1 // SPDX-License-Identifier: GPL-2.0 2 /* kernel/rwsem.c: R/W semaphores, public implementation 3 * 4 * Written by David Howells (dhowells@redhat.com). 5 * Derived from asm-i386/semaphore.h 6 * 7 * Writer lock-stealing by Alex Shi <alex.shi@intel.com> 8 * and Michel Lespinasse <walken@google.com> 9 * 10 * Optimistic spinning by Tim Chen <tim.c.chen@intel.com> 11 * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes. 12 * 13 * Rwsem count bit fields re-definition and rwsem rearchitecture by 14 * Waiman Long <longman@redhat.com> and 15 * Peter Zijlstra <peterz@infradead.org>. 16 */ 17 18 #include <linux/types.h> 19 #include <linux/kernel.h> 20 #include <linux/sched.h> 21 #include <linux/sched/rt.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/debug.h> 24 #include <linux/sched/wake_q.h> 25 #include <linux/sched/signal.h> 26 #include <linux/sched/clock.h> 27 #include <linux/export.h> 28 #include <linux/rwsem.h> 29 #include <linux/atomic.h> 30 31 #include "rwsem.h" 32 #include "lock_events.h" 33 34 /* 35 * The least significant 3 bits of the owner value has the following 36 * meanings when set. 37 * - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers 38 * - Bit 1: RWSEM_RD_NONSPINNABLE - Readers cannot spin on this lock. 39 * - Bit 2: RWSEM_WR_NONSPINNABLE - Writers cannot spin on this lock. 40 * 41 * When the rwsem is either owned by an anonymous writer, or it is 42 * reader-owned, but a spinning writer has timed out, both nonspinnable 43 * bits will be set to disable optimistic spinning by readers and writers. 44 * In the later case, the last unlocking reader should then check the 45 * writer nonspinnable bit and clear it only to give writers preference 46 * to acquire the lock via optimistic spinning, but not readers. Similar 47 * action is also done in the reader slowpath. 48 49 * When a writer acquires a rwsem, it puts its task_struct pointer 50 * into the owner field. It is cleared after an unlock. 51 * 52 * When a reader acquires a rwsem, it will also puts its task_struct 53 * pointer into the owner field with the RWSEM_READER_OWNED bit set. 54 * On unlock, the owner field will largely be left untouched. So 55 * for a free or reader-owned rwsem, the owner value may contain 56 * information about the last reader that acquires the rwsem. 57 * 58 * That information may be helpful in debugging cases where the system 59 * seems to hang on a reader owned rwsem especially if only one reader 60 * is involved. Ideally we would like to track all the readers that own 61 * a rwsem, but the overhead is simply too big. 62 * 63 * Reader optimistic spinning is helpful when the reader critical section 64 * is short and there aren't that many readers around. It makes readers 65 * relatively more preferred than writers. When a writer times out spinning 66 * on a reader-owned lock and set the nospinnable bits, there are two main 67 * reasons for that. 68 * 69 * 1) The reader critical section is long, perhaps the task sleeps after 70 * acquiring the read lock. 71 * 2) There are just too many readers contending the lock causing it to 72 * take a while to service all of them. 73 * 74 * In the former case, long reader critical section will impede the progress 75 * of writers which is usually more important for system performance. In 76 * the later case, reader optimistic spinning tends to make the reader 77 * groups that contain readers that acquire the lock together smaller 78 * leading to more of them. That may hurt performance in some cases. In 79 * other words, the setting of nonspinnable bits indicates that reader 80 * optimistic spinning may not be helpful for those workloads that cause 81 * it. 82 * 83 * Therefore, any writers that had observed the setting of the writer 84 * nonspinnable bit for a given rwsem after they fail to acquire the lock 85 * via optimistic spinning will set the reader nonspinnable bit once they 86 * acquire the write lock. Similarly, readers that observe the setting 87 * of reader nonspinnable bit at slowpath entry will set the reader 88 * nonspinnable bits when they acquire the read lock via the wakeup path. 89 * 90 * Once the reader nonspinnable bit is on, it will only be reset when 91 * a writer is able to acquire the rwsem in the fast path or somehow a 92 * reader or writer in the slowpath doesn't observe the nonspinable bit. 93 * 94 * This is to discourage reader optmistic spinning on that particular 95 * rwsem and make writers more preferred. This adaptive disabling of reader 96 * optimistic spinning will alleviate the negative side effect of this 97 * feature. 98 */ 99 #define RWSEM_READER_OWNED (1UL << 0) 100 #define RWSEM_RD_NONSPINNABLE (1UL << 1) 101 #define RWSEM_WR_NONSPINNABLE (1UL << 2) 102 #define RWSEM_NONSPINNABLE (RWSEM_RD_NONSPINNABLE | RWSEM_WR_NONSPINNABLE) 103 #define RWSEM_OWNER_FLAGS_MASK (RWSEM_READER_OWNED | RWSEM_NONSPINNABLE) 104 105 #ifdef CONFIG_DEBUG_RWSEMS 106 # define DEBUG_RWSEMS_WARN_ON(c, sem) do { \ 107 if (!debug_locks_silent && \ 108 WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\ 109 #c, atomic_long_read(&(sem)->count), \ 110 atomic_long_read(&(sem)->owner), (long)current, \ 111 list_empty(&(sem)->wait_list) ? "" : "not ")) \ 112 debug_locks_off(); \ 113 } while (0) 114 #else 115 # define DEBUG_RWSEMS_WARN_ON(c, sem) 116 #endif 117 118 /* 119 * On 64-bit architectures, the bit definitions of the count are: 120 * 121 * Bit 0 - writer locked bit 122 * Bit 1 - waiters present bit 123 * Bit 2 - lock handoff bit 124 * Bits 3-7 - reserved 125 * Bits 8-62 - 55-bit reader count 126 * Bit 63 - read fail bit 127 * 128 * On 32-bit architectures, the bit definitions of the count are: 129 * 130 * Bit 0 - writer locked bit 131 * Bit 1 - waiters present bit 132 * Bit 2 - lock handoff bit 133 * Bits 3-7 - reserved 134 * Bits 8-30 - 23-bit reader count 135 * Bit 31 - read fail bit 136 * 137 * It is not likely that the most significant bit (read fail bit) will ever 138 * be set. This guard bit is still checked anyway in the down_read() fastpath 139 * just in case we need to use up more of the reader bits for other purpose 140 * in the future. 141 * 142 * atomic_long_fetch_add() is used to obtain reader lock, whereas 143 * atomic_long_cmpxchg() will be used to obtain writer lock. 144 * 145 * There are three places where the lock handoff bit may be set or cleared. 146 * 1) rwsem_mark_wake() for readers. 147 * 2) rwsem_try_write_lock() for writers. 148 * 3) Error path of rwsem_down_write_slowpath(). 