner may be a reader.
670  *   OWNER_NONSPINNABLE:
671  *		   when optimistic spinning has to stop because either the
672  *		   owner stops running, is unknown, or its timeslice has
673  *		   been used up.
674  */
675 enum owner_state {
676 	OWNER_NULL		= 1 << 0,
677 	OWNER_WRITER		= 1 << 1,
678 	OWNER_READER		= 1 << 2,
679 	OWNER_NONSPINNABLE	= 1 << 3,
680 };
681 
682 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
683 /*
684  * Try to acquire write lock before the writer has been put on wait queue.
685  */
686 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
687 {
688 	long count = atomic_long_read(&sem->count);
689 
690 	while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) {
691 		if (atomic_long_try_cmpxchg_acquire(&sem->count, &count,
692 					count | RWSEM_WRITER_LOCKED)) {
693 			rwsem_set_owner(sem);
694 			lockevent_inc(rwsem_opt_lock);
695 			return true;
696 		}
697 	}
698 	return false;
699 }
700 
701 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
702 {
703 	struct task_struct *owner;
704 	unsigned long flags;
705 	bool ret = true;
706 
707 	if (need_resched()) {
708 		lockevent_inc(rwsem_opt_fail);
709 		return false;
710 	}
711 
712 	preempt_disable();
713 	/*
714 	 * Disable preemption is equal to the RCU read-side crital section,
715 	 * thus the task_strcut structure won't go away.
716 	 */
717 	owner = rwsem_owner_flags(sem, &flags);
718 	/*
719 	 * Don't check the read-owner as the entry may be stale.
720 	 */
721 	if ((flags & RWSEM_NONSPINNABLE) ||
722 	    (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner)))
723 		ret = false;
724 	preempt_enable();
725 
726 	lockevent_cond_inc(rwsem_opt_fail, !ret);
727 	return ret;
728 }
729 
730 #define OWNER_SPINNABLE		(OWNER_NULL | OWNER_WRITER | OWNER_READER)
731 
732 static inline enum owner_state
733 rwsem_owner_state(struct task_struct *owner, unsigned long flags)
734 {
735 	if (flags & RWSEM_NONSPINNABLE)
736 		return OWNER_NONSPINNABLE;
737 
738 	if (flags & RWSEM_READER_OWNED)
739 		return OWNER_READER;
740 
741 	return owner ? OWNER_WRITER : OWNER_NULL;
742 }
743 
744 static noinline enum owner_state
745 rwsem_spin_on_owner(struct rw_semaphore *sem)
746 {
747 	struct task_struct *new, *owner;
748 	unsigned long flags, new_flags;
749 	enum owner_state state;
750 
751 	lockdep_assert_preemption_disabled();
752 
753 	owner = rwsem_owner_flags(sem, &flags);
754 	state = rwsem_owner_state(owner, flags);
755 	if (state != OWNER_WRITER)
756 		return state;
757 
758 	for (;;) {
759 		/*
760 		 * When a waiting writer set the handoff flag, it may spin
761 		 * on the owner as well. Once that writer acquires the lock,
762 		 * we can spin on it. So we don't need to quit even when the
763 		 * handoff bit is set.
764 		 */
765 		new = rwsem_owner_flags(sem, &new_flags);
766 		if ((new != owner) || (new_flags != flags)) {
767 			state = rwsem_owner_state(new, new_flags);
768 			break;
769 		}
770 
771 		/*
772 		 * Ensure we emit the owner->on_cpu, dereference _after_
773 		 * checking sem->owner still matches owner, if that fails,
774 		 * owner might point to free()d memory, if it still matches,
775 		 * our spinning context already disabled preemption which is
776 		 * equal to RCU read-side crital section ensures the memory
777 		 * stays valid.
778 		 */
779 		barrier();
780 
781 		if (need_resched() || !owner_on_cpu(owner)) {
782 			state = OWNER_NONSPINNABLE;
783 			break;
784 		}
785 
786 		cpu_relax();
787 	}
788 
789 	return state;
790 }
791 
792 /*
793  * Calculate reader-owned rwsem spinning threshold for writer
794  *
795  * The more readers own the rwsem, the longer it will take for them to
796  * wind down and free the rwsem. So the empirical formula used to
797  * determine the actual spinning time limit here is:
798  *
799  *   Spinning threshold = (10 + nr_readers/2)us
800  *
801  * The limit is capped to a maximum of 25us (30 readers). This is just
802  * a heuristic and is subjected to change in the future.
