1 // SPDX-License-Identifier: GPL-2.0 2 /* kernel/rwsem.c: R/W semaphores, public implementation 3 * 4 * Written by David Howells (dhowells@redhat.com). 5 * Derived from asm-i386/semaphore.h 6 * 7 * Writer lock-stealing by Alex Shi <alex.shi@intel.com> 8 * and Michel Lespinasse <walken@google.com> 9 * 10 * Optimistic spinning by Tim Chen <tim.c.chen@intel.com> 11 * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes. 12 * 13 * Rwsem count bit fields re-definition and rwsem rearchitecture by 14 * Waiman Long <longman@redhat.com> and 15 * Peter Zijlstra <peterz@infradead.org>. 16 */ 17 18 #include <linux/types.h> 19 #include <linux/kernel.h> 20 #include <linux/sched.h> 21 #include <linux/sched/rt.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/debug.h> 24 #include <linux/sched/wake_q.h> 25 #include <linux/sched/signal.h> 26 #include <linux/sched/clock.h> 27 #include <linux/export.h> 28 #include <linux/rwsem.h> 29 #include <linux/atomic.h> 30 31 #ifndef CONFIG_PREEMPT_RT 32 #include "lock_events.h" 33 34 /* 35 * The least significant 2 bits of the owner value has the following 36 * meanings when set. 37 * - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers 38 * - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock 39 * 40 * When the rwsem is reader-owned and a spinning writer has timed out, 41 * the nonspinnable bit will be set to disable optimistic spinning. 42 43 * When a writer acquires a rwsem, it puts its task_struct pointer 44 * into the owner field. It is cleared after an unlock. 45 * 46 * When a reader acquires a rwsem, it will also puts its task_struct 47 * pointer into the owner field with the RWSEM_READER_OWNED bit set. 48 * On unlock, the owner field will largely be left untouched. So 49 * for a free or reader-owned rwsem, the owner value may contain 50 * information about the last reader that acquires the rwsem. 51 * 52 * That information may be helpful in debugging cases where the system 53 * seems to hang on a reader owned rwsem especially if only one reader 54 * is involved. Ideally we would like to track all the readers that own 55 * a rwsem, but the overhead is simply too big. 56 * 57 * A fast path reader optimistic lock stealing is supported when the rwsem 58 * is previously owned by a writer and the following conditions are met: 59 * - rwsem is not currently writer owned 60 * - the handoff isn't set. 61 */ 62 #define RWSEM_READER_OWNED (1UL << 0) 63 #define RWSEM_NONSPINNABLE (1UL << 1) 64 #define RWSEM_OWNER_FLAGS_MASK (RWSEM_READER_OWNED | RWSEM_NONSPINNABLE) 65 66 #ifdef CONFIG_DEBUG_RWSEMS 67 # define DEBUG_RWSEMS_WARN_ON(c, sem) do { \ 68 if (!debug_locks_silent && \ 69 WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\ 70 #c, atomic_long_read(&(sem)->count), \ 71 (unsigned long) sem->magic, \ 72 atomic_long_read(&(sem)->owner), (long)current, \ 73 list_empty(&(sem)->wait_list) ? "" : "not ")) \ 74 debug_locks_off(); \ 75 } while (0) 76 #else 77 # define DEBUG_RWSEMS_WARN_ON(c, sem) 78 #endif 79 80 /* 81 * On 64-bit architectures, the bit definitions of the count are: 82 * 83 * Bit 0 - writer locked bit 84 * Bit 1 - waiters present bit 85 * Bit 2 - lock handoff bit 86 * Bits 3-7 - reserved 87 * Bits 8-62 - 55-bit reader count 88 * Bit 63 - read fail bit 89 * 90 * On 32-bit architectures, the bit definitions of the count are: 91 * 92 * Bit 0 - writer locked bit 93 * Bit 1 - waiters present bit 94 * Bit 2 - lock handoff bit 95 * Bits 3-7 - reserved 96 * Bits 8-30 - 23-bit reader count 97 * Bit 31 - read fail bit 98 * 99 * It is not likely that the most significant bit (read fail bit) will ever 100 * be set. This guard bit is still checked anyway in the down_read() fastpath 101 * just in case we need to use up more of the reader bits for other purpose 102 * in the future. 103 * 104 * atomic_long_fetch_add() is used to obtain reader lock, whereas 105 * atomic_long_cmpxchg() will be used to obtain writer lock. 106 * 107 * There are three places where the lock handoff bit may be set or cleared. 108 * 1) rwsem_mark_wake() for readers -- set, clear 109 * 2) rwsem_try_write_lock() for writers -- set, clear 110 * 3) rwsem_del_waiter() -- clear 111 * 112 * For all the above cases, wait_lock will be held. A writer must also 113 * be the first one in the wait_list to be eligible for setting the handoff 114 * bit. So concurrent setting/clearing of handoff bit is not possible. 115 */ 116 #define RWSEM_WRITER_LOCKED (1UL << 0) 117 #define RWSEM_FLAG_WAITERS (1UL << 1) 118 #define RWSEM_FLAG_HANDOFF (1UL << 2) 119 #define RWSEM_FLAG_READFAIL (1UL << (BITS_PER_LONG - 1)) 120 121 #define RWSEM_READER_SHIFT 8 122 #define RWSEM_READER_BIAS (1UL << RWSEM_READER_SHIFT) 123 #define RWSEM_READER_MASK (~(RWSEM_READER_BIAS - 1)) 124 #define RWSEM_WRITER_MASK RWSEM_WRITER_LOCKED 125 #define RWSEM_LOCK_MASK (RWSEM_WRITER_MASK|RWSEM_READER_MASK) 126 #define RWSEM_READ_FAILED_MASK (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\ 127 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL) 128 129 /* 130 * All writes to owner are protected by WRITE_ONCE() to make sure that 131 * store tearing can't happen as optimistic spinners may read and use 132 * the owner value concurrently without lock. Read from owner, however, 133 * may not need READ_ONCE() as long as the pointer value is only used 134 * for comparison and isn't being dereferenced. 135 */ 136 static inline void rwsem_set_owner(struct rw_semaphore *sem) 137 { 138 atomic_long_set(&sem->owner, (long)current); 139 } 140 141 static inline void rwsem_clear_owner(struct rw_semaphore *sem) 142 { 143 atomic_long_set(&sem->owner, 0); 144 } 145 146 /* 147 * Test the flags in the owner field. 148 */ 149 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags) 150 { 151 return atomic_long_read(&sem->owner) & flags; 152 } 153 154 /* 155 * The task_struct pointer of the last owning reader will be left in 156 * the owner field. 157 * 158 * Note that the owner value just indicates the task has owned the rwsem 159 * previously, it may not be the real owner or one of the real owners 160 * anymore when that field is examined, so take it with a grain of salt. 161 * 162 * The reader non-spinnable bit is preserved. 