149 * 150 * For all the above cases, wait_lock will be held. A writer must also 151 * be the first one in the wait_list to be eligible for setting the handoff 152 * bit. So concurrent setting/clearing of handoff bit is not possible. 153 */ 154 #define RWSEM_WRITER_LOCKED (1UL << 0) 155 #define RWSEM_FLAG_WAITERS (1UL << 1) 156 #define RWSEM_FLAG_HANDOFF (1UL << 2) 157 #define RWSEM_FLAG_READFAIL (1UL << (BITS_PER_LONG - 1)) 158 159 #define RWSEM_READER_SHIFT 8 160 #define RWSEM_READER_BIAS (1UL << RWSEM_READER_SHIFT) 161 #define RWSEM_READER_MASK (~(RWSEM_READER_BIAS - 1)) 162 #define RWSEM_WRITER_MASK RWSEM_WRITER_LOCKED 163 #define RWSEM_LOCK_MASK (RWSEM_WRITER_MASK|RWSEM_READER_MASK) 164 #define RWSEM_READ_FAILED_MASK (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\ 165 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL) 166 167 /* 168 * All writes to owner are protected by WRITE_ONCE() to make sure that 169 * store tearing can't happen as optimistic spinners may read and use 170 * the owner value concurrently without lock. Read from owner, however, 171 * may not need READ_ONCE() as long as the pointer value is only used 172 * for comparison and isn't being dereferenced. 173 */ 174 static inline void rwsem_set_owner(struct rw_semaphore *sem) 175 { 176 atomic_long_set(&sem->owner, (long)current); 177 } 178 179 static inline void rwsem_clear_owner(struct rw_semaphore *sem) 180 { 181 atomic_long_set(&sem->owner, 0); 182 } 183 184 /* 185 * Test the flags in the owner field. 186 */ 187 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags) 188 { 189 return atomic_long_read(&sem->owner) & flags; 190 } 191 192 /* 193 * The task_struct pointer of the last owning reader will be left in 194 * the owner field. 195 * 196 * Note that the owner value just indicates the task has owned the rwsem 197 * previously, it may not be the real owner or one of the real owners 198 * anymore when that field is examined, so take it with a grain of salt. 199 * 200 * The reader non-spinnable bit is preserved. 201 */ 202 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem, 203 struct task_struct *owner) 204 { 205 unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED | 206 (atomic_long_read(&sem->owner) & RWSEM_RD_NONSPINNABLE); 207 208 atomic_long_set(&sem->owner, val); 209 } 210 211 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem) 212 { 213 __rwsem_set_reader_owned(sem, current); 214 } 215 216 /* 217 * Return true if the rwsem is owned by a reader. 218 */ 219 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem) 220 { 221 #ifdef CONFIG_DEBUG_RWSEMS 222 /* 223 * Check the count to see if it is write-locked. 224 */ 225 long count = atomic_long_read(&sem->count); 226 227 if (count & RWSEM_WRITER_MASK) 228 return false; 229 #endif 230 return rwsem_test_oflags(sem, RWSEM_READER_OWNED); 231 } 232 233 #ifdef CONFIG_DEBUG_RWSEMS 234 /* 235 * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there 236 * is a task pointer in owner of a reader-owned rwsem, it will be the 237 * real owner or one of the real owners. The only exception is when the 238 * unlock is done by up_read_non_owner(). 239 */ 240 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) 241 { 242 unsigned long val = atomic_long_read(&sem->owner); 243 244 while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) { 245 if (atomic_long_try_cmpxchg(&sem->owner, &val, 246 val & RWSEM_OWNER_FLAGS_MASK)) 247 return; 248 } 249 } 250 #else 251 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) 252 { 253 } 254 #endif 255 256 /* 257 * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag 258 * remains set. Otherwise, the operation will be aborted. 259 */ 260 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem) 261 { 262 unsigned long owner = atomic_long_read(&sem->owner); 263 264 do { 265 if (!(owner & RWSEM_READER_OWNED)) 266 break; 267 if (owner & RWSEM_NONSPINNABLE) 268 break; 269 } while (!atomic_long_try_cmpxchg(&sem->owner, &owner, 270 owner | RWSEM_NONSPINNABLE)); 271 } 272 273 static inline bool rwsem_read_trylock(struct rw_semaphore *sem) 274 { 275 long cnt = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count); 276 if (WARN_ON_ONCE(cnt < 0)) 277 rwsem_set_nonspinnable(sem); 278 return !(cnt & RWSEM_READ_FAILED_MASK); 279 } 280 281 /* 282 * Return just the real task structure pointer of the owner 283 */ 284 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem) 285 { 286 return (struct task_struct *) 287 (atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK); 288 } 289 290 /* 291 * Return the real task structure pointer of the owner and the embedded 292 * flags in the owner. pflags must be non-NULL. 293 */ 294 static inline struct task_struct * 295 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags) 296 { 297 unsigned long owner = atomic_long_read(&sem->owner); 298 299 *pflags = owner & RWSEM_OWNER_FLAGS_MASK; 300 return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK); 301 } 302 303 /* 304 * Guide to the rw_semaphore's count field. 305 * 306 * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned 307 * by a writer. 308 * 309 * The lock is owned by readers when 310 * (1) the RWSEM_WRITER_LOCKED isn't set in count, 311 * (2) some of the reader bits are set in count, and 312 * (3) the owner field has RWSEM_READ_OWNED bit set. 313 * 314 * Having some reader bits set is not enough to guarantee a readers owned 315 * lock as the readers may be in the process of backing out from the count 316 * and a writer has just released the lock. So another writer may steal 317 * the lock immediately after that. 318 */ 319 320 /* 321 * Initialize an rwsem: 322 */ 323 void __init_rwsem(struct rw_semaphore *sem, const char *name, 324 struct lock_class_key *key) 325 { 326 #ifdef CONFIG_DEBUG_LOCK_ALLOC 327 /* 328 * Make sure we are not reinitializing a held semaphore: 329 */ 330 debug_check_no_locks_freed((void *)sem, sizeof(*sem)); 331 lockdep_init_map(&sem->dep_map, name, key, 0); 332 #endif 333 atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE); 334 raw_spin_lock_init(&sem->wait_lock); 335 INIT_LIST_HEAD(&sem->wait_list); 336 atomic_long_set(&sem->owner, 0L); 337 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER 338 osq_lock_init(&sem->osq); 339 #endif 340 } 341 EXPORT_SYMBOL(__init_rwsem); 342 343 enum rwsem_waiter_type { 344 RWSEM_WAITING_FOR_WRITE, 345 RWSEM_WAITING_FOR_READ 346 }; 347 348 struct rwsem_waiter { 349 struct list_head list; 350 struct task_struct *task; 351 enum rwsem_waiter_type type; 352 unsigned long timeout; 353 unsigned long last_rowner; 354 }; 355 #define rwsem_first_waiter(sem) \ 356 list_first_entry(&sem->wait_list, struct rwsem_waiter, list) 357 358 enum rwsem_wake_type { 359 RWSEM_WAKE_ANY, /* Wake whatever's at head of wait list */ 360 RWSEM_WAKE_READERS, /* Wake readers only */ 361 RWSEM_WAKE_READ_OWNED /* Waker thread holds the read lock */ 362 }; 363 364 enum writer_wait_state { 365 WRITER_NOT_FIRST, /* Writer is not first in wait list */ 366 WRITER_FIRST, /* Writer is first in wait list */ 367 WRITER_HANDOFF /* Writer is first & handoff needed */ 368 }; 369 370 /* 371 * The typical HZ value is either 250 or 1000. So set the minimum waiting 372 * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait 373 * queue before initiating the handoff protocol. 