xref: /openbmc/linux/kernel/locking/rwsem.c (revision a8f4fcdd8ba7d191c29ae87a2315906fe90368d6)
1 // SPDX-License-Identifier: GPL-2.0
2 /* kernel/rwsem.c: R/W semaphores, public implementation
3  *
4  * Written by David Howells (dhowells@redhat.com).
5  * Derived from asm-i386/semaphore.h
6  *
7  * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
8  * and Michel Lespinasse <walken@google.com>
9  *
10  * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
11  * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
12  *
13  * Rwsem count bit fields re-definition and rwsem rearchitecture by
14  * Waiman Long <longman@redhat.com> and
15  * Peter Zijlstra <peterz@infradead.org>.
16  */
17 
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/sched.h>
21 #include <linux/sched/rt.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/clock.h>
27 #include <linux/export.h>
28 #include <linux/rwsem.h>
29 #include <linux/atomic.h>
30 
31 #ifndef CONFIG_PREEMPT_RT
32 #include "lock_events.h"
33 
34 /*
35  * The least significant 2 bits of the owner value has the following
36  * meanings when set.
37  *  - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers
38  *  - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock
39  *
40  * When the rwsem is reader-owned and a spinning writer has timed out,
41  * the nonspinnable bit will be set to disable optimistic spinning.
42 
43  * When a writer acquires a rwsem, it puts its task_struct pointer
44  * into the owner field. It is cleared after an unlock.
45  *
46  * When a reader acquires a rwsem, it will also puts its task_struct
47  * pointer into the owner field with the RWSEM_READER_OWNED bit set.
48  * On unlock, the owner field will largely be left untouched. So
49  * for a free or reader-owned rwsem, the owner value may contain
50  * information about the last reader that acquires the rwsem.
51  *
52  * That information may be helpful in debugging cases where the system
53  * seems to hang on a reader owned rwsem especially if only one reader
54  * is involved. Ideally we would like to track all the readers that own
55  * a rwsem, but the overhead is simply too big.
56  *
57  * A fast path reader optimistic lock stealing is supported when the rwsem
58  * is previously owned by a writer and the following conditions are met:
59  *  - rwsem is not currently writer owned
60  *  - the handoff isn't set.
61  */
62 #define RWSEM_READER_OWNED	(1UL << 0)
63 #define RWSEM_NONSPINNABLE	(1UL << 1)
64 #define RWSEM_OWNER_FLAGS_MASK	(RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
65 
66 #ifdef CONFIG_DEBUG_RWSEMS
67 # define DEBUG_RWSEMS_WARN_ON(c, sem)	do {			\
68 	if (!debug_locks_silent &&				\
69 	    WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
70 		#c, atomic_long_read(&(sem)->count),		\
71 		(unsigned long) sem->magic,			\
72 		atomic_long_read(&(sem)->owner), (long)current,	\
73 		list_empty(&(sem)->wait_list) ? "" : "not "))	\
74 			debug_locks_off();			\
75 	} while (0)
76 #else
77 # define DEBUG_RWSEMS_WARN_ON(c, sem)
78 #endif
79 
80 /*
81  * On 64-bit architectures, the bit definitions of the count are:
82  *
83  * Bit  0    - writer locked bit
84  * Bit  1    - waiters present bit
85  * Bit  2    - lock handoff bit
86  * Bits 3-7  - reserved
87  * Bits 8-62 - 55-bit reader count
88  * Bit  63   - read fail bit
89  *
90  * On 32-bit architectures, the bit definitions of the count are:
91  *
92  * Bit  0    - writer locked bit
93  * Bit  1    - waiters present bit
94  * Bit  2    - lock handoff bit
95  * Bits 3-7  - reserved
96  * Bits 8-30 - 23-bit reader count
97  * Bit  31   - read fail bit
98  *
99  * It is not likely that the most significant bit (read fail bit) will ever
100  * be set. This guard bit is still checked anyway in the down_read() fastpath
101  * just in case we need to use up more of the reader bits for other purpose
102  * in the future.
103  *
104  * atomic_long_fetch_add() is used to obtain reader lock, whereas
105  * atomic_long_cmpxchg() will be used to obtain writer lock.
106  *
107  * There are three places where the lock handoff bit may be set or cleared.
108  * 1) rwsem_mark_wake() for readers		-- set, clear
109  * 2) rwsem_try_write_lock() for writers	-- set, clear
110  * 3) rwsem_del_waiter()			-- clear
111  *
112  * For all the above cases, wait_lock will be held. A writer must also
113  * be the first one in the wait_list to be eligible for setting the handoff
114  * bit. So concurrent setting/clearing of handoff bit is not possible.