163 */ 164 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem, 165 struct task_struct *owner) 166 { 167 unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED | 168 (atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE); 169 170 atomic_long_set(&sem->owner, val); 171 } 172 173 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem) 174 { 175 __rwsem_set_reader_owned(sem, current); 176 } 177 178 /* 179 * Return true if the rwsem is owned by a reader. 180 */ 181 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem) 182 { 183 #ifdef CONFIG_DEBUG_RWSEMS 184 /* 185 * Check the count to see if it is write-locked. 186 */ 187 long count = atomic_long_read(&sem->count); 188 189 if (count & RWSEM_WRITER_MASK) 190 return false; 191 #endif 192 return rwsem_test_oflags(sem, RWSEM_READER_OWNED); 193 } 194 195 #ifdef CONFIG_DEBUG_RWSEMS 196 /* 197 * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there 198 * is a task pointer in owner of a reader-owned rwsem, it will be the 199 * real owner or one of the real owners. The only exception is when the 200 * unlock is done by up_read_non_owner(). 201 */ 202 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) 203 { 204 unsigned long val = atomic_long_read(&sem->owner); 205 206 while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) { 207 if (atomic_long_try_cmpxchg(&sem->owner, &val, 208 val & RWSEM_OWNER_FLAGS_MASK)) 209 return; 210 } 211 } 212 #else 213 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) 214 { 215 } 216 #endif 217 218 /* 219 * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag 220 * remains set. Otherwise, the operation will be aborted. 221 */ 222 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem) 223 { 224 unsigned long owner = atomic_long_read(&sem->owner); 225 226 do { 227 if (!(owner & RWSEM_READER_OWNED)) 228 break; 229 if (owner & RWSEM_NONSPINNABLE) 230 break; 231 } while (!atomic_long_try_cmpxchg(&sem->owner, &owner, 232 owner | RWSEM_NONSPINNABLE)); 233 } 234 235 static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp) 236 { 237 *cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count); 238 239 if (WARN_ON_ONCE(*cntp < 0)) 240 rwsem_set_nonspinnable(sem); 241 242 if (!(*cntp & RWSEM_READ_FAILED_MASK)) { 243 rwsem_set_reader_owned(sem); 244 return true; 245 } 246 247 return false; 248 } 249 250 static inline bool rwsem_write_trylock(struct rw_semaphore *sem) 251 { 252 long tmp = RWSEM_UNLOCKED_VALUE; 253 254 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) { 255 rwsem_set_owner(sem); 256 return true; 257 } 258 259 return false; 260 } 261 262 /* 263 * Return just the real task structure pointer of the owner 264 */ 265 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem) 266 { 267 return (struct task_struct *) 268 (atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK); 269 } 270 271 /* 272 * Return the real task structure pointer of the owner and the embedded 273 * flags in the owner. pflags must be non-NULL. 274 */ 275 static inline struct task_struct * 276 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags) 277 { 278 unsigned long owner = atomic_long_read(&sem->owner); 279 280 *pflags = owner & RWSEM_OWNER_FLAGS_MASK; 281 return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK); 282 } 283 284 /* 285 * Guide to the rw_semaphore's count field. 286 * 287 * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned 288 * by a writer. 289 * 290 * The lock is owned by readers when 291 * (1) the RWSEM_WRITER_LOCKED isn't set in count, 292 * (2) some of the reader bits are set in count, and 293 * (3) the owner field has RWSEM_READ_OWNED bit set. 294 * 295 * Having some reader bits set is not enough to guarantee a readers owned 296 * lock as the readers may be in the process of backing out from the count 297 * and a writer has just released the lock. So another writer may steal 298 * the lock immediately after that. 299 */ 300 301 /* 302 * Initialize an rwsem: 303 */ 304 void __init_rwsem(struct rw_semaphore *sem, const char *name, 305 struct lock_class_key *key) 306 { 307 #ifdef CONFIG_DEBUG_LOCK_ALLOC 308 /* 309 * Make sure we are not reinitializing a held semaphore: 310 */ 311 debug_check_no_locks_freed((void *)sem, sizeof(*sem)); 312 lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP); 313 #endif 314 #ifdef CONFIG_DEBUG_RWSEMS 315 sem->magic = sem; 316 #endif 317 atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE); 318 raw_spin_lock_init(&sem->wait_lock); 319 INIT_LIST_HEAD(&sem->wait_list); 320 atomic_long_set(&sem->owner, 0L); 321 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER 322 osq_lock_init(&sem->osq); 323 #endif 324 } 325 EXPORT_SYMBOL(__init_rwsem); 326 327 enum rwsem_waiter_type { 328 RWSEM_WAITING_FOR_WRITE, 329 RWSEM_WAITING_FOR_READ 330 }; 331 332 struct rwsem_waiter { 333 struct list_head list; 334 struct task_struct *task; 335 enum rwsem_waiter_type type; 336 unsigned long timeout; 337 338 /* Writer only, not initialized in reader */ 339 bool handoff_set; 340 }; 341 #define rwsem_first_waiter(sem) \ 342 list_first_entry(&sem->wait_list, struct rwsem_waiter, list) 343 344 enum rwsem_wake_type { 345 RWSEM_WAKE_ANY, /* Wake whatever's at head of wait list */ 346 RWSEM_WAKE_READERS, /* Wake readers only */ 347 RWSEM_WAKE_READ_OWNED /* Waker thread holds the read lock */ 348 }; 349 350 /* 351 * The typical HZ value is either 250 or 1000. So set the minimum waiting 352 * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait 353 * queue before initiating the handoff protocol. 354 */ 355 #define RWSEM_WAIT_TIMEOUT DIV_ROUND_UP(HZ, 250) 356 357 /* 358 * Magic number to batch-wakeup waiting readers, even when writers are 359 * also present in the queue. This both limits the amount of work the 360 * waking thread must do and also prevents any potential counter overflow, 361 * however unlikely. 362 */ 363 #define MAX_READERS_WAKEUP 0x100 364 365 static inline void 366 rwsem_add_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter) 367 { 368 lockdep_assert_held(&sem->wait_lock); 369 list_add_tail(&waiter->list, &sem->wait_list); 370 /* caller will set RWSEM_FLAG_WAITERS */ 371 } 372 373 /* 374 * Remove a waiter from the wait_list and clear flags. 