374 */ 375 #define RWSEM_WAIT_TIMEOUT DIV_ROUND_UP(HZ, 250) 376 377 /* 378 * Magic number to batch-wakeup waiting readers, even when writers are 379 * also present in the queue. This both limits the amount of work the 380 * waking thread must do and also prevents any potential counter overflow, 381 * however unlikely. 382 */ 383 #define MAX_READERS_WAKEUP 0x100 384 385 /* 386 * handle the lock release when processes blocked on it that can now run 387 * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must 388 * have been set. 389 * - there must be someone on the queue 390 * - the wait_lock must be held by the caller 391 * - tasks are marked for wakeup, the caller must later invoke wake_up_q() 392 * to actually wakeup the blocked task(s) and drop the reference count, 393 * preferably when the wait_lock is released 394 * - woken process blocks are discarded from the list after having task zeroed 395 * - writers are only marked woken if downgrading is false 396 */ 397 static void rwsem_mark_wake(struct rw_semaphore *sem, 398 enum rwsem_wake_type wake_type, 399 struct wake_q_head *wake_q) 400 { 401 struct rwsem_waiter *waiter, *tmp; 402 long oldcount, woken = 0, adjustment = 0; 403 struct list_head wlist; 404 405 lockdep_assert_held(&sem->wait_lock); 406 407 /* 408 * Take a peek at the queue head waiter such that we can determine 409 * the wakeup(s) to perform. 410 */ 411 waiter = rwsem_first_waiter(sem); 412 413 if (waiter->type == RWSEM_WAITING_FOR_WRITE) { 414 if (wake_type == RWSEM_WAKE_ANY) { 415 /* 416 * Mark writer at the front of the queue for wakeup. 417 * Until the task is actually later awoken later by 418 * the caller, other writers are able to steal it. 419 * Readers, on the other hand, will block as they 420 * will notice the queued writer. 421 */ 422 wake_q_add(wake_q, waiter->task); 423 lockevent_inc(rwsem_wake_writer); 424 } 425 426 return; 427 } 428 429 /* 430 * No reader wakeup if there are too many of them already. 431 */ 432 if (unlikely(atomic_long_read(&sem->count) < 0)) 433 return; 434 435 /* 436 * Writers might steal the lock before we grant it to the next reader. 437 * We prefer to do the first reader grant before counting readers 438 * so we can bail out early if a writer stole the lock. 439 */ 440 if (wake_type != RWSEM_WAKE_READ_OWNED) { 441 struct task_struct *owner; 442 443 adjustment = RWSEM_READER_BIAS; 444 oldcount = atomic_long_fetch_add(adjustment, &sem->count); 445 if (unlikely(oldcount & RWSEM_WRITER_MASK)) { 446 /* 447 * When we've been waiting "too" long (for writers 448 * to give up the lock), request a HANDOFF to 449 * force the issue. 450 */ 451 if (!(oldcount & RWSEM_FLAG_HANDOFF) && 452 time_after(jiffies, waiter->timeout)) { 453 adjustment -= RWSEM_FLAG_HANDOFF; 454 lockevent_inc(rwsem_rlock_handoff); 455 } 456 457 atomic_long_add(-adjustment, &sem->count); 458 return; 459 } 460 /* 461 * Set it to reader-owned to give spinners an early 462 * indication that readers now have the lock. 463 * The reader nonspinnable bit seen at slowpath entry of 464 * the reader is copied over. 465 */ 466 owner = waiter->task; 467 if (waiter->last_rowner & RWSEM_RD_NONSPINNABLE) { 468 owner = (void *)((unsigned long)owner | RWSEM_RD_NONSPINNABLE); 469 lockevent_inc(rwsem_opt_norspin); 470 } 471 __rwsem_set_reader_owned(sem, owner); 472 } 473 474 /* 475 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the 476 * queue. We know that the woken will be at least 1 as we accounted 477 * for above. Note we increment the 'active part' of the count by the 478 * number of readers before waking any processes up. 479 * 480 * This is an adaptation of the phase-fair R/W locks where at the 481 * reader phase (first waiter is a reader), all readers are eligible 482 * to acquire the lock at the same time irrespective of their order 483 * in the queue. The writers acquire the lock according to their 484 * order in the queue. 485 * 486 * We have to do wakeup in 2 passes to prevent the possibility that 487 * the reader count may be decremented before it is incremented. It 488 * is because the to-be-woken waiter may not have slept yet. So it 489 * may see waiter->task got cleared, finish its critical section and 490 * do an unlock before the reader count increment. 491 * 492 * 1) Collect the read-waiters in a separate list, count them and 493 * fully increment the reader count in rwsem. 494 * 2) For each waiters in the new list, clear waiter->task and 495 * put them into wake_q to be woken up later. 496 */ 497 INIT_LIST_HEAD(&wlist); 498 list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) { 499 if (waiter->type == RWSEM_WAITING_FOR_WRITE) 500 continue; 501 502 woken++; 503 list_move_tail(&waiter->list, &wlist); 504 505 /* 506 * Limit # of readers that can be woken up per wakeup call. 507 */ 508 if (woken >= MAX_READERS_WAKEUP) 509 break; 510 } 511 512 adjustment = woken * RWSEM_READER_BIAS - adjustment; 513 lockevent_cond_inc(rwsem_wake_reader, woken); 514 if (list_empty(&sem->wait_list)) { 515 /* hit end of list above */ 516 adjustment -= RWSEM_FLAG_WAITERS; 517 } 518 519 /* 520 * When we've woken a reader, we no longer need to force writers 521 * to give up the lock and we can clear HANDOFF. 522 */ 523 if (woken && (atomic_long_read(&sem->count) & RWSEM_FLAG_HANDOFF)) 524 adjustment -= RWSEM_FLAG_HANDOFF; 525 526 if (adjustment) 527 atomic_long_add(adjustment, &sem->count); 528 529 /* 2nd pass */ 530 list_for_each_entry_safe(waiter, tmp, &wlist, list) { 531 struct task_struct *tsk; 532 533 tsk = waiter->task; 534 get_task_struct(tsk); 535 536 /* 537 * Ensure calling get_task_struct() before setting the reader 538 * waiter to nil such that rwsem_down_read_slowpath() cannot 539 * race with do_exit() by always holding a reference count 540 * to the task to wakeup. 