803  */
804 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem)
805 {
806 	long count = atomic_long_read(&sem->count);
807 	int readers = count >> RWSEM_READER_SHIFT;
808 	u64 delta;
809 
810 	if (readers > 30)
811 		readers = 30;
812 	delta = (20 + readers) * NSEC_PER_USEC / 2;
813 
814 	return sched_clock() + delta;
815 }
816 
817 static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
818 {
819 	bool taken = false;
820 	int prev_owner_state = OWNER_NULL;
821 	int loop = 0;
822 	u64 rspin_threshold = 0;
823 
824 	preempt_disable();
825 
826 	/* sem->wait_lock should not be held when doing optimistic spinning */
827 	if (!osq_lock(&sem->osq))
828 		goto done;
829 
830 	/*
831 	 * Optimistically spin on the owner field and attempt to acquire the
832 	 * lock whenever the owner changes. Spinning will be stopped when:
833 	 *  1) the owning writer isn't running; or
834 	 *  2) readers own the lock and spinning time has exceeded limit.
835 	 */
836 	for (;;) {
837 		enum owner_state owner_state;
838 
839 		owner_state = rwsem_spin_on_owner(sem);
840 		if (!(owner_state & OWNER_SPINNABLE))
841 			break;
842 
843 		/*
844 		 * Try to acquire the lock
845 		 */
846 		taken = rwsem_try_write_lock_unqueued(sem);
847 
848 		if (taken)
849 			break;
850 
851 		/*
852 		 * Time-based reader-owned rwsem optimistic spinning
853 		 */
854 		if (owner_state == OWNER_READER) {
855 			/*
856 			 * Re-initialize rspin_threshold every time when
857 			 * the owner state changes from non-reader to reader.
858 			 * This allows a writer to steal the lock in between
859 			 * 2 reader phases and have the threshold reset at
860 			 * the beginning of the 2nd reader phase.
861 			 */
862 			if (prev_owner_state != OWNER_READER) {
863 				if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
864 					break;
865 				rspin_threshold = rwsem_rspin_threshold(sem);
866 				loop = 0;
867 			}
868 
869 			/*
870 			 * Check time threshold once every 16 iterations to
871 			 * avoid calling sched_clock() too frequently so
872 			 * as to reduce the average latency between the times
873 			 * when the lock becomes free and when the spinner
874 			 * is ready to do a trylock.
875 			 */
876 			else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) {
877 				rwsem_set_nonspinnable(sem);
878 				lockevent_inc(rwsem_opt_nospin);
879 				break;
880 			}
881 		}
882 
883 		/*
884 		 * An RT task cannot do optimistic spinning if it cannot
885 		 * be sure the lock holder is running or live-lock may
886 		 * happen if the current task and the lock holder happen
887 		 * to run in the same CPU. However, aborting optimistic
888 		 * spinning while a NULL owner is detected may miss some
889 		 * opportunity where spinning can continue without causing
890 		 * problem.
891 		 *
892 		 * There are 2 possible cases where an RT task may be able
893 		 * to continue spinning.
894 		 *
895 		 * 1) The lock owner is in the process of releasing the
896 		 *    lock, sem->owner is cleared but the lock has not
897 		 *    been released yet.
898 		 * 2) The lock was free and owner cleared, but another
899 		 *    task just comes in and acquire the lock before
900 		 *    we try to get it. The new owner may be a spinnable
901 		 *    writer.
902 		 *
903 		 * To take advantage of two scenarios listed above, the RT
904 		 * task is made to retry one more time to see if it can
905 		 * acquire the lock or continue spinning on the new owning
906 		 * writer. Of course, if the time lag is long enough or the
907 		 * new owner is not a writer or spinnable, the RT task will
908 		 * quit spinning.
909 		 *
910 		 * If the owner is a writer, the need_resched() check is
911 		 * done inside rwsem_spin_on_owner(). If the owner is not
912 		 * a writer, need_resched() check needs to be done here.