375 * 376 * Both rwsem_mark_wake() and rwsem_try_write_lock() contain a full 'copy' of 377 * this function. Modify with care. 378 */ 379 static inline void 380 rwsem_del_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter) 381 { 382 lockdep_assert_held(&sem->wait_lock); 383 list_del(&waiter->list); 384 if (likely(!list_empty(&sem->wait_list))) 385 return; 386 387 atomic_long_andnot(RWSEM_FLAG_HANDOFF | RWSEM_FLAG_WAITERS, &sem->count); 388 } 389 390 /* 391 * handle the lock release when processes blocked on it that can now run 392 * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must 393 * have been set. 394 * - there must be someone on the queue 395 * - the wait_lock must be held by the caller 396 * - tasks are marked for wakeup, the caller must later invoke wake_up_q() 397 * to actually wakeup the blocked task(s) and drop the reference count, 398 * preferably when the wait_lock is released 399 * - woken process blocks are discarded from the list after having task zeroed 400 * - writers are only marked woken if downgrading is false 401 * 402 * Implies rwsem_del_waiter() for all woken readers. 403 */ 404 static void rwsem_mark_wake(struct rw_semaphore *sem, 405 enum rwsem_wake_type wake_type, 406 struct wake_q_head *wake_q) 407 { 408 struct rwsem_waiter *waiter, *tmp; 409 long oldcount, woken = 0, adjustment = 0; 410 struct list_head wlist; 411 412 lockdep_assert_held(&sem->wait_lock); 413 414 /* 415 * Take a peek at the queue head waiter such that we can determine 416 * the wakeup(s) to perform. 417 */ 418 waiter = rwsem_first_waiter(sem); 419 420 if (waiter->type == RWSEM_WAITING_FOR_WRITE) { 421 if (wake_type == RWSEM_WAKE_ANY) { 422 /* 423 * Mark writer at the front of the queue for wakeup. 424 * Until the task is actually later awoken later by 425 * the caller, other writers are able to steal it. 426 * Readers, on the other hand, will block as they 427 * will notice the queued writer. 428 */ 429 wake_q_add(wake_q, waiter->task); 430 lockevent_inc(rwsem_wake_writer); 431 } 432 433 return; 434 } 435 436 /* 437 * No reader wakeup if there are too many of them already. 438 */ 439 if (unlikely(atomic_long_read(&sem->count) < 0)) 440 return; 441 442 /* 443 * Writers might steal the lock before we grant it to the next reader. 444 * We prefer to do the first reader grant before counting readers 445 * so we can bail out early if a writer stole the lock. 446 */ 447 if (wake_type != RWSEM_WAKE_READ_OWNED) { 448 struct task_struct *owner; 449 450 adjustment = RWSEM_READER_BIAS; 451 oldcount = atomic_long_fetch_add(adjustment, &sem->count); 452 if (unlikely(oldcount & RWSEM_WRITER_MASK)) { 453 /* 454 * When we've been waiting "too" long (for writers 455 * to give up the lock), request a HANDOFF to 456 * force the issue. 457 */ 458 if (!(oldcount & RWSEM_FLAG_HANDOFF) && 459 time_after(jiffies, waiter->timeout)) { 460 adjustment -= RWSEM_FLAG_HANDOFF; 461 lockevent_inc(rwsem_rlock_handoff); 462 } 463 464 atomic_long_add(-adjustment, &sem->count); 465 return; 466 } 467 /* 468 * Set it to reader-owned to give spinners an early 469 * indication that readers now have the lock. 470 * The reader nonspinnable bit seen at slowpath entry of 471 * the reader is copied over. 472 */ 473 owner = waiter->task; 474 __rwsem_set_reader_owned(sem, owner); 475 } 476 477 /* 478 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the 479 * queue. We know that the woken will be at least 1 as we accounted 480 * for above. Note we increment the 'active part' of the count by the 481 * number of readers before waking any processes up. 482 * 483 * This is an adaptation of the phase-fair R/W locks where at the 484 * reader phase (first waiter is a reader), all readers are eligible 485 * to acquire the lock at the same time irrespective of their order 486 * in the queue. The writers acquire the lock according to their 487 * order in the queue. 488 * 489 * We have to do wakeup in 2 passes to prevent the possibility that 490 * the reader count may be decremented before it is incremented. It 491 * is because the to-be-woken waiter may not have slept yet. So it 492 * may see waiter->task got cleared, finish its critical section and 493 * do an unlock before the reader count increment. 494 * 495 * 1) Collect the read-waiters in a separate list, count them and 496 * fully increment the reader count in rwsem. 497 * 2) For each waiters in the new list, clear waiter->task and 498 * put them into wake_q to be woken up later. 499 */ 500 INIT_LIST_HEAD(&wlist); 501 list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) { 502 if (waiter->type == RWSEM_WAITING_FOR_WRITE) 503 continue; 504 505 woken++; 506 list_move_tail(&waiter->list, &wlist); 507 508 /* 509 * Limit # of readers that can be woken up per wakeup call. 510 */ 511 if (unlikely(woken >= MAX_READERS_WAKEUP)) 512 break; 513 } 514 515 adjustment = woken * RWSEM_READER_BIAS - adjustment; 516 lockevent_cond_inc(rwsem_wake_reader, woken); 517 518 oldcount = atomic_long_read(&sem->count); 519 if (list_empty(&sem->wait_list)) { 520 /* 521 * Combined with list_move_tail() above, this implies 522 * rwsem_del_waiter(). 523 */ 524 adjustment -= RWSEM_FLAG_WAITERS; 525 if (oldcount & RWSEM_FLAG_HANDOFF) 526 adjustment -= RWSEM_FLAG_HANDOFF; 527 } else if (woken) { 528 /* 529 * When we've woken a reader, we no longer need to force 530 * writers to give up the lock and we can clear HANDOFF. 531 */ 532 if (oldcount & RWSEM_FLAG_HANDOFF) 533 adjustment -= RWSEM_FLAG_HANDOFF; 534 } 535 536 if (adjustment) 537 atomic_long_add(adjustment, &sem->count); 538 539 /* 2nd pass */ 540 list_for_each_entry_safe(waiter, tmp, &wlist, list) { 541 struct task_struct *tsk; 542 543 tsk = waiter->task; 544 get_task_struct(tsk); 545 546 /* 547 * Ensure calling get_task_struct() before setting the reader 548 * waiter to nil such that rwsem_down_read_slowpath() cannot 549 * race with do_exit() by always holding a reference count 550 * to the task to wakeup. 551 */ 552 smp_store_release(&waiter->task, NULL); 553 /* 554 * Ensure issuing the wakeup (either by us or someone else) 555 * after setting the reader waiter to nil. 556 */ 557 wake_q_add_safe(wake_q, tsk); 558 } 559 } 560 561 /* 562 * This function must be called with the sem->wait_lock held to prevent 563 * race conditions between checking the rwsem wait list and setting the 564 * sem->count accordingly. 