541 */ 542 smp_store_release(&waiter->task, NULL); 543 /* 544 * Ensure issuing the wakeup (either by us or someone else) 545 * after setting the reader waiter to nil. 546 */ 547 wake_q_add_safe(wake_q, tsk); 548 } 549 } 550 551 /* 552 * This function must be called with the sem->wait_lock held to prevent 553 * race conditions between checking the rwsem wait list and setting the 554 * sem->count accordingly. 555 * 556 * If wstate is WRITER_HANDOFF, it will make sure that either the handoff 557 * bit is set or the lock is acquired with handoff bit cleared. 558 */ 559 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem, 560 enum writer_wait_state wstate) 561 { 562 long count, new; 563 564 lockdep_assert_held(&sem->wait_lock); 565 566 count = atomic_long_read(&sem->count); 567 do { 568 bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF); 569 570 if (has_handoff && wstate == WRITER_NOT_FIRST) 571 return false; 572 573 new = count; 574 575 if (count & RWSEM_LOCK_MASK) { 576 if (has_handoff || (wstate != WRITER_HANDOFF)) 577 return false; 578 579 new |= RWSEM_FLAG_HANDOFF; 580 } else { 581 new |= RWSEM_WRITER_LOCKED; 582 new &= ~RWSEM_FLAG_HANDOFF; 583 584 if (list_is_singular(&sem->wait_list)) 585 new &= ~RWSEM_FLAG_WAITERS; 586 } 587 } while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new)); 588 589 /* 590 * We have either acquired the lock with handoff bit cleared or 591 * set the handoff bit. 592 */ 593 if (new & RWSEM_FLAG_HANDOFF) 594 return false; 595 596 rwsem_set_owner(sem); 597 return true; 598 } 599 600 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER 601 /* 602 * Try to acquire read lock before the reader is put on wait queue. 603 * Lock acquisition isn't allowed if the rwsem is locked or a writer handoff 604 * is ongoing. 605 */ 606 static inline bool rwsem_try_read_lock_unqueued(struct rw_semaphore *sem) 607 { 608 long count = atomic_long_read(&sem->count); 609 610 if (count & (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF)) 611 return false; 612 613 count = atomic_long_fetch_add_acquire(RWSEM_READER_BIAS, &sem->count); 614 if (!(count & (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))) { 615 rwsem_set_reader_owned(sem); 616 lockevent_inc(rwsem_opt_rlock); 617 return true; 618 } 619 620 /* Back out the change */ 621 atomic_long_add(-RWSEM_READER_BIAS, &sem->count); 622 return false; 623 } 624 625 /* 626 * Try to acquire write lock before the writer has been put on wait queue. 627 */ 628 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem) 629 { 630 long count = atomic_long_read(&sem->count); 631 632 while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) { 633 if (atomic_long_try_cmpxchg_acquire(&sem->count, &count, 634 count | RWSEM_WRITER_LOCKED)) { 635 rwsem_set_owner(sem); 636 lockevent_inc(rwsem_opt_wlock); 637 return true; 638 } 639 } 640 return false; 641 } 642 643 static inline bool owner_on_cpu(struct task_struct *owner) 644 { 645 /* 646 * As lock holder preemption issue, we both skip spinning if 647 * task is not on cpu or its cpu is preempted 648 */ 649 return owner->on_cpu && !vcpu_is_preempted(task_cpu(owner)); 650 } 651 652 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem, 653 unsigned long nonspinnable) 654 { 655 struct task_struct *owner; 656 unsigned long flags; 657 bool ret = true; 658 659 BUILD_BUG_ON(!(RWSEM_OWNER_UNKNOWN & RWSEM_NONSPINNABLE)); 660 661 if (need_resched()) { 662 lockevent_inc(rwsem_opt_fail); 663 return false; 664 } 665 666 preempt_disable(); 667 rcu_read_lock(); 668 owner = rwsem_owner_flags(sem, &flags); 669 /* 670 * Don't check the read-owner as the entry may be stale. 671 */ 672 if ((flags & nonspinnable) || 673 (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner))) 674 ret = false; 675 rcu_read_unlock(); 676 preempt_enable(); 677 678 lockevent_cond_inc(rwsem_opt_fail, !ret); 679 return ret; 680 } 681 682 /* 683 * The rwsem_spin_on_owner() function returns the folowing 4 values 684 * depending on the lock owner state. 685 * OWNER_NULL : owner is currently NULL 686 * OWNER_WRITER: when owner changes and is a writer 687 * OWNER_READER: when owner changes and the new owner may be a reader. 688 * OWNER_NONSPINNABLE: 689 * when optimistic spinning has to stop because either the 690 * owner stops running, is unknown, or its timeslice has 691 * been used up. 692 */ 693 enum owner_state { 694 OWNER_NULL = 1 << 0, 695 OWNER_WRITER = 1 << 1, 696 OWNER_READER = 1 << 2, 697 OWNER_NONSPINNABLE = 1 << 3, 698 }; 699 #define OWNER_SPINNABLE (OWNER_NULL | OWNER_WRITER | OWNER_READER) 700 701 static inline enum owner_state 702 rwsem_owner_state(struct task_struct *owner, unsigned long flags, unsigned long nonspinnable) 703 { 704 if (flags & nonspinnable) 705 return OWNER_NONSPINNABLE; 706 707 if (flags & RWSEM_READER_OWNED) 708 return OWNER_READER; 709 710 return owner ? OWNER_WRITER : OWNER_NULL; 711 } 712 713 static noinline enum owner_state 714 rwsem_spin_on_owner(struct rw_semaphore *sem, unsigned long nonspinnable) 715 { 716 struct task_struct *new, *owner; 717 unsigned long flags, new_flags; 718 enum owner_state state; 719 720 owner = rwsem_owner_flags(sem, &flags); 721 state = rwsem_owner_state(owner, flags, nonspinnable); 722 if (state != OWNER_WRITER) 723 return state; 724 725 rcu_read_lock(); 726 for (;;) { 727 if (atomic_long_read(&sem->count) & RWSEM_FLAG_HANDOFF) { 728 state = OWNER_NONSPINNABLE; 729 break; 730 } 731 732 new = rwsem_owner_flags(sem, &new_flags); 733 if ((new != owner) || (new_flags != flags)) { 734 state = rwsem_owner_state(new, new_flags, nonspinnable); 735 break; 736 } 737 738 /* 739 * Ensure we emit the owner->on_cpu, dereference _after_ 740 * checking sem->owner still matches owner, if that fails, 741 * owner might point to free()d memory, if it still matches, 742 * the rcu_read_lock() ensures the memory stays valid. 743 */ 744 barrier(); 745 746 if (need_resched() || !owner_on_cpu(owner)) { 747 state = OWNER_NONSPINNABLE; 748 break; 749 } 750 751 cpu_relax(); 752 } 753 rcu_read_unlock(); 754 755 return state; 756 } 757 758 /* 759 * Calculate reader-owned rwsem spinning threshold for writer 760 * 761 * The more readers own the rwsem, the longer it will take for them to 762 * wind down and free the rwsem. So the empirical formula used to 763 * determine the actual spinning time limit here is: 764 * 765 * Spinning threshold = (10 + nr_readers/2)us 766 * 767 * The limit is capped to a maximum of 25us (30 readers). This is just 768 * a heuristic and is subjected to change in the future. 769 */ 770 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem) 771 { 772 long count = atomic_long_read(&sem->count); 773 int readers = count >> RWSEM_READER_SHIFT; 774 u64 delta; 775 776 if (readers > 30) 777 readers = 30; 778 delta = (20 + readers) * NSEC_PER_USEC / 2; 779 780 return sched_clock() + delta; 781 } 782 783 static bool rwsem_optimistic_spin(struct rw_semaphore *sem, bool wlock) 784 { 785 bool taken = false; 786 int prev_owner_state = OWNER_NULL; 787 int loop = 0; 788 u64 rspin_threshold = 0; 789 unsigned long nonspinnable = wlock ? RWSEM_WR_NONSPINNABLE 790 : RWSEM_RD_NONSPINNABLE; 791 792 preempt_disable(); 793 794 /* sem->wait_lock should not be held when doing optimistic spinning */ 795 if (!osq_lock(&sem->osq)) 796 goto done; 797 798 /* 799 * Optimistically spin on the owner field and attempt to acquire the 800 * lock whenever the owner changes. Spinning will be stopped when: 801 * 1) the owning writer isn't running; or 802 * 2) readers own the lock and spinning time has exceeded limit. 803 */ 804 for (;;) { 805 enum owner_state owner_state; 806 807 owner_state = rwsem_spin_on_owner(sem, nonspinnable); 808 if (!(owner_state & OWNER_SPINNABLE)) 809 break; 810 811 /* 812 * Try to acquire the lock 813 */ 814 taken = wlock ? rwsem_try_write_lock_unqueued(sem) 815 : rwsem_try_read_lock_unqueued(sem); 816 817 if (taken) 818 break; 819 820 /* 821 * Time-based reader-owned rwsem optimistic spinning 822 */ 823 if (wlock && (owner_state == OWNER_READER)) { 824 /* 825 * Re-initialize rspin_threshold every time when 826 * the owner state changes from non-reader to reader. 827 * This allows a writer to steal the lock in between 828 * 2 reader phases and have the threshold reset at 829 * the beginning of the 2nd reader phase. 830 */ 831 if (prev_owner_state != OWNER_READER) { 832 if (rwsem_test_oflags(sem, nonspinnable)) 833 break; 834 rspin_threshold = rwsem_rspin_threshold(sem); 835 loop = 0; 836 } 837 838 /* 839 * Check time threshold once every 16 iterations to 840 * avoid calling sched_clock() too frequently so 841 * as to reduce the average latency between the times 842 * when the lock becomes free and when the spinner 843 * is ready to do a trylock. 844 */ 845 else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) { 846 rwsem_set_nonspinnable(sem); 847 lockevent_inc(rwsem_opt_nospin); 848 break; 849 } 850 } 851 852 /* 853 * An RT task cannot do optimistic spinning if it cannot 854 * be sure the lock holder is running or live-lock may 855 * happen if the current task and the lock holder happen 856 * to run in the same CPU. However, aborting optimistic 857 * spinning while a NULL owner is detected may miss some 858 * opportunity where spinning can continue without causing 859 * problem. 860 * 861 * There are 2 possible cases where an RT task may be able 862 * to continue spinning. 863 * 864 * 1) The lock owner is in the process of releasing the 865 * lock, sem->owner is cleared but the lock has not 866 * been released yet. 867 * 2) The lock was free and owner cleared, but another 868 * task just comes in and acquire the lock before 869 * we try to get it. The new owner may be a spinnable 870 * writer. 871 * 872 * To take advantage of two scenarios listed agove, the RT 873 * task is made to retry one more time to see if it can 874 * acquire the lock or continue spinning on the new owning 875 * writer. Of course, if the time lag is long enough or the 876 * new owner is not a writer or spinnable, the RT task will 877 * quit spinning. 878 * 879 * If the owner is a writer, the need_resched() check is 880 * done inside rwsem_spin_on_owner(). If the owner is not 881 * a writer, need_resched() check needs to be done here. 882 */ 883 if (owner_state != OWNER_WRITER) { 884 if (need_resched()) 885 break; 886 if (rt_task(current) && 887 (prev_owner_state != OWNER_WRITER)) 888 break; 889 } 890 prev_owner_state = owner_state; 891 892 /* 893 * The cpu_relax() call is a compiler barrier which forces 894 * everything in this loop to be re-loaded. We don't need 895 * memory barriers as we'll eventually observe the right 896 * values at the cost of a few extra spins. 897 */ 898 cpu_relax(); 899 } 900 osq_unlock(&sem->osq); 901 done: 902 preempt_enable(); 903 lockevent_cond_inc(rwsem_opt_fail, !taken); 904 return taken; 905 } 906 907 /* 908 * Clear the owner's RWSEM_WR_NONSPINNABLE bit if it is set. This should 909 * only be called when the reader count reaches 0. 910 * 911 * This give writers better chance to acquire the rwsem first before 912 * readers when the rwsem was being held by readers for a relatively long 913 * period of time. Race can happen that an optimistic spinner may have 914 * just stolen the rwsem and set the owner, but just clearing the 915 * RWSEM_WR_NONSPINNABLE bit will do no harm anyway. 916 */ 917 static inline void clear_wr_nonspinnable(struct rw_semaphore *sem) 918 { 919 if (rwsem_test_oflags(sem, RWSEM_WR_NONSPINNABLE)) 920 atomic_long_andnot(RWSEM_WR_NONSPINNABLE, &sem->owner); 921 } 922 923 /* 924 * This function is called when the reader fails to acquire the lock via 925 * optimistic spinning. In this case we will still attempt to do a trylock 926 * when comparing the rwsem state right now with the state when entering 927 * the slowpath indicates that the reader is still in a valid reader phase. 928 * This happens when the following conditions are true: 929 * 930 * 1) The lock is currently reader owned, and 931 * 2) The lock is previously not reader-owned or the last read owner changes. 932 * 933 * In the former case, we have transitioned from a writer phase to a 934 * reader-phase while spinning. In the latter case, it means the reader 935 * phase hasn't ended when we entered the optimistic spinning loop. In 936 * both cases, the reader is eligible to acquire the lock. This is the 937 * secondary path where a read lock is acquired optimistically. 938 * 939 * The reader non-spinnable bit wasn't set at time of entry or it will 940 * not be here at all. 941 */ 942 static inline bool rwsem_reader_phase_trylock(struct rw_semaphore *sem, 943 unsigned long last_rowner) 944 { 945 unsigned long owner = atomic_long_read(&sem->owner); 946 947 if (!