115  */
116 #define RWSEM_WRITER_LOCKED	(1UL << 0)
117 #define RWSEM_FLAG_WAITERS	(1UL << 1)
118 #define RWSEM_FLAG_HANDOFF	(1UL << 2)
119 #define RWSEM_FLAG_READFAIL	(1UL << (BITS_PER_LONG - 1))
120 
121 #define RWSEM_READER_SHIFT	8
122 #define RWSEM_READER_BIAS	(1UL << RWSEM_READER_SHIFT)
123 #define RWSEM_READER_MASK	(~(RWSEM_READER_BIAS - 1))
124 #define RWSEM_WRITER_MASK	RWSEM_WRITER_LOCKED
125 #define RWSEM_LOCK_MASK		(RWSEM_WRITER_MASK|RWSEM_READER_MASK)
126 #define RWSEM_READ_FAILED_MASK	(RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
127 				 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
128 
129 /*
130  * All writes to owner are protected by WRITE_ONCE() to make sure that
131  * store tearing can't happen as optimistic spinners may read and use
132  * the owner value concurrently without lock. Read from owner, however,
133  * may not need READ_ONCE() as long as the pointer value is only used
134  * for comparison and isn't being dereferenced.
135  */
136 static inline void rwsem_set_owner(struct rw_semaphore *sem)
137 {
138 	atomic_long_set(&sem->owner, (long)current);
139 }
140 
141 static inline void rwsem_clear_owner(struct rw_semaphore *sem)
142 {
143 	atomic_long_set(&sem->owner, 0);
144 }
145 
146 /*
147  * Test the flags in the owner field.
148  */
149 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags)
150 {
151 	return atomic_long_read(&sem->owner) & flags;
152 }
153 
154 /*
155  * The task_struct pointer of the last owning reader will be left in
156  * the owner field.
157  *
158  * Note that the owner value just indicates the task has owned the rwsem
159  * previously, it may not be the real owner or one of the real owners
160  * anymore when that field is examined, so take it with a grain of salt.
161  *
162  * The reader non-spinnable bit is preserved.
163  */
164 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
165 					    struct task_struct *owner)
166 {
167 	unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED |
168 		(atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE);
169 
170 	atomic_long_set(&sem->owner, val);
171 }
172 
173 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem)
174 {
175 	__rwsem_set_reader_owned(sem, current);
176 }
177 
178 /*
179  * Return true if the rwsem is owned by a reader.
180  */
181 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
182 {
183 #ifdef CONFIG_DEBUG_RWSEMS
184 	/*
185 	 * Check the count to see if it is write-locked.
186 	 */
187 	long count = atomic_long_read(&sem->count);
188 
189 	if (count & RWSEM_WRITER_MASK)
190 		return false;
191 #endif
192 	return rwsem_test_oflags(sem, RWSEM_READER_OWNED);
193 }
194 
195 #ifdef CONFIG_DEBUG_RWSEMS
196 /*
197  * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there
198  * is a task pointer in owner of a reader-owned rwsem, it will be the
199  * real owner or one of the real owners. The only exception is when the
200  * unlock is done by up_read_non_owner().
201  */
202 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
203 {
204 	unsigned long val = atomic_long_read(&sem->owner);
205 
206 	while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) {
207 		if (atomic_long_try_cmpxchg(&sem->owner, &val,
208 					    val & RWSEM_OWNER_FLAGS_MASK))
209 			return;
210 	}
211 }
212 #else
213 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
214 {
215 }
216 #endif
217 
218 /*
219  * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
220  * remains set. Otherwise, the operation will be aborted.
221  */
222 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem)
223 {
224 	unsigned long owner = atomic_long_read(&sem->owner);
225 
226 	do {
227 		if (!(owner & RWSEM_READER_OWNED))
228 			break;
229 		if (owner & RWSEM_NONSPINNABLE)
230 			break;
231 	} while (!atomic_long_try_cmpxchg(&sem->owner, &owner,
232 					  owner | RWSEM_NONSPINNABLE));
233 }
234 
235 static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp)
236 {
237 	*cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count);
238 
239 	if (WARN_ON_ONCE(*cntp < 0))
240 		rwsem_set_nonspinnable(sem);
241 
242 	if (!(*cntp & RWSEM_READ_FAILED_MASK)) {
243 		rwsem_set_reader_owned(sem);
244 		return true;
245 	}
246 
247 	return false;
248 }
249 
250 static inline bool rwsem_write_trylock(struct rw_semaphore *sem)
251 {
252 	long tmp = RWSEM_UNLOCKED_VALUE;
253 
254 	if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) {
255 		rwsem_set_owner(sem);
256 		return true;
257 	}
258 
259 	return false;
260 }
261 
262 /*
263  * Return just the real task structure pointer of the owner
264  */
265 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem)
266 {
267 	return (struct task_struct *)
268 		(atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK);
269 }
270 
271 /*
272  * Return the real task structure pointer of the owner and the embedded
273  * flags in the owner. pflags must be non-NULL.