913 		 */
914 		if (owner_state != OWNER_WRITER) {
915 			if (need_resched())
916 				break;
917 			if (rt_task(current) &&
918 			   (prev_owner_state != OWNER_WRITER))
919 				break;
920 		}
921 		prev_owner_state = owner_state;
922 
923 		/*
924 		 * The cpu_relax() call is a compiler barrier which forces
925 		 * everything in this loop to be re-loaded. We don't need
926 		 * memory barriers as we'll eventually observe the right
927 		 * values at the cost of a few extra spins.
928 		 */
929 		cpu_relax();
930 	}
931 	osq_unlock(&sem->osq);
932 done:
933 	preempt_enable();
934 	lockevent_cond_inc(rwsem_opt_fail, !taken);
935 	return taken;
936 }
937 
938 /*
939  * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should
940  * only be called when the reader count reaches 0.
941  */
942 static inline void clear_nonspinnable(struct rw_semaphore *sem)
943 {
944 	if (unlikely(rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)))
945 		atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner);
946 }
947 
948 #else
949 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
950 {
951 	return false;
952 }
953 
954 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem)
955 {
956 	return false;
957 }
958 
959 static inline void clear_nonspinnable(struct rw_semaphore *sem) { }
960 
961 static inline enum owner_state
962 rwsem_spin_on_owner(struct rw_semaphore *sem)
963 {
964 	return OWNER_NONSPINNABLE;
965 }
966 #endif
967 
968 /*
969  * Prepare to wake up waiter(s) in the wait queue by putting them into the
970  * given wake_q if the rwsem lock owner isn't a writer. If rwsem is likely
971  * reader-owned, wake up read lock waiters in queue front or wake up any
972  * front waiter otherwise.
973 
974  * This is being called from both reader and writer slow paths.
975  */
976 static inline void rwsem_cond_wake_waiter(struct rw_semaphore *sem, long count,
977 					  struct wake_q_head *wake_q)
978 {
979 	enum rwsem_wake_type wake_type;
980 
981 	if (count & RWSEM_WRITER_MASK)
982 		return;
983 
984 	if (count & RWSEM_READER_MASK) {
985 		wake_type = RWSEM_WAKE_READERS;
986 	} else {
987 		wake_type = RWSEM_WAKE_ANY;
988 		clear_nonspinnable(sem);
989 	}
990 	rwsem_mark_wake(sem, wake_type, wake_q);
991 }
992 
993 /*
994  * Wait for the read lock to be granted
995  */
996 static struct rw_semaphore __sched *
997 rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state)
998 {
999 	long adjustment = -RWSEM_READER_BIAS;
1000 	long rcnt = (count >> RWSEM_READER_SHIFT);
1001 	struct rwsem_waiter waiter;
1002 	DEFINE_WAKE_Q(wake_q);
1003 
1004 	/*
1005 	 * To prevent a constant stream of readers from starving a sleeping
1006 	 * waiter, don't attempt optimistic lock stealing if the lock is
1007 	 * currently owned by readers.
1008 	 */
1009 	if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) &&
1010 	    (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED))
1011 		goto queue;
1012 
1013 	/*
1014 	 * Reader optimistic lock stealing.
1015 	 */
1016 	if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) {
1017 		rwsem_set_reader_owned(sem);
1018 		lockevent_inc(rwsem_rlock_steal);
1019 
1020 		/*
1021 		 * Wake up other readers in the wait queue if it is
1022 		 * the first reader.
1023 		 */
1024 		if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) {
1025 			raw_spin_lock_irq(&sem->wait_lock);
1026 			if (!list_empty(&sem->wait_list))
1027 				rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED,
1028 						&wake_q);
1029 			raw_spin_unlock_irq(&sem->wait_lock);
1030 			wake_up_q(&wake_q);
1031 		}
1032 		return sem;
1033 	}
1034 
1035 queue:
1036 	waiter.task = current;
1037 	waiter.type = RWSEM_WAITING_FOR_READ;
1038 	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1039 	waiter.handoff_set = false;
1040 
1041 	raw_spin_lock_irq(&sem->wait_lock);
1042 	if (list_empty(&sem->wait_list)) {
1043 		/*
1044 		 * In case the wait queue is empty and the lock isn't owned
1045 		 * by a writer, this reader can exit the slowpath and return
1046 		 * immediately as its RWSEM_READER_BIAS has already been set
1047 		 * in the count.
1048 		 */
1049 		if (!(atomic_long_read(&sem->count) & RWSEM_WRITER_MASK)) {
1050 			/* Provide lock ACQUIRE */
1051 			smp_acquire__after_ctrl_dep();
1052 			raw_spin_unlock_irq(&sem->wait_lock);
1053 			rwsem_set_reader_owned(sem);
1054 			lockevent_inc(rwsem_rlock_fast);
1055 			return sem;
1056 		}
1057 		adjustment += RWSEM_FLAG_WAITERS;
1058 	}
1059 	rwsem_add_waiter(sem, &waiter);
1060 
1061 	/* we're now waiting on the lock, but no longer actively locking */
1062 	count = atomic_long_add_return(adjustment, &sem->count);
1063 
1064 	rwsem_cond_wake_waiter(sem, count, &wake_q);
1065 	raw_spin_unlock_irq(&sem->wait_lock);
1066 
1067 	if (!wake_q_empty(&wake_q))
1068 		wake_up_q(&wake_q);
1069 
1070 	trace_contention_begin(sem, LCB_F_READ);
1071 
1072 	/* wait to be given the lock */
1073 	for (;;) {
1074 		set_current_state(state);
1075 		if (!smp_load_acquire(&waiter.task)) {
1076 			/* Matches rwsem_mark_wake()'s smp_store_release(). */
1077 			break;
1078 		}
1079 		if (signal_pending_state(state, current)) {
1080 			raw_spin_lock_irq(&sem->wait_lock);
1081 			if (waiter.task)
1082 				goto out_nolock;
1083 			raw_spin_unlock_irq(&sem->wait_lock);
1084 			/* Ordered by sem->wait_lock against rwsem_mark_wake(). */
1085 			break;
1086 		}
1087 		schedule();
1088 		lockevent_inc(rwsem_sleep_reader);
1089 	}
1090 
1091 	__set_current_state(TASK_RUNNING);
1092 	lockevent_inc(rwsem_rlock);
1093 	trace_contention_end(sem, 0);
1094 	return sem;
1095 
1096 out_nolock:
1097 	rwsem_del_wake_waiter(sem, &waiter, &wake_q);
1098 	__set_current_state(TASK_RUNNING);
1099 	lockevent_inc(rwsem_rlock_fail);
1100 	trace_contention_end(sem, -EINTR);
1101 	return ERR_PTR(-EINTR);
1102 }
1103 
1104 /*
1105  * Wait until we successfully acquire the write lock
1106  */
1107 static struct rw_semaphore __sched *
1108 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state)
1109 {
1110 	struct rwsem_waiter waiter;
1111 	DEFINE_WAKE_Q(wake_q);
1112 
1113 	/* do optimistic spinning and steal lock if possible */
1114 	if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) {
1115 		/* rwsem_optimistic_spin() implies ACQUIRE on success */
1116 		return sem;
1117 	}
1118 
1119 	/*
1120 	 * Optimistic spinning failed, proceed to the slowpath
1121 	 * and block until we can acquire the sem.
1122 	 */
1123 	waiter.task = current;
1124 	waiter.type = RWSEM_WAITING_FOR_WRITE;
1125 	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1126 	waiter.handoff_set = false;
1127 
1128 	raw_spin_lock_irq(&sem->wait_lock);
1129 	rwsem_add_waiter(sem, &waiter);
1130 
1131 	/* we're now waiting on the lock */
1132 	if (rwsem_first_waiter(sem) != &waiter) {
1133 		rwsem_cond_wake_waiter(sem, atomic_long_read(&sem->count),
1134 				       &wake_q);
1135 		if (!wake_q_empty(&wake_q)) {
1136 			/*
1137 			 * We want to minimize wait_lock hold time especially
1138 			 * when a large number of readers are to be woken up.
1139 			 */
1140 			raw_spin_unlock_irq(&sem->wait_lock);
1141 			wake_up_q(&wake_q);
1142 			raw_spin_lock_irq(&sem->wait_lock);
1143 		}
1144 	} else {
1145 		atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count);
1146 	}
1147 
1148 	/* wait until we successfully acquire the lock */
1149 	set_current_state(state);
1150 	trace_contention_begin(sem, LCB_F_WRITE);
1151 
1152 	for (;;) {
1153 		if (rwsem_try_write_lock(sem, &waiter)) {
1154 			/* rwsem_try_write_lock() implies ACQUIRE on success */
1155 			break;
1156 		}
1157 
1158 		raw_spin_unlock_irq(&sem->wait_lock);
1159 
1160 		if (signal_pending_state(state, current))
1161 			goto out_nolock;
1162 
1163 		/*
1164 		 * After setting the handoff bit and failing to acquire
1165 		 * the lock, attempt to spin on owner to accelerate lock
1166 		 * transfer. If the previous owner is a on-cpu writer and it
1167 		 * has just released the lock, OWNER_NULL will be returned.
1168 		 * In this case, we attempt to acquire the lock again
1169 		 * without sleeping.
1170 		 */
1171 		if (waiter.handoff_set) {
1172 			enum owner_state owner_state;
1173 
1174 			preempt_disable();
1175 			owner_state = rwsem_spin_on_owner(sem);
1176 			preempt_enable();
1177 
1178 			if (owner_state == OWNER_NULL)
1179 				goto trylock_again;
1180 		}
1181 
1182 		schedule();
1183 		lockevent_inc(rwsem_sleep_writer);
1184 		set_current_state(state);
1185 trylock_again:
1186 		raw_spin_lock_irq(&sem->wait_lock);
1187 	}
1188 	__set_current_state(TASK_RUNNING);
1189 	raw_spin_unlock_irq(&sem->wait_lock);
1190 	lockevent_inc(rwsem_wlock);
1191 	trace_contention_end(sem, 0);
1192 	return sem;
1193 
1194 out_nolock:
1195 	__set_current_state(TASK_RUNNING);
1196 	raw_spin_lock_irq(&sem->wait_lock);
1197 	rwsem_del_wake_waiter(sem, &waiter, &wake_q);
1198 	lockevent_inc(rwsem_wlock_fail);
1199 	trace_contention_end(sem, -EINTR);
1200 	return ERR_PTR(-EINTR);
1201 }
1202 
1203 /*
1204  * handle waking up a waiter on the semaphore
1205  * - up_read/up_write has decremented the active part of count if we come here
1206  */
1207 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem)
1208 {
1209 	unsigned long flags;
1210 	DEFINE_WAKE_Q(wake_q);
1211 
1212 	raw_spin_lock_irqsave(&sem->wait_lock, flags);
1213 
1214 	if (!list_empty(&sem->wait_list))
1215 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1216 
1217 	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1218 	wake_up_q(&wake_q);
1219 
1220 	return sem;
1221 }
1222 
1223 /*
1224  * downgrade a write lock into a read lock
1225  * - caller incremented waiting part of count and discovered it still negative
1226  * - just wake up any readers at the front of the queue
1227  */
1228 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
1229 {
1230 	unsigned long flags;
1231 	DEFINE_WAKE_Q(wake_q);
1232 
1233 	raw_spin_lock_irqsave(&sem->wait_lock, flags);
1234 
1235 	if (!list_empty(&sem->wait_list))
1236 		rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
1237 
1238 	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1239 	wake_up_q(&wake_q);
1240 
1241 	return sem;
1242 }
1243 
1244 /*
1245  * lock for reading
1246  */
1247 static inline int __down_read_common(struct rw_semaphore *sem, int state)
1248 {
1249 	long count;
1250 
1251 	if (!rwsem_read_trylock(sem, &count)) {
1252 		if (IS_ERR(rwsem_down_read_slowpath(sem, count, state)))
1253 			return -EINTR;
1254 		DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1255 	}
1256 	return 0;
1257 }
1258 
1259 static inline void __down_read(struct rw_semaphore *sem)
1260 {
1261 	__down_read_common(sem, TASK_UNINTERRUPTIBLE);
1262 }
1263 
1264 static inline int __down_read_interruptible(struct rw_semaphore *sem)
1265 {
1266 	return __down_read_common(sem, TASK_INTERRUPTIBLE);
1267 }
1268 
1269 static inline int __down_read_killable(struct rw_semaphore *sem)
1270 {
1271 	return __down_read_common(sem, TASK_KILLABLE);
1272 }
1273 
1274 static inline int __down_read_trylock(struct rw_semaphore *sem)
1275 {
1276 	long tmp;
1277 
1278 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1279 
1280 	tmp = atomic_long_read(&sem->count);
1281 	while (!(tmp & RWSEM_READ_FAILED_MASK)) {
1282 		if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1283 						    tmp + RWSEM_READER_BIAS)) {
1284 			rwsem_set_reader_owned(sem);
1285 			return 1;
1286 		}
1287 	}
1288 	return 0;
1289 }
1290 
1291 /*
1292  * lock for writing
1293  */
1294 static inline int __down_write_common(struct rw_semaphore *sem, int state)
1295 {
1296 	if (unlikely(!rwsem_write_trylock(sem))) {
1297 		if (IS_ERR(rwsem_down_write_slowpath(sem, state)))
1298 			return -EINTR;
1299 	}
1300 
1301 	return 0;
1302 }
1303 
1304 static inline void __down_write(struct rw_semaphore *sem)
1305 {
1306 	__down_write_common(sem, TASK_UNINTERRUPTIBLE);
1307 }
1308 
1309 static inline int __down_write_killable(struct rw_semaphore *sem)
1310 {
1311 	return __down_write_common(sem, TASK_KILLABLE);
1312 }
1313 
1314 static inline int __down_write_trylock(struct rw_semaphore *sem)
1315 {
1316 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1317 	return rwsem_write_trylock(sem);
1318 }
1319 
1320 /*
1321  * unlock after reading
1322  */
1323 static inline void __up_read(struct rw_semaphore *sem)
1324 {
1325 	long tmp;
1326 
1327 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1328 	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1329 
1330 	rwsem_clear_reader_owned(sem);
1331 	tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count);
1332 	DEBUG_RWSEMS_WARN_ON(tmp < 0, sem);
1333 	if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) ==
1334 		      RWSEM_FLAG_WAITERS)) {
1335 		clear_nonspinnable(sem);
1336 		rwsem_wake(sem);
1337 	}
1338 }
1339 
1340 /*
1341  * unlock after writing
1342  */
1343 static inline void __up_write(struct rw_semaphore *sem)
1344 {
1345 	long tmp;
1346 
1347 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1348 	/*
1349 	 * sem->owner may differ from current if the ownership is transferred
1350 	 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
1351 	 */
1352 	DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) &&
1353 			    !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem);
1354 
1355 	rwsem_clear_owner(sem);
1356 	tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count);
1357 	if (unlikely(tmp & RWSEM_FLAG_WAITERS))
1358 		rwsem_wake(sem);
1359 }
1360 
1361 /*
1362  * downgrade write lock to read lock
1363  */
1364 static inline void __downgrade_write(struct rw_semaphore *sem)
1365 {
1366 	long tmp;
1367 
1368 	/*
1369 	 * When downgrading from exclusive to shared ownership,
1370 	 * anything inside the write-locked region cannot leak
1371 	 * into the read side. In contrast, anything in the
1372 	 * read-locked region is ok to be re-ordered into the
1373 	 * write side. As such, rely on RELEASE semantics.
1374 	 */
1375 	DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem);
1376 	tmp = atomic_long_fetch_add_release(
1377 		-RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count);
1378 	rwsem_set_reader_owned(sem);
1379 	if (tmp & RWSEM_FLAG_WAITERS)
1380 		rwsem_downgrade_wake(sem);
1381 }
1382 
1383 #else /* !CONFIG_PREEMPT_RT */
1384 
1385 #define RT_MUTEX_BUILD_MUTEX
1386 #include "rtmutex.c"
1387 
1388 #define rwbase_set_and_save_current_state(state)	\
1389 	set_current_state(state)
1390 
1391 #define rwbase_restore_current_state()			\
1392 	__set_current_state(TASK_RUNNING)
1393 
1394 #define rwbase_rtmutex_lock_state(rtm, state)		\
1395 	__rt_mutex_lock(rtm, state)
1396 
1397 #define rwbase_rtmutex_slowlock_locked(rtm, state)	\
1398 	__rt_mutex_slowlock_locked(rtm, NULL, state)
1399 
1400 #define rwbase_rtmutex_unlock(rtm)			\
1401 	__rt_mutex_unlock(rtm)
1402 
1403 #define rwbase_rtmutex_trylock(rtm)			\
1404 	__rt_mutex_trylock(rtm)
1405 
1406 #define rwbase_signal_pending_state(state, current)	\
1407 	signal_pending_state(state, current)
1408 
1409 #define rwbase_schedule()				\
1410 	schedule()
1411 
1412 #include "rwbase_rt.c"
1413 
1414 void __init_rwsem(struct rw_semaphore *sem, const char *name,
1415 		  struct lock_class_key *key)
1416 {
1417 	init_rwbase_rt(&(sem)->rwbase);
1418 
1419 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1420 	debug_check_no_locks_freed((void *)sem, sizeof(*sem));
1421 	lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
1422 #endif
1423 }
1424 EXPORT_SYMBOL(__init_rwsem);
1425 
1426 static inline void __down_read(struct rw_semaphore *sem)
1427 {
1428 	rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1429 }
1430 
1431 static inline int __down_read_interruptible(struct rw_semaphore *sem)
1432 {
1433 	return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE);
1434 }
1435 
1436 static inline int __down_read_killable(struct rw_semaphore *sem)
1437 {
1438 	return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE);
1439 }
1440 
1441 static inline int __down_read_trylock(struct rw_semaphore *sem)
1442 {
1443 	return rwbase_read_trylock(&sem->rwbase);
1444 }
1445 
1446 static inline void __up_read(struct rw_semaphore *sem)
1447 {
1448 	rwbase_read_unlock(&sem->rwbase, TASK_NORMAL);
1449 }
1450 
1451 static inline void __sched __down_write(struct rw_semaphore *sem)
1452 {
1453 	rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1454 }
1455 
1456 static inline int __sched __down_write_killable(struct rw_semaphore *sem)
1457 {
1458 	return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE);
1459 }
1460 
1461 static inline int __down_write_trylock(struct rw_semaphore *sem)
1462 {
1463 	return rwbase_write_trylock(&sem->rwbase);
1464 }
1465 
1466 static inline void __up_write(struct rw_semaphore *sem)
1467 {
1468 	rwbase_write_unlock(&sem->rwbase);
1469 }
1470 
1471 static inline void __downgrade_write(struct rw_semaphore *sem)
1472 {
1473 	rwbase_write_downgrade(&sem->rwbase);
1474 }
1475 
1476 /* Debug stubs for the common API */
1477 #define DEBUG_RWSEMS_WARN_ON(c, sem)
1478 
1479 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
1480 					    struct task_struct *owner)
1481 {
1482 }
1483 
1484 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
1485 {
1486 	int count = atomic_read(&sem->rwbase.readers);
1487 
1488 	return count < 0 && count != READER_BIAS;
1489 }
1490 
1491 #endif /* CONFIG_PREEMPT_RT */
1492 
1493 /*
1494  * lock for reading
1495  */
1496 void __sched down_read(struct rw_semaphore *sem)
1497 {
1498 	might_sleep();
1499 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1500 
1501 	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1502 }
1503 EXPORT_SYMBOL(down_read);
1504 
1505 int __sched down_read_interruptible(struct rw_semaphore *sem)
1506 {
1507 	might_sleep();
1508 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1509 
1510 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) {
1511 		rwsem_release(&sem->dep_map, _RET_IP_);
1512 		return -EINTR;
1513 	}
1514 
1515 	return 0;
1516 }
1517 EXPORT_SYMBOL(down_read_interruptible);
1518 
1519 int __sched down_read_killable(struct rw_semaphore *sem)
1520 {
1521 	might_sleep();
1522 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1523 
1524 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1525 		rwsem_release(&sem->dep_map, _RET_IP_);
1526 		return -EINTR;
1527 	}
1528 
1529 	return 0;
1530 }
1531 EXPORT_SYMBOL(down_read_killable);
1532 
1533 /*
1534  * trylock for reading -- returns 1 if successful, 0 if contention
1535  */
1536 int down_read_trylock(struct rw_semaphore *sem)
1537 {
1538 	int ret = __down_read_trylock(sem);
1539 
1540 	if (ret == 1)
1541 		rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_);
1542 	return ret;
1543 }
1544 EXPORT_SYMBOL(down_read_trylock);
1545 
1546 /*
1547  * lock for writing
1548  */
1549 void __sched down_write(struct rw_semaphore *sem)
1550 {
1551 	might_sleep();
1552 	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1553 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1554 }
1555 EXPORT_SYMBOL(down_write);
1556 
1557 /*
1558  * lock for writing
1559  */
1560 int __sched down_write_killable(struct rw_semaphore *sem)
1561 {
1562 	might_sleep();
1563 	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1564 
1565 	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1566 				  __down_write_killable)) {
1567 		rwsem_release(&sem->dep_map, _RET_IP_);
1568 		return -EINTR;
1569 	}
1570 
1571 	return 0;
1572 }
1573 EXPORT_SYMBOL(down_write_killable);
1574 
1575 /*
1576  * trylock for writing -- returns 1 if successful, 0 if contention
1577  */
1578 int down_write_trylock(struct rw_semaphore *sem)
1579 {
1580 	int ret = __down_write_trylock(sem);
1581 
1582 	if (ret == 1)
1583 		rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_);
1584 
1585 	return ret;
1586 }
1587 EXPORT_SYMBOL(down_write_trylock);
1588 
1589 /*
1590  * release a read lock
1591  */
1592 void up_read(struct rw_semaphore *sem)
1593 {
1594 	rwsem_release(&sem->dep_map, _RET_IP_);
1595 	__up_read(sem);
1596 }
1597 EXPORT_SYMBOL(up_read);
1598 
1599 /*
1600  * release a write lock
1601  */
1602 void up_write(struct rw_semaphore *sem)
1603 {
1604 	rwsem_release(&sem->dep_map, _RET_IP_);
1605 	__up_write(sem);
1606 }
1607 EXPORT_SYMBOL(up_write);
1608 
1609 /*
1610  * downgrade write lock to read lock
1611  */
1612 void downgrade_write(struct rw_semaphore *sem)
1613 {
1614 	lock_downgrade(&sem->dep_map, _RET_IP_);
1615 	__downgrade_write(sem);
1616 }
1617 EXPORT_SYMBOL(downgrade_write);
1618 
1619 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1620 
1621 void down_read_nested(struct rw_semaphore *sem, int subclass)
1622 {
1623 	might_sleep();
1624 	rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1625 	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1626 }
1627 EXPORT_SYMBOL(down_read_nested);
1628 
1629 int down_read_killable_nested(struct rw_semaphore *sem, int subclass)
1630 {
1631 	might_sleep();
1632 	rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1633 
1634 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1635 		rwsem_release(&sem->dep_map, _RET_IP_);
1636 		return -EINTR;
1637 	}
1638 
1639 	return 0;
1640 }
1641 EXPORT_SYMBOL(down_read_killable_nested);
1642 
1643 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest)
1644 {
1645 	might_sleep();
1646 	rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_);
1647 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1648 }
1649 EXPORT_SYMBOL(_down_write_nest_lock);
1650 
1651 void down_read_non_owner(struct rw_semaphore *sem)
1652 {
1653 	might_sleep();
1654 	__down_read(sem);
1655 	__rwsem_set_reader_owned(sem, NULL);
1656 }
1657 EXPORT_SYMBOL(down_read_non_owner);
1658 
1659 void down_write_nested(struct rw_semaphore *sem, int subclass)
1660 {
1661 	might_sleep();
1662 	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1663 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1664 }
1665 EXPORT_SYMBOL(down_write_nested);
1666 
1667 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass)
1668 {
1669 	might_sleep();
1670 	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1671 
1672 	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1673 				  __down_write_killable)) {
1674 		rwsem_release(&sem->dep_map, _RET_IP_);
1675 		return -EINTR;
1676 	}
1677 
1678 	return 0;
1679 }
1680 EXPORT_SYMBOL(down_write_killable_nested);
1681 
1682 void up_read_non_owner(struct rw_semaphore *sem)
1683 {
1684 	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1685 	__up_read(sem);
1686 }
1687 EXPORT_SYMBOL(up_read_non_owner);
1688 
1689 #endif
1690