(owner & RWSEM_READER_OWNED)) 948 return false; 949 950 if (((owner ^ last_rowner) & ~RWSEM_OWNER_FLAGS_MASK) && 951 rwsem_try_read_lock_unqueued(sem)) { 952 lockevent_inc(rwsem_opt_rlock2); 953 lockevent_add(rwsem_opt_fail, -1); 954 return true; 955 } 956 return false; 957 } 958 #else 959 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem, 960 unsigned long nonspinnable) 961 { 962 return false; 963 } 964 965 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem, bool wlock) 966 { 967 return false; 968 } 969 970 static inline void clear_wr_nonspinnable(struct rw_semaphore *sem) { } 971 972 static inline bool rwsem_reader_phase_trylock(struct rw_semaphore *sem, 973 unsigned long last_rowner) 974 { 975 return false; 976 } 977 #endif 978 979 /* 980 * Wait for the read lock to be granted 981 */ 982 static struct rw_semaphore __sched * 983 rwsem_down_read_slowpath(struct rw_semaphore *sem, int state) 984 { 985 long count, adjustment = -RWSEM_READER_BIAS; 986 struct rwsem_waiter waiter; 987 DEFINE_WAKE_Q(wake_q); 988 bool wake = false; 989 990 /* 991 * Save the current read-owner of rwsem, if available, and the 992 * reader nonspinnable bit. 993 */ 994 waiter.last_rowner = atomic_long_read(&sem->owner); 995 if (!(waiter.last_rowner & RWSEM_READER_OWNED)) 996 waiter.last_rowner &= RWSEM_RD_NONSPINNABLE; 997 998 if (!rwsem_can_spin_on_owner(sem, RWSEM_RD_NONSPINNABLE)) 999 goto queue; 1000 1001 /* 1002 * Undo read bias from down_read() and do optimistic spinning. 1003 */ 1004 atomic_long_add(-RWSEM_READER_BIAS, &sem->count); 1005 adjustment = 0; 1006 if (rwsem_optimistic_spin(sem, false)) { 1007 /* rwsem_optimistic_spin() implies ACQUIRE on success */ 1008 /* 1009 * Wake up other readers in the wait list if the front 1010 * waiter is a reader. 1011 */ 1012 if ((atomic_long_read(&sem->count) & RWSEM_FLAG_WAITERS)) { 1013 raw_spin_lock_irq(&sem->wait_lock); 1014 if (!list_empty(&sem->wait_list)) 1015 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, 1016 &wake_q); 1017 raw_spin_unlock_irq(&sem->wait_lock); 1018 wake_up_q(&wake_q); 1019 } 1020 return sem; 1021 } else if (rwsem_reader_phase_trylock(sem, waiter.last_rowner)) { 1022 /* rwsem_reader_phase_trylock() implies ACQUIRE on success */ 1023 return sem; 1024 } 1025 1026 queue: 1027 waiter.task = current; 1028 waiter.type = RWSEM_WAITING_FOR_READ; 1029 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT; 1030 1031 raw_spin_lock_irq(&sem->wait_lock); 1032 if (list_empty(&sem->wait_list)) { 1033 /* 1034 * In case the wait queue is empty and the lock isn't owned 1035 * by a writer or has the handoff bit set, this reader can 1036 * exit the slowpath and return immediately as its 1037 * RWSEM_READER_BIAS has already been set in the count. 1038 */ 1039 if (adjustment && !(atomic_long_read(&sem->count) & 1040 (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))) { 1041 /* Provide lock ACQUIRE */ 1042 smp_acquire__after_ctrl_dep(); 1043 raw_spin_unlock_irq(&sem->wait_lock); 1044 rwsem_set_reader_owned(sem); 1045 lockevent_inc(rwsem_rlock_fast); 1046 return sem; 1047 } 1048 adjustment += RWSEM_FLAG_WAITERS; 1049 } 1050 list_add_tail(&waiter.list, &sem->wait_list); 1051 1052 /* we're now waiting on the lock, but no longer actively locking */ 1053 if (adjustment) 1054 count = atomic_long_add_return(adjustment, &sem->count); 1055 else 1056 count = atomic_long_read(&sem->count); 1057 1058 /* 1059 * If there are no active locks, wake the front queued process(es). 1060 * 1061 * If there are no writers and we are first in the queue, 1062 * wake our own waiter to join the existing active readers ! 1063 */ 1064 if (!(count & RWSEM_LOCK_MASK)) { 1065 clear_wr_nonspinnable(sem); 1066 wake = true; 1067 } 1068 if (wake || (!(count & RWSEM_WRITER_MASK) && 1069 (adjustment & RWSEM_FLAG_WAITERS))) 1070 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); 1071 1072 raw_spin_unlock_irq(&sem->wait_lock); 1073 wake_up_q(&wake_q); 1074 1075 /* wait to be given the lock */ 1076 for (;;) { 1077 set_current_state(state); 1078 if (!smp_load_acquire(&waiter.task)) { 1079 /* Matches rwsem_mark_wake()'s smp_store_release(). */ 1080 break; 1081 } 1082 if (signal_pending_state(state, current)) { 1083 raw_spin_lock_irq(&sem->wait_lock); 1084 if (waiter.task) 1085 goto out_nolock; 1086 raw_spin_unlock_irq(&sem->wait_lock); 1087 /* Ordered by sem->wait_lock against rwsem_mark_wake(). */ 1088 break; 1089 } 1090 schedule(); 1091 lockevent_inc(rwsem_sleep_reader); 1092 } 1093 1094 __set_current_state(TASK_RUNNING); 1095 lockevent_inc(rwsem_rlock); 1096 return sem; 1097 1098 out_nolock: 1099 list_del(&waiter.list); 1100 if (list_empty(&sem->wait_list)) { 1101 atomic_long_andnot(RWSEM_FLAG_WAITERS|RWSEM_FLAG_HANDOFF, 1102 &sem->count); 1103 } 1104 raw_spin_unlock_irq(&sem->wait_lock); 1105 __set_current_state(TASK_RUNNING); 1106 lockevent_inc(rwsem_rlock_fail); 1107 return ERR_PTR(-EINTR); 1108 } 1109 1110 /* 1111 * This function is called by the a write lock owner. So the owner value 1112 * won't get changed by others. 1113 */ 1114 static inline void rwsem_disable_reader_optspin(struct rw_semaphore *sem, 1115 bool disable) 1116 { 1117 if (unlikely(disable)) { 1118 atomic_long_or(RWSEM_RD_NONSPINNABLE, &sem->owner); 1119 lockevent_inc(rwsem_opt_norspin); 1120 } 1121 } 1122 1123 /* 1124 * Wait until we successfully acquire the write lock 1125 */ 1126 static struct rw_semaphore * 1127 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state) 1128 { 1129 long count; 1130 bool disable_rspin; 1131 enum writer_wait_state wstate; 1132 struct rwsem_waiter waiter; 1133 struct rw_semaphore *ret = sem; 1134 DEFINE_WAKE_Q(wake_q); 1135 1136 /* do optimistic spinning and steal lock if possible */ 1137 if (rwsem_can_spin_on_owner(sem, RWSEM_WR_NONSPINNABLE) && 1138 rwsem_optimistic_spin(sem, true)) { 1139 /* rwsem_optimistic_spin() implies ACQUIRE on success */ 1140 return sem; 1141 } 1142 1143 /* 1144 * Disable reader optimistic spinning for this rwsem after 1145 * acquiring the write lock when the setting of the nonspinnable 1146 * bits are observed. 1147 */ 1148 disable_rspin = atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE; 1149 1150 /* 1151 * Optimistic spinning failed, proceed to the slowpath 1152 * and block until we can acquire the sem. 1153 */ 1154 waiter.task = current; 1155 waiter.type = RWSEM_WAITING_FOR_WRITE; 1156 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT; 1157 1158 raw_spin_lock_irq(&sem->wait_lock); 1159 1160 /* account for this before adding a new element to the list */ 1161 wstate = list_empty(&sem->wait_list) ? WRITER_FIRST : WRITER_NOT_FIRST; 1162 1163 list_add_tail(&waiter.list, &sem->wait_list); 1164 1165 /* we're now waiting on the lock */ 1166 if (wstate == WRITER_NOT_FIRST) { 1167 count = atomic_long_read(&sem->count); 1168 1169 /* 1170 * If there were already threads queued before us and: 1171 * 1) there are no no active locks, wake the front 1172 * queued process(es) as the handoff bit might be set. 1173 * 2) there are no active writers and some readers, the lock 1174 * must be read owned; so we try to wake any read lock 1175 * waiters that were queued ahead of us. 1176 */ 1177 if (count & RWSEM_WRITER_MASK) 1178 goto wait; 1179 1180 rwsem_mark_wake(sem, (count & RWSEM_READER_MASK) 1181 ? RWSEM_WAKE_READERS 1182 : RWSEM_WAKE_ANY, &wake_q); 1183 1184 if (!wake_q_empty(&wake_q)) { 1185 /* 1186 * We want to minimize wait_lock hold time especially 1187 * when a large number of readers are to be woken up. 1188 */ 1189 raw_spin_unlock_irq(&sem->wait_lock); 1190 wake_up_q(&wake_q); 1191 wake_q_init(&wake_q); /* Used again, reinit */ 1192 raw_spin_lock_irq(&sem->wait_lock); 1193 } 1194 } else { 1195 atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count); 1196 } 1197 1198 wait: 1199 /* wait until we successfully acquire the lock */ 1200 set_current_state(state); 1201 for (;;) { 1202 if (rwsem_try_write_lock(sem, wstate)) { 1203 /* rwsem_try_write_lock() implies ACQUIRE on success */ 1204 break; 1205 } 1206 1207 raw_spin_unlock_irq(&sem->wait_lock); 1208 1209 /* Block until there are no active lockers. */ 1210 for (;;) { 1211 if (signal_pending_state(state, current)) 1212 goto out_nolock; 1213 1214 schedule(); 1215 lockevent_inc(rwsem_sleep_writer); 1216 set_current_state(state); 1217 /* 1218 * If HANDOFF bit is set, unconditionally do 1219 * a trylock. 1220 */ 1221 if (wstate == WRITER_HANDOFF) 1222 break; 1223 1224 if ((wstate == WRITER_NOT_FIRST) && 1225 (rwsem_first_waiter(sem) == &waiter)) 1226 wstate = WRITER_FIRST; 1227 1228 count = atomic_long_read(&sem->count); 1229 if (!(count & RWSEM_LOCK_MASK)) 1230 break; 1231 1232 /* 1233 * The setting of the handoff bit is deferred 1234 * until rwsem_try_write_lock() is called. 1235 */ 1236 if ((wstate == WRITER_FIRST) && (rt_task(current) || 1237 time_after(jiffies, waiter.timeout))) { 1238 wstate = WRITER_HANDOFF; 1239 lockevent_inc(rwsem_wlock_handoff); 1240 break; 1241 } 1242 } 1243 1244 raw_spin_lock_irq(&sem->wait_lock); 1245 } 1246 __set_current_state(TASK_RUNNING); 1247 list_del(&waiter.list); 1248 rwsem_disable_reader_optspin(sem, disable_rspin); 1249 raw_spin_unlock_irq(&sem->wait_lock); 1250 lockevent_inc(rwsem_wlock); 1251 1252 return ret; 1253 1254 out_nolock: 1255 __set_current_state(TASK_RUNNING); 1256 raw_spin_lock_irq(&sem->wait_lock); 1257 list_del(&waiter.list); 1258 1259 if (unlikely(wstate == WRITER_HANDOFF)) 1260 atomic_long_add(-RWSEM_FLAG_HANDOFF, &sem->count); 1261 1262 if (list_empty(&sem->wait_list)) 1263 atomic_long_andnot(RWSEM_FLAG_WAITERS, &sem->count); 1264 else 1265 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); 1266 raw_spin_unlock_irq(&sem->wait_lock); 1267 wake_up_q(&wake_q); 1268 lockevent_inc(rwsem_wlock_fail); 1269 1270 return ERR_PTR(-EINTR); 1271 } 1272 1273 /* 1274 * handle waking up a waiter on the semaphore 1275 * - up_read/up_write has decremented the active part of count if we come here 1276 */ 1277 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem, long count) 1278 { 1279 unsigned long flags; 1280 DEFINE_WAKE_Q(wake_q); 1281 1282 raw_spin_lock_irqsave(&sem->wait_lock, flags); 1283 1284 if (!list_empty(&sem->wait_list)) 1285 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); 1286 1287 raw_spin_unlock_irqrestore(&sem->wait_lock, flags); 1288 wake_up_q(&wake_q); 1289 1290 return sem; 1291 } 1292 1293 /* 1294 * downgrade a write lock into a read lock 1295 * - caller incremented waiting part of count and discovered it still negative 1296 * - just wake up any readers at the front of the queue 1297 */ 1298 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem) 1299 { 1300 unsigned long flags; 1301 DEFINE_WAKE_Q(wake_q); 1302 1303 raw_spin_lock_irqsave(&sem->wait_lock, flags); 1304 1305 if (!list_empty(&sem->wait_list)) 1306 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q); 1307 1308 raw_spin_unlock_irqrestore(&sem->wait_lock, flags); 1309 wake_up_q(&wake_q); 1310 1311 return sem; 1312 } 1313 1314 /* 1315 * lock for reading 1316 */ 1317 inline void __down_read(struct rw_semaphore *sem) 1318 { 1319 if (!rwsem_read_trylock(sem)) { 1320 rwsem_down_read_slowpath(sem, TASK_UNINTERRUPTIBLE); 1321 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1322 } else { 1323 rwsem_set_reader_owned(sem); 1324 } 1325 } 1326 1327 static inline int __down_read_killable(struct rw_semaphore *sem) 1328 { 1329 if (!rwsem_read_trylock(sem)) { 1330 if (IS_ERR(rwsem_down_read_slowpath(sem, TASK_KILLABLE))) 1331 return -EINTR; 1332 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1333 } else { 1334 rwsem_set_reader_owned(sem); 1335 } 1336 return 0; 1337 } 1338 1339 static inline int __down_read_trylock(struct rw_semaphore *sem) 1340 { 1341 /* 1342 * Optimize for the case when the rwsem is not locked at all. 1343 */ 1344 long tmp = RWSEM_UNLOCKED_VALUE; 1345 1346 do { 1347 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, 1348 tmp + RWSEM_READER_BIAS)) { 1349 rwsem_set_reader_owned(sem); 1350 return 1; 1351 } 1352 } while (!(tmp & RWSEM_READ_FAILED_MASK)); 1353 return 0; 1354 } 1355 1356 /* 1357 * lock for writing 1358 */ 1359 static inline void __down_write(struct rw_semaphore *sem) 1360 { 1361 long tmp = RWSEM_UNLOCKED_VALUE; 1362 1363 if (unlikely(!atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, 1364 RWSEM_WRITER_LOCKED))) 1365 rwsem_down_write_slowpath(sem, TASK_UNINTERRUPTIBLE); 1366 else 1367 rwsem_set_owner(sem); 1368 } 1369 1370 static inline int __down_write_killable(struct rw_semaphore *sem) 1371 { 1372 long tmp = RWSEM_UNLOCKED_VALUE; 1373 1374 if (unlikely(!atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, 1375 RWSEM_WRITER_LOCKED))) { 1376 if (IS_ERR(rwsem_down_write_slowpath(sem, TASK_KILLABLE))) 1377 return -EINTR; 1378 } else { 1379 rwsem_set_owner(sem); 1380 } 1381 return 0; 1382 } 1383 1384 static inline int __down_write_trylock(struct rw_semaphore *sem) 1385 { 1386 long tmp = RWSEM_UNLOCKED_VALUE; 1387 1388 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, 1389 RWSEM_WRITER_LOCKED)) { 1390 rwsem_set_owner(sem); 1391 return true; 1392 } 1393 return false; 1394 } 1395 1396 /* 1397 * unlock after reading 1398 */ 1399 inline void __up_read(struct rw_semaphore *sem) 1400 { 1401 long tmp; 1402 1403 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1404 rwsem_clear_reader_owned(sem); 1405 tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count); 1406 DEBUG_RWSEMS_WARN_ON(tmp < 0, sem); 1407 if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) == 1408 RWSEM_FLAG_WAITERS)) { 1409 clear_wr_nonspinnable(sem); 1410 rwsem_wake(sem, tmp); 1411 } 1412 } 1413 1414 /* 1415 * unlock after writing 1416 */ 1417 static inline void __up_write(struct rw_semaphore *sem) 1418 { 1419 long tmp; 1420 1421 /* 1422 * sem->owner may differ from current if the ownership is transferred 1423 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits. 1424 */ 1425 DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) && 1426 !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem); 1427 rwsem_clear_owner(sem); 1428 tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count); 1429 if (unlikely(tmp & RWSEM_FLAG_WAITERS)) 1430 rwsem_wake(sem, tmp); 1431 } 1432 1433 /* 1434 * downgrade write lock to read lock 1435 */ 1436 static inline void __downgrade_write(struct rw_semaphore *sem) 1437 { 1438 long tmp; 1439 1440 /* 1441 * When downgrading from exclusive to shared ownership, 1442 * anything inside the write-locked region cannot leak 1443 * into the read side. In contrast, anything in the 1444 * read-locked region is ok to be re-ordered into the 1445 * write side. As such, rely on RELEASE semantics. 1446 */ 1447 DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem); 1448 tmp = atomic_long_fetch_add_release( 1449 -RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count); 1450 rwsem_set_reader_owned(sem); 1451 if (tmp & RWSEM_FLAG_WAITERS) 1452 rwsem_downgrade_wake(sem); 1453 } 1454 1455 /* 1456 * lock for reading 1457 */ 1458 void __sched down_read(struct rw_semaphore *sem) 1459 { 1460 might_sleep(); 1461 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1462 1463 LOCK_CONTENDED(sem, __down_read_trylock, __down_read); 1464 } 1465 EXPORT_SYMBOL(down_read); 1466 1467 int __sched down_read_killable(struct rw_semaphore *sem) 1468 { 1469 might_sleep(); 1470 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1471 1472 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) { 1473 rwsem_release(&sem->dep_map, 1, _RET_IP_); 1474 return -EINTR; 1475 } 1476 1477 return 0; 1478 } 1479 EXPORT_SYMBOL(down_read_killable); 1480 1481 /* 1482 * trylock for reading -- returns 1 if successful, 0 if contention 1483 */ 1484 int down_read_trylock(struct rw_semaphore *sem) 1485 { 1486 int ret = __down_read_trylock(sem); 1487 1488 if (ret == 1) 1489 rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_); 1490 return ret; 1491 } 1492 EXPORT_SYMBOL(down_read_trylock); 1493 1494 /* 1495 * lock for writing 1496 */ 1497 void __sched down_write(struct rw_semaphore *sem) 1498 { 1499 might_sleep(); 1500 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); 1501 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1502 } 1503 EXPORT_SYMBOL(down_write); 1504 1505 /* 1506 * lock for writing 1507 */ 1508 int __sched down_write_killable(struct rw_semaphore *sem) 1509 { 1510 might_sleep(); 1511 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); 1512 1513 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, 1514 __down_write_killable)) { 1515 rwsem_release(&sem->dep_map, 1, _RET_IP_); 1516 return -EINTR; 1517 } 1518 1519 return 0; 1520 } 1521 EXPORT_SYMBOL(down_write_killable); 1522 1523 /* 1524 * trylock for writing -- returns 1 if successful, 0 if contention 1525 */ 1526 int down_write_trylock(struct rw_semaphore *sem) 1527 { 1528 int ret = __down_write_trylock(sem); 1529 1530 if (ret == 1) 1531 rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_); 1532 1533 return ret; 1534 } 1535 EXPORT_SYMBOL(down_write_trylock); 1536 1537 /* 1538 * release a read lock 1539 */ 1540 void up_read(struct rw_semaphore *sem) 1541 { 1542 rwsem_release(&sem->dep_map, 1, _RET_IP_); 1543 __up_read(sem); 1544 } 1545 EXPORT_SYMBOL(up_read); 1546 1547 /* 1548 * release a write lock 1549 */ 1550 void up_write(struct rw_semaphore *sem) 1551 { 1552 rwsem_release(&sem->dep_map, 1, _RET_IP_); 1553 __up_write(sem); 1554 } 1555 EXPORT_SYMBOL(up_write); 1556 1557 /* 1558 * downgrade write lock to read lock 1559 */ 1560 void downgrade_write(struct rw_semaphore *sem) 1561 { 1562 lock_downgrade(&sem->dep_map, _RET_IP_); 1563 __downgrade_write(sem); 1564 } 1565 EXPORT_SYMBOL(downgrade_write); 1566 1567 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1568 1569 void down_read_nested(struct rw_semaphore *sem, int subclass) 1570 { 1571 might_sleep(); 1572 rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_); 1573 LOCK_CONTENDED(sem, __down_read_trylock, __down_read); 1574 } 1575 EXPORT_SYMBOL(down_read_nested); 1576 1577 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest) 1578 { 1579 might_sleep(); 1580 rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_); 1581 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1582 } 1583 EXPORT_SYMBOL(_down_write_nest_lock); 1584 1585 void down_read_non_owner(struct rw_semaphore *sem) 1586 { 1587 might_sleep(); 1588 __down_read(sem); 1589 __rwsem_set_reader_owned(sem, NULL); 1590 } 1591 EXPORT_SYMBOL(down_read_non_owner); 1592 1593 void down_write_nested(struct rw_semaphore *sem, int subclass) 1594 { 1595 might_sleep(); 1596 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); 1597 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1598 } 1599 EXPORT_SYMBOL(down_write_nested); 1600 1601 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass) 1602 { 1603 might_sleep(); 1604 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); 1605 1606 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, 1607 __down_write_killable)) { 1608 rwsem_release(&sem->dep_map, 1, _RET_IP_); 1609 return -EINTR; 1610 } 1611 1612 return 0; 1613 } 1614 EXPORT_SYMBOL(down_write_killable_nested); 1615 1616 void up_read_non_owner(struct rw_semaphore *sem) 1617 { 1618 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1619 __up_read(sem); 1620 } 1621 EXPORT_SYMBOL(up_read_non_owner); 1622 1623 #endif 1624