565 * 566 * Implies rwsem_del_waiter() on success. 567 */ 568 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem, 569 struct rwsem_waiter *waiter) 570 { 571 bool first = rwsem_first_waiter(sem) == waiter; 572 long count, new; 573 574 lockdep_assert_held(&sem->wait_lock); 575 576 count = atomic_long_read(&sem->count); 577 do { 578 bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF); 579 580 if (has_handoff) { 581 if (!first) 582 return false; 583 584 /* First waiter inherits a previously set handoff bit */ 585 waiter->handoff_set = true; 586 } 587 588 new = count; 589 590 if (count & RWSEM_LOCK_MASK) { 591 if (has_handoff || (!rt_task(waiter->task) && 592 !time_after(jiffies, waiter->timeout))) 593 return false; 594 595 new |= RWSEM_FLAG_HANDOFF; 596 } else { 597 new |= RWSEM_WRITER_LOCKED; 598 new &= ~RWSEM_FLAG_HANDOFF; 599 600 if (list_is_singular(&sem->wait_list)) 601 new &= ~RWSEM_FLAG_WAITERS; 602 } 603 } while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new)); 604 605 /* 606 * We have either acquired the lock with handoff bit cleared or 607 * set the handoff bit. 608 */ 609 if (new & RWSEM_FLAG_HANDOFF) { 610 waiter->handoff_set = true; 611 lockevent_inc(rwsem_wlock_handoff); 612 return false; 613 } 614 615 /* 616 * Have rwsem_try_write_lock() fully imply rwsem_del_waiter() on 617 * success. 618 */ 619 list_del(&waiter->list); 620 rwsem_set_owner(sem); 621 return true; 622 } 623 624 /* 625 * The rwsem_spin_on_owner() function returns the following 4 values 626 * depending on the lock owner state. 627 * OWNER_NULL : owner is currently NULL 628 * OWNER_WRITER: when owner changes and is a writer 629 * OWNER_READER: when owner changes and the new owner may be a reader. 630 * OWNER_NONSPINNABLE: 631 * when optimistic spinning has to stop because either the 632 * owner stops running, is unknown, or its timeslice has 633 * been used up. 634 */ 635 enum owner_state { 636 OWNER_NULL = 1 << 0, 637 OWNER_WRITER = 1 << 1, 638 OWNER_READER = 1 << 2, 639 OWNER_NONSPINNABLE = 1 << 3, 640 }; 641 642 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER 643 /* 644 * Try to acquire write lock before the writer has been put on wait queue. 645 */ 646 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem) 647 { 648 long count = atomic_long_read(&sem->count); 649 650 while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) { 651 if (atomic_long_try_cmpxchg_acquire(&sem->count, &count, 652 count | RWSEM_WRITER_LOCKED)) { 653 rwsem_set_owner(sem); 654 lockevent_inc(rwsem_opt_lock); 655 return true; 656 } 657 } 658 return false; 659 } 660 661 static inline bool owner_on_cpu(struct task_struct *owner) 662 { 663 /* 664 * As lock holder preemption issue, we both skip spinning if 665 * task is not on cpu or its cpu is preempted 666 */ 667 return owner->on_cpu && !vcpu_is_preempted(task_cpu(owner)); 668 } 669 670 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem) 671 { 672 struct task_struct *owner; 673 unsigned long flags; 674 bool ret = true; 675 676 if (need_resched()) { 677 lockevent_inc(rwsem_opt_fail); 678 return false; 679 } 680 681 preempt_disable(); 682 /* 683 * Disable preemption is equal to the RCU read-side crital section, 684 * thus the task_strcut structure won't go away. 685 */ 686 owner = rwsem_owner_flags(sem, &flags); 687 /* 688 * Don't check the read-owner as the entry may be stale. 689 */ 690 if ((flags & RWSEM_NONSPINNABLE) || 691 (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner))) 692 ret = false; 693 preempt_enable(); 694 695 lockevent_cond_inc(rwsem_opt_fail, !ret); 696 return ret; 697 } 698 699 #define OWNER_SPINNABLE (OWNER_NULL | OWNER_WRITER | OWNER_READER) 700 701 static inline enum owner_state 702 rwsem_owner_state(struct task_struct *owner, unsigned long flags) 703 { 704 if (flags & RWSEM_NONSPINNABLE) 705 return OWNER_NONSPINNABLE; 706 707 if (flags & RWSEM_READER_OWNED) 708 return OWNER_READER; 709 710 return owner ? OWNER_WRITER : OWNER_NULL; 711 } 712 713 static noinline enum owner_state 714 rwsem_spin_on_owner(struct rw_semaphore *sem) 715 { 716 struct task_struct *new, *owner; 717 unsigned long flags, new_flags; 718 enum owner_state state; 719 720 lockdep_assert_preemption_disabled(); 721 722 owner = rwsem_owner_flags(sem, &flags); 723 state = rwsem_owner_state(owner, flags); 724 if (state != OWNER_WRITER) 725 return state; 726 727 for (;;) { 728 /* 729 * When a waiting writer set the handoff flag, it may spin 730 * on the owner as well. Once that writer acquires the lock, 731 * we can spin on it. So we don't need to quit even when the 732 * handoff bit is set. 733 */ 734 new = rwsem_owner_flags(sem, &new_flags); 735 if ((new != owner) || (new_flags != flags)) { 736 state = rwsem_owner_state(new, new_flags); 737 break; 738 } 739 740 /* 741 * Ensure we emit the owner->on_cpu, dereference _after_ 742 * checking sem->owner still matches owner, if that fails, 743 * owner might point to free()d memory, if it still matches, 744 * our spinning context already disabled preemption which is 745 * equal to RCU read-side crital section ensures the memory 746 * stays valid. 747 */ 748 barrier(); 749 750 if (need_resched() || !owner_on_cpu(owner)) { 751 state = OWNER_NONSPINNABLE; 752 break; 753 } 754 755 cpu_relax(); 756 } 757 758 return state; 759 } 760 761 /* 762 * Calculate reader-owned rwsem spinning threshold for writer 763 * 764 * The more readers own the rwsem, the longer it will take for them to 765 * wind down and free the rwsem. So the empirical formula used to 766 * determine the actual spinning time limit here is: 767 * 768 * Spinning threshold = (10 + nr_readers/2)us 769 * 770 * The limit is capped to a maximum of 25us (30 readers). This is just 771 * a heuristic and is subjected to change in the future. 772 */ 773 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem) 774 { 775 long count = atomic_long_read(&sem->count); 776 int readers = count >> RWSEM_READER_SHIFT; 777 u64 delta; 778 779 if (readers > 30) 780 readers = 30; 781 delta = (20 + readers) * NSEC_PER_USEC / 2; 782 783 return sched_clock() + delta; 784 } 785 786 static bool rwsem_optimistic_spin(struct rw_semaphore *sem) 787 { 788 bool taken = false; 789 int prev_owner_state = OWNER_NULL; 790 int loop = 0; 791 u64 rspin_threshold = 0; 792 793 preempt_disable(); 794 795 /* sem->wait_lock should not be held when doing optimistic spinning */ 796 if (!osq_lock(&sem->osq)) 797 goto done; 798 799 /* 800 * Optimistically spin on the owner field and attempt to acquire the 801 * lock whenever the owner changes. Spinning will be stopped when: 802 * 1) the owning writer isn't running; or 803 * 2) readers own the lock and spinning time has exceeded limit. 804 */ 805 for (;;) { 806 enum owner_state owner_state; 807 808 owner_state = rwsem_spin_on_owner(sem); 809 if (!(owner_state & OWNER_SPINNABLE)) 810 break; 811 812 /* 813 * Try to acquire the lock 814 */ 815 taken = rwsem_try_write_lock_unqueued(sem); 816 817 if (taken) 818 break; 819 820 /* 821 * Time-based reader-owned rwsem optimistic spinning 822 */ 823 if (owner_state == OWNER_READER) { 824 /* 825 * Re-initialize rspin_threshold every time when 826 * the owner state changes from non-reader to reader. 827 * This allows a writer to steal the lock in between 828 * 2 reader phases and have the threshold reset at 829 * the beginning of the 2nd reader phase. 830 */ 831 if (prev_owner_state != OWNER_READER) { 832 if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)) 833 break; 834 rspin_threshold = rwsem_rspin_threshold(sem); 835 loop = 0; 836 } 837 838 /* 839 * Check time threshold once every 16 iterations to 840 * avoid calling sched_clock() too frequently so 841 * as to reduce the average latency between the times 842 * when the lock becomes free and when the spinner 843 * is ready to do a trylock. 844 */ 845 else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) { 846 rwsem_set_nonspinnable(sem); 847 lockevent_inc(rwsem_opt_nospin); 848 break; 849 } 850 } 851 852 /* 853 * An RT task cannot do optimistic spinning if it cannot 854 * be sure the lock holder is running or live-lock may 855 * happen if the current task and the lock holder happen 856 * to run in the same CPU. However, aborting optimistic 857 * spinning while a NULL owner is detected may miss some 858 * opportunity where spinning can continue without causing 859 * problem. 860 * 861 * There are 2 possible cases where an RT task may be able 862 * to continue spinning. 863 * 864 * 1) The lock owner is in the process of releasing the 865 * lock, sem->owner is cleared but the lock has not 866 * been released yet. 867 * 2) The lock was free and owner cleared, but another 868 * task just comes in and acquire the lock before 869 * we try to get it. The new owner may be a spinnable 870 * writer. 871 * 872 * To take advantage of two scenarios listed above, the RT 873 * task is made to retry one more time to see if it can 874 * acquire the lock or continue spinning on the new owning 875 * writer. Of course, if the time lag is long enough or the 876 * new owner is not a writer or spinnable, the RT task will 877 * quit spinning. 878 * 879 * If the owner is a writer, the need_resched() check is 880 * done inside rwsem_spin_on_owner(). If the owner is not 881 * a writer, need_resched() check needs to be done here. 882 */ 883 if (owner_state != OWNER_WRITER) { 884 if (need_resched()) 885 break; 886 if (rt_task(current) && 887 (prev_owner_state != OWNER_WRITER)) 888 break; 889 } 890 prev_owner_state = owner_state; 891 892 /* 893 * The cpu_relax() call is a compiler barrier which forces 894 * everything in this loop to be re-loaded. We don't need 895 * memory barriers as we'll eventually observe the right 896 * values at the cost of a few extra spins. 897 */ 898 cpu_relax(); 899 } 900 osq_unlock(&sem->osq); 901 done: 902 preempt_enable(); 903 lockevent_cond_inc(rwsem_opt_fail, !taken); 904 return taken; 905 } 906 907 /* 908 * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should 909 * only be called when the reader count reaches 0. 910 */ 911 static inline void clear_nonspinnable(struct rw_semaphore *sem) 912 { 913 if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)) 914 atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner); 915 } 916 917 #else 918 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem) 919 { 920 return false; 921 } 922 923 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem) 924 { 925 return false; 926 } 927 928 static inline void clear_nonspinnable(struct rw_semaphore *sem) { } 929 930 static inline enum owner_state 931 rwsem_spin_on_owner(struct rw_semaphore *sem) 932 { 933 return OWNER_NONSPINNABLE; 934 } 935 #endif 936 937 /* 938 * Wait for the read lock to be granted 939 */ 940 static struct rw_semaphore __sched * 941 rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state) 942 { 943 long adjustment = -RWSEM_READER_BIAS; 944 long rcnt = (count >> RWSEM_READER_SHIFT); 945 struct rwsem_waiter waiter; 946 DEFINE_WAKE_Q(wake_q); 947 bool wake = false; 948 949 /* 950 * To prevent a constant stream of readers from starving a sleeping 951 * waiter, don't attempt optimistic lock stealing if the lock is 952 * currently owned by readers. 953 */ 954 if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) && 955 (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED)) 956 goto queue; 957 958 /* 959 * Reader optimistic lock stealing. 960 */ 961 if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) { 962 rwsem_set_reader_owned(sem); 963 lockevent_inc(rwsem_rlock_steal); 964 965 /* 966 * Wake up other readers in the wait queue if it is 967 * the first reader. 968 */ 969 if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) { 970 raw_spin_lock_irq(&sem->wait_lock); 971 if (!list_empty(&sem->wait_list)) 972 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, 973 &wake_q); 974 raw_spin_unlock_irq(&sem->wait_lock); 975 wake_up_q(&wake_q); 976 } 977 return sem; 978 } 979 980 queue: 981 waiter.task = current; 982 waiter.type = RWSEM_WAITING_FOR_READ; 983 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT; 984 985 raw_spin_lock_irq(&sem->wait_lock); 986 if (list_empty(&sem->wait_list)) { 987 /* 988 * In case the wait queue is empty and the lock isn't owned 989 * by a writer or has the handoff bit set, this reader can 990 * exit the slowpath and return immediately as its 991 * RWSEM_READER_BIAS has already been set in the count. 992 */ 993 if (!(atomic_long_read(&sem->count) & 994 (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))) { 995 /* Provide lock ACQUIRE */ 996 smp_acquire__after_ctrl_dep(); 997 raw_spin_unlock_irq(&sem->wait_lock); 998 rwsem_set_reader_owned(sem); 999 lockevent_inc(rwsem_rlock_fast); 1000 return sem; 1001 } 1002 adjustment += RWSEM_FLAG_WAITERS; 1003 } 1004 rwsem_add_waiter(sem, &waiter); 1005 1006 /* we're now waiting on the lock, but no longer actively locking */ 1007 count = atomic_long_add_return(adjustment, &sem->count); 1008 1009 /* 1010 * If there are no active locks, wake the front queued process(es). 1011 * 1012 * If there are no writers and we are first in the queue, 1013 * wake our own waiter to join the existing active readers ! 1014 */ 1015 if (!(count & RWSEM_LOCK_MASK)) { 1016 clear_nonspinnable(sem); 1017 wake = true; 1018 } 1019 if (wake || (!(count & RWSEM_WRITER_MASK) && 1020 (adjustment & RWSEM_FLAG_WAITERS))) 1021 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); 1022 1023 raw_spin_unlock_irq(&sem->wait_lock); 1024 wake_up_q(&wake_q); 1025 1026 /* wait to be given the lock */ 1027 for (;;) { 1028 set_current_state(state); 1029 if (!smp_load_acquire(&waiter.task)) { 1030 /* Matches rwsem_mark_wake()'s smp_store_release(). */ 1031 break; 1032 } 1033 if (signal_pending_state(state, current)) { 1034 raw_spin_lock_irq(&sem->wait_lock); 1035 if (waiter.task) 1036 goto out_nolock; 1037 raw_spin_unlock_irq(&sem->wait_lock); 1038 /* Ordered by sem->wait_lock against rwsem_mark_wake(). */ 1039 break; 1040 } 1041 schedule(); 1042 lockevent_inc(rwsem_sleep_reader); 1043 } 1044 1045 __set_current_state(TASK_RUNNING); 1046 lockevent_inc(rwsem_rlock); 1047 return sem; 1048 1049 out_nolock: 1050 rwsem_del_waiter(sem, &waiter); 1051 raw_spin_unlock_irq(&sem->wait_lock); 1052 __set_current_state(TASK_RUNNING); 1053 lockevent_inc(rwsem_rlock_fail); 1054 return ERR_PTR(-EINTR); 1055 } 1056 1057 /* 1058 * Wait until we successfully acquire the write lock 1059 */ 1060 static struct rw_semaphore * 1061 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state) 1062 { 1063 long count; 1064 struct rwsem_waiter waiter; 1065 DEFINE_WAKE_Q(wake_q); 1066 1067 /* do optimistic spinning and steal lock if possible */ 1068 if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) { 1069 /* rwsem_optimistic_spin() implies ACQUIRE on success */ 1070 return sem; 1071 } 1072 1073 /* 1074 * Optimistic spinning failed, proceed to the slowpath 1075 * and block until we can acquire the sem. 1076 */ 1077 waiter.task = current; 1078 waiter.type = RWSEM_WAITING_FOR_WRITE; 1079 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT; 1080 waiter.handoff_set = false; 1081 1082 raw_spin_lock_irq(&sem->wait_lock); 1083 rwsem_add_waiter(sem, &waiter); 1084 1085 /* we're now waiting on the lock */ 1086 if (rwsem_first_waiter(sem) != &waiter) { 1087 count = atomic_long_read(&sem->count); 1088 1089 /* 1090 * If there were already threads queued before us and: 1091 * 1) there are no active locks, wake the front 1092 * queued process(es) as the handoff bit might be set. 1093 * 2) there are no active writers and some readers, the lock 1094 * must be read owned; so we try to wake any read lock 1095 * waiters that were queued ahead of us. 1096 */ 1097 if (count & RWSEM_WRITER_MASK) 1098 goto wait; 1099 1100 rwsem_mark_wake(sem, (count & RWSEM_READER_MASK) 1101 ? RWSEM_WAKE_READERS 1102 : RWSEM_WAKE_ANY, &wake_q); 1103 1104 if (!wake_q_empty(&wake_q)) { 1105 /* 1106 * We want to minimize wait_lock hold time especially 1107 * when a large number of readers are to be woken up. 1108 */ 1109 raw_spin_unlock_irq(&sem->wait_lock); 1110 wake_up_q(&wake_q); 1111 wake_q_init(&wake_q); /* Used again, reinit */ 1112 raw_spin_lock_irq(&sem->wait_lock); 1113 } 1114 } else { 1115 atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count); 1116 } 1117 1118 wait: 1119 /* wait until we successfully acquire the lock */ 1120 set_current_state(state); 1121 for (;;) { 1122 if (rwsem_try_write_lock(sem, &waiter)) { 1123 /* rwsem_try_write_lock() implies ACQUIRE on success */ 1124 break; 1125 } 1126 1127 raw_spin_unlock_irq(&sem->wait_lock); 1128 1129 if (signal_pending_state(state, current)) 1130 goto out_nolock; 1131 1132 /* 1133 * After setting the handoff bit and failing to acquire 1134 * the lock, attempt to spin on owner to accelerate lock 1135 * transfer. If the previous owner is a on-cpu writer and it 1136 * has just released the lock, OWNER_NULL will be returned. 1137 * In this case, we attempt to acquire the lock again 1138 * without sleeping. 1139 */ 1140 if (waiter.handoff_set) { 1141 enum owner_state owner_state; 1142 1143 preempt_disable(); 1144 owner_state = rwsem_spin_on_owner(sem); 1145 preempt_enable(); 1146 1147 if (owner_state == OWNER_NULL) 1148 goto trylock_again; 1149 } 1150 1151 schedule(); 1152 lockevent_inc(rwsem_sleep_writer); 1153 set_current_state(state); 1154 trylock_again: 1155 raw_spin_lock_irq(&sem->wait_lock); 1156 } 1157 __set_current_state(TASK_RUNNING); 1158 raw_spin_unlock_irq(&sem->wait_lock); 1159 lockevent_inc(rwsem_wlock); 1160 return sem; 1161 1162 out_nolock: 1163 __set_current_state(TASK_RUNNING); 1164 raw_spin_lock_irq(&sem->wait_lock); 1165 rwsem_del_waiter(sem, &waiter); 1166 if (!list_empty(&sem->wait_list)) 1167 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); 1168 raw_spin_unlock_irq(&sem->wait_lock); 1169 wake_up_q(&wake_q); 1170 lockevent_inc(rwsem_wlock_fail); 1171 return ERR_PTR(-EINTR); 1172 } 1173 1174 /* 1175 * handle waking up a waiter on the semaphore 1176 * - up_read/up_write has decremented the active part of count if we come here 1177 */ 1178 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem) 1179 { 1180 unsigned long flags; 1181 DEFINE_WAKE_Q(wake_q); 1182 1183 raw_spin_lock_irqsave(&sem->wait_lock, flags); 1184 1185 if (!list_empty(&sem->wait_list)) 1186 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); 1187 1188 raw_spin_unlock_irqrestore(&sem->wait_lock, flags); 1189 wake_up_q(&wake_q); 1190 1191 return sem; 1192 } 1193 1194 /* 1195 * downgrade a write lock into a read lock 1196 * - caller incremented waiting part of count and discovered it still negative 1197 * - just wake up any readers at the front of the queue 1198 */ 1199 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem) 1200 { 1201 unsigned long flags; 1202 DEFINE_WAKE_Q(wake_q); 1203 1204 raw_spin_lock_irqsave(&sem->wait_lock, flags); 1205 1206 if (!list_empty(&sem->wait_list)) 1207 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q); 1208 1209 raw_spin_unlock_irqrestore(&sem->wait_lock, flags); 1210 wake_up_q(&wake_q); 1211 1212 return sem; 1213 } 1214 1215 /* 1216 * lock for reading 1217 */ 1218 static inline int __down_read_common(struct rw_semaphore *sem, int state) 1219 { 1220 long count; 1221 1222 if (!rwsem_read_trylock(sem, &count)) { 1223 if (IS_ERR(rwsem_down_read_slowpath(sem, count, state))) 1224 return -EINTR; 1225 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1226 } 1227 return 0; 1228 } 1229 1230 static inline void __down_read(struct rw_semaphore *sem) 1231 { 1232 __down_read_common(sem, TASK_UNINTERRUPTIBLE); 1233 } 1234 1235 static inline int __down_read_interruptible(struct rw_semaphore *sem) 1236 { 1237 return __down_read_common(sem, TASK_INTERRUPTIBLE); 1238 } 1239 1240 static inline int __down_read_killable(struct rw_semaphore *sem) 1241 { 1242 return __down_read_common(sem, TASK_KILLABLE); 1243 } 1244 1245 static inline int __down_read_trylock(struct rw_semaphore *sem) 1246 { 1247 long tmp; 1248 1249 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1250 1251 tmp = atomic_long_read(&sem->count); 1252 while (!(tmp & RWSEM_READ_FAILED_MASK)) { 1253 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, 1254 tmp + RWSEM_READER_BIAS)) { 1255 rwsem_set_reader_owned(sem); 1256 return 1; 1257 } 1258 } 1259 return 0; 1260 } 1261 1262 /* 1263 * lock for writing 1264 */ 1265 static inline int __down_write_common(struct rw_semaphore *sem, int state) 1266 { 1267 if (unlikely(!rwsem_write_trylock(sem))) { 1268 if (IS_ERR(rwsem_down_write_slowpath(sem, state))) 1269 return -EINTR; 1270 } 1271 1272 return 0; 1273 } 1274 1275 static inline void __down_write(struct rw_semaphore *sem) 1276 { 1277 __down_write_common(sem, TASK_UNINTERRUPTIBLE); 1278 } 1279 1280 static inline int __down_write_killable(struct rw_semaphore *sem) 1281 { 1282 return __down_write_common(sem, TASK_KILLABLE); 1283 } 1284 1285 static inline int __down_write_trylock(struct rw_semaphore *sem) 1286 { 1287 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1288 return rwsem_write_trylock(sem); 1289 } 1290 1291 /* 1292 * unlock after reading 1293 */ 1294 static inline void __up_read(struct rw_semaphore *sem) 1295 { 1296 long tmp; 1297 1298 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1299 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1300 1301 rwsem_clear_reader_owned(sem); 1302 tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count); 1303 DEBUG_RWSEMS_WARN_ON(tmp < 0, sem); 1304 if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) == 1305 RWSEM_FLAG_WAITERS)) { 1306 clear_nonspinnable(sem); 1307 rwsem_wake(sem); 1308 } 1309 } 1310 1311 /* 1312 * unlock after writing 1313 */ 1314 static inline void __up_write(struct rw_semaphore *sem) 1315 { 1316 long tmp; 1317 1318 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1319 /* 1320 * sem->owner may differ from current if the ownership is transferred 1321 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits. 1322 */ 1323 DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) && 1324 !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem); 1325 1326 rwsem_clear_owner(sem); 1327 tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count); 1328 if (unlikely(tmp & RWSEM_FLAG_WAITERS)) 1329 rwsem_wake(sem); 1330 } 1331 1332 /* 1333 * downgrade write lock to read lock 1334 */ 1335 static inline void __downgrade_write(struct rw_semaphore *sem) 1336 { 1337 long tmp; 1338 1339 /* 1340 * When downgrading from exclusive to shared ownership, 1341 * anything inside the write-locked region cannot leak 1342 * into the read side. In contrast, anything in the 1343 * read-locked region is ok to be re-ordered into the 1344 * write side. As such, rely on RELEASE semantics. 1345 */ 1346 DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem); 1347 tmp = atomic_long_fetch_add_release( 1348 -RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count); 1349 rwsem_set_reader_owned(sem); 1350 if (tmp & RWSEM_FLAG_WAITERS) 1351 rwsem_downgrade_wake(sem); 1352 } 1353 1354 #else /* !CONFIG_PREEMPT_RT */ 1355 1356 #define RT_MUTEX_BUILD_MUTEX 1357 #include "rtmutex.c" 1358 1359 #define rwbase_set_and_save_current_state(state) \ 1360 set_current_state(state) 1361 1362 #define rwbase_restore_current_state() \ 1363 __set_current_state(TASK_RUNNING) 1364 1365 #define rwbase_rtmutex_lock_state(rtm, state) \ 1366 __rt_mutex_lock(rtm, state) 1367 1368 #define rwbase_rtmutex_slowlock_locked(rtm, state) \ 1369 __rt_mutex_slowlock_locked(rtm, NULL, state) 1370 1371 #define rwbase_rtmutex_unlock(rtm) \ 1372 __rt_mutex_unlock(rtm) 1373 1374 #define rwbase_rtmutex_trylock(rtm) \ 1375 __rt_mutex_trylock(rtm) 1376 1377 #define rwbase_signal_pending_state(state, current) \ 1378 signal_pending_state(state, current) 1379 1380 #define rwbase_schedule() \ 1381 schedule() 1382 1383 #include "rwbase_rt.c" 1384 1385 void __init_rwsem(struct rw_semaphore *sem, const char *name, 1386 struct lock_class_key *key) 1387 { 1388 init_rwbase_rt(&(sem)->rwbase); 1389 1390 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1391 debug_check_no_locks_freed((void *)sem, sizeof(*sem)); 1392 lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP); 1393 #endif 1394 } 1395 EXPORT_SYMBOL(__init_rwsem); 1396 1397 static inline void __down_read(struct rw_semaphore *sem) 1398 { 1399 rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE); 1400 } 1401 1402 static inline int __down_read_interruptible(struct rw_semaphore *sem) 1403 { 1404 return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE); 1405 } 1406 1407 static inline int __down_read_killable(struct rw_semaphore *sem) 1408 { 1409 return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE); 1410 } 1411 1412 static inline int __down_read_trylock(struct rw_semaphore *sem) 1413 { 1414 return rwbase_read_trylock(&sem->rwbase); 1415 } 1416 1417 static inline void __up_read(struct rw_semaphore *sem) 1418 { 1419 rwbase_read_unlock(&sem->rwbase, TASK_NORMAL); 1420 } 1421 1422 static inline void __sched __down_write(struct rw_semaphore *sem) 1423 { 1424 rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE); 1425 } 1426 1427 static inline int __sched __down_write_killable(struct rw_semaphore *sem) 1428 { 1429 return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE); 1430 } 1431 1432 static inline int __down_write_trylock(struct rw_semaphore *sem) 1433 { 1434 return rwbase_write_trylock(&sem->rwbase); 1435 } 1436 1437 static inline void __up_write(struct rw_semaphore *sem) 1438 { 1439 rwbase_write_unlock(&sem->rwbase); 1440 } 1441 1442 static inline void __downgrade_write(struct rw_semaphore *sem) 1443 { 1444 rwbase_write_downgrade(&sem->rwbase); 1445 } 1446 1447 /* Debug stubs for the common API */ 1448 #define DEBUG_RWSEMS_WARN_ON(c, sem) 1449 1450 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem, 1451 struct task_struct *owner) 1452 { 1453 } 1454 1455 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem) 1456 { 1457 int count = atomic_read(&sem->rwbase.readers); 1458 1459 return count < 0 && count != READER_BIAS; 1460 } 1461 1462 #endif /* CONFIG_PREEMPT_RT */ 1463 1464 /* 1465 * lock for reading 1466 */ 1467 void __sched down_read(struct rw_semaphore *sem) 1468 { 1469 might_sleep(); 1470 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1471 1472 LOCK_CONTENDED(sem, __down_read_trylock, __down_read); 1473 } 1474 EXPORT_SYMBOL(down_read); 1475 1476 int __sched down_read_interruptible(struct rw_semaphore *sem) 1477 { 1478 might_sleep(); 1479 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1480 1481 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) { 1482 rwsem_release(&sem->dep_map, _RET_IP_); 1483 return -EINTR; 1484 } 1485 1486 return 0; 1487 } 1488 EXPORT_SYMBOL(down_read_interruptible); 1489 1490 int __sched down_read_killable(struct rw_semaphore *sem) 1491 { 1492 might_sleep(); 1493 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1494 1495 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) { 1496 rwsem_release(&sem->dep_map, _RET_IP_); 1497 return -EINTR; 1498 } 1499 1500 return 0; 1501 } 1502 EXPORT_SYMBOL(down_read_killable); 1503 1504 /* 1505 * trylock for reading -- returns 1 if successful, 0 if contention 1506 */ 1507 int down_read_trylock(struct rw_semaphore *sem) 1508 { 1509 int ret = __down_read_trylock(sem); 1510 1511 if (ret == 1) 1512 rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_); 1513 return ret; 1514 } 1515 EXPORT_SYMBOL(down_read_trylock); 1516 1517 /* 1518 * lock for writing 1519 */ 1520 void __sched down_write(struct rw_semaphore *sem) 1521 { 1522 might_sleep(); 1523 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); 1524 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1525 } 1526 EXPORT_SYMBOL(down_write); 1527 1528 /* 1529 * lock for writing 1530 */ 1531 int __sched down_write_killable(struct rw_semaphore *sem) 1532 { 1533 might_sleep(); 1534 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); 1535 1536 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, 1537 __down_write_killable)) { 1538 rwsem_release(&sem->dep_map, _RET_IP_); 1539 return -EINTR; 1540 } 1541 1542 return 0; 1543 } 1544 EXPORT_SYMBOL(down_write_killable); 1545 1546 /* 1547 * trylock for writing -- returns 1 if successful, 0 if contention 1548 */ 1549 int down_write_trylock(struct rw_semaphore *sem) 1550 { 1551 int ret = __down_write_trylock(sem); 1552 1553 if (ret == 1) 1554 rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_); 1555 1556 return ret; 1557 } 1558 EXPORT_SYMBOL(down_write_trylock); 1559 1560 /* 1561 * release a read lock 1562 */ 1563 void up_read(struct rw_semaphore *sem) 1564 { 1565 rwsem_release(&sem->dep_map, _RET_IP_); 1566 __up_read(sem); 1567 } 1568 EXPORT_SYMBOL(up_read); 1569 1570 /* 1571 * release a write lock 1572 */ 1573 void up_write(struct rw_semaphore *sem) 1574 { 1575 rwsem_release(&sem->dep_map, _RET_IP_); 1576 __up_write(sem); 1577 } 1578 EXPORT_SYMBOL(up_write); 1579 1580 /* 1581 * downgrade write lock to read lock 1582 */ 1583 void downgrade_write(struct rw_semaphore *sem) 1584 { 1585 lock_downgrade(&sem->dep_map, _RET_IP_); 1586 __downgrade_write(sem); 1587 } 1588 EXPORT_SYMBOL(downgrade_write); 1589 1590 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1591 1592 void down_read_nested(struct rw_semaphore *sem, int subclass) 1593 { 1594 might_sleep(); 1595 rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_); 1596 LOCK_CONTENDED(sem, __down_read_trylock, __down_read); 1597 } 1598 EXPORT_SYMBOL(down_read_nested); 1599 1600 int down_read_killable_nested(struct rw_semaphore *sem, int subclass) 1601 { 1602 might_sleep(); 1603 rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_); 1604 1605 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) { 1606 rwsem_release(&sem->dep_map, _RET_IP_); 1607 return -EINTR; 1608 } 1609 1610 return 0; 1611 } 1612 EXPORT_SYMBOL(down_read_killable_nested); 1613 1614 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest) 1615 { 1616 might_sleep(); 1617 rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_); 1618 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1619 } 1620 EXPORT_SYMBOL(_down_write_nest_lock); 1621 1622 void down_read_non_owner(struct rw_semaphore *sem) 1623 { 1624 might_sleep(); 1625 __down_read(sem); 1626 __rwsem_set_reader_owned(sem, NULL); 1627 } 1628 EXPORT_SYMBOL(down_read_non_owner); 1629 1630 void down_write_nested(struct rw_semaphore *sem, int subclass) 1631 { 1632 might_sleep(); 1633 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); 1634 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1635 } 1636 EXPORT_SYMBOL(down_write_nested); 1637 1638 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass) 1639 { 1640 might_sleep(); 1641 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); 1642 1643 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, 1644 __down_write_killable)) { 1645 rwsem_release(&sem->dep_map, _RET_IP_); 1646 return -EINTR; 1647 } 1648 1649 return 0; 1650 } 1651 EXPORT_SYMBOL(down_write_killable_nested); 1652 1653 void up_read_non_owner(struct rw_semaphore *sem) 1654 { 1655 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1656 __up_read(sem); 1657 } 1658 EXPORT_SYMBOL(up_read_non_owner); 1659 1660 #endif 1661