274  */
275 static inline struct task_struct *
276 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags)
277 {
278 	unsigned long owner = atomic_long_read(&sem->owner);
279 
280 	*pflags = owner & RWSEM_OWNER_FLAGS_MASK;
281 	return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK);
282 }
283 
284 /*
285  * Guide to the rw_semaphore's count field.
286  *
287  * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
288  * by a writer.
289  *
290  * The lock is owned by readers when
291  * (1) the RWSEM_WRITER_LOCKED isn't set in count,
292  * (2) some of the reader bits are set in count, and
293  * (3) the owner field has RWSEM_READ_OWNED bit set.
294  *
295  * Having some reader bits set is not enough to guarantee a readers owned
296  * lock as the readers may be in the process of backing out from the count
297  * and a writer has just released the lock. So another writer may steal
298  * the lock immediately after that.
299  */
300 
301 /*
302  * Initialize an rwsem:
303  */
304 void __init_rwsem(struct rw_semaphore *sem, const char *name,
305 		  struct lock_class_key *key)
306 {
307 #ifdef CONFIG_DEBUG_LOCK_ALLOC
308 	/*
309 	 * Make sure we are not reinitializing a held semaphore:
310 	 */
311 	debug_check_no_locks_freed((void *)sem, sizeof(*sem));
312 	lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
313 #endif
314 #ifdef CONFIG_DEBUG_RWSEMS
315 	sem->magic = sem;
316 #endif
317 	atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
318 	raw_spin_lock_init(&sem->wait_lock);
319 	INIT_LIST_HEAD(&sem->wait_list);
320 	atomic_long_set(&sem->owner, 0L);
321 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
322 	osq_lock_init(&sem->osq);
323 #endif
324 }
325 EXPORT_SYMBOL(__init_rwsem);
326 
327 enum rwsem_waiter_type {
328 	RWSEM_WAITING_FOR_WRITE,
329 	RWSEM_WAITING_FOR_READ
330 };
331 
332 struct rwsem_waiter {
333 	struct list_head list;
334 	struct task_struct *task;
335 	enum rwsem_waiter_type type;
336 	unsigned long timeout;
337 
338 	/* Writer only, not initialized in reader */
339 	bool handoff_set;
340 };
341 #define rwsem_first_waiter(sem) \
342 	list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
343 
344 enum rwsem_wake_type {
345 	RWSEM_WAKE_ANY,		/* Wake whatever's at head of wait list */
346 	RWSEM_WAKE_READERS,	/* Wake readers only */
347 	RWSEM_WAKE_READ_OWNED	/* Waker thread holds the read lock */
348 };
349 
350 /*
351  * The typical HZ value is either 250 or 1000. So set the minimum waiting
352  * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
353  * queue before initiating the handoff protocol.
354  */
355 #define RWSEM_WAIT_TIMEOUT	DIV_ROUND_UP(HZ, 250)
356 
357 /*
358  * Magic number to batch-wakeup waiting readers, even when writers are
359  * also present in the queue. This both limits the amount of work the
360  * waking thread must do and also prevents any potential counter overflow,
361  * however unlikely.
362  */
363 #define MAX_READERS_WAKEUP	0x100
364 
365 static inline void
366 rwsem_add_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
367 {
368 	lockdep_assert_held(&sem->wait_lock);
369 	list_add_tail(&waiter->list, &sem->wait_list);
370 	/* caller will set RWSEM_FLAG_WAITERS */
371 }
372 
373 /*
374  * Remove a waiter from the wait_list and clear flags.
375  *
376  * Both rwsem_mark_wake() and rwsem_try_write_lock() contain a full 'copy' of
377  * this function. Modify with care.
378  */
379 static inline void
380 rwsem_del_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
381 {
382 	lockdep_assert_held(&sem->wait_lock);
383 	list_del(&waiter->list);
384 	if (likely(!list_empty(&sem->wait_list)))
385 		return;
386 
387 	atomic_long_andnot(RWSEM_FLAG_HANDOFF | RWSEM_FLAG_WAITERS, &sem->count);
388 }
389 
390 /*
391  * handle the lock release when processes blocked on it that can now run
392  * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
393  *   have been set.
394  * - there must be someone on the queue
395  * - the wait_lock must be held by the caller
396  * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
397  *   to actually wakeup the blocked task(s) and drop the reference count,
398  *   preferably when the wait_lock is released
399  * - woken process blocks are discarded from the list after having task zeroed
400  * - writers are only marked woken if downgrading is false
401  *
402  * Implies rwsem_del_waiter() for all woken readers.
403  */
404 static void rwsem_mark_wake(struct rw_semaphore *sem,
405 			    enum rwsem_wake_type wake_type,
406 			    struct wake_q_head *wake_q)
407 {
408 	struct rwsem_waiter *waiter, *tmp;
409 	long oldcount, woken = 0, adjustment = 0;
410 	struct list_head wlist;
411 
412 	lockdep_assert_held(&sem->wait_lock);
413 
414 	/*
415 	 * Take a peek at the queue head waiter such that we can determine
416 	 * the wakeup(s) to perform.
417 	 */
418 	waiter = rwsem_first_waiter(sem);
419 
420 	if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
421 		if (wake_type == RWSEM_WAKE_ANY) {
422 			/*
423 			 * Mark writer at the front of the queue for wakeup.
424 			 * Until the task is actually later awoken later by
425 			 * the caller, other writers are able to steal it.
426 			 * Readers, on the other hand, will block as they
427 			 * will notice the queued writer.
428 			 */
429 			wake_q_add(wake_q, waiter->task);
430 			lockevent_inc(rwsem_wake_writer);
431 		}
432 
433 		return;
434 	}
435 
436 	/*
437 	 * No reader wakeup if there are too many of them already.
438 	 */
439 	if (unlikely(atomic_long_read(&sem->count) < 0))
440 		return;
441 
442 	/*
443 	 * Writers might steal the lock before we grant it to the next reader.
444 	 * We prefer to do the first reader grant before counting readers
445 	 * so we can bail out early if a writer stole the lock.
446 	 */
447 	if (wake_type != RWSEM_WAKE_READ_OWNED) {
448 		struct task_struct *owner;
449 
450 		adjustment = RWSEM_READER_BIAS;
451 		oldcount = atomic_long_fetch_add(adjustment, &sem->count);
452 		if (unlikely(oldcount & RWSEM_WRITER_MASK)) {
453 			/*
454 			 * When we've been waiting "too" long (for writers
455 			 * to give up the lock), request a HANDOFF to
456 			 * force the issue.
457 			 */
458 			if (!(oldcount & RWSEM_FLAG_HANDOFF) &&
459 			    time_after(jiffies, waiter->timeout)) {
460 				adjustment -= RWSEM_FLAG_HANDOFF;
461 				lockevent_inc(rwsem_rlock_handoff);
462 			}
463 
464 			atomic_long_add(-adjustment, &sem->count);
465 			return;
466 		}
467 		/*
468 		 * Set it to reader-owned to give spinners an early
469 		 * indication that readers now have the lock.
470 		 * The reader nonspinnable bit seen at slowpath entry of
471 		 * the reader is copied over.
472 		 */
473 		owner = waiter->task;
474 		__rwsem_set_reader_owned(sem, owner);
475 	}
476 
477 	/*
478 	 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
479 	 * queue. We know that the woken will be at least 1 as we accounted
480 	 * for above. Note we increment the 'active part' of the count by the
481 	 * number of readers before waking any processes up.
482 	 *
483 	 * This is an adaptation of the phase-fair R/W locks where at the
484 	 * reader phase (first waiter is a reader), all readers are eligible
485 	 * to acquire the lock at the same time irrespective of their order
486 	 * in the queue. The writers acquire the lock according to their
487 	 * order in the queue.
488 	 *
489 	 * We have to do wakeup in 2 passes to prevent the possibility that
490 	 * the reader count may be decremented before it is incremented. It
491 	 * is because the to-be-woken waiter may not have slept yet. So it
492 	 * may see waiter->task got cleared, finish its critical section and
493 	 * do an unlock before the reader count increment.
494 	 *
495 	 * 1) Collect the read-waiters in a separate list, count them and
496 	 *    fully increment the reader count in rwsem.
497 	 * 2) For each waiters in the new list, clear waiter->task and
498 	 *    put them into wake_q to be woken up later.
499 	 */
500 	INIT_LIST_HEAD(&wlist);
501 	list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
502 		if (waiter->type == RWSEM_WAITING_FOR_WRITE)
503 			continue;
504 
505 		woken++;
506 		list_move_tail(&waiter->list, &wlist);
507 
508 		/*
509 		 * Limit # of readers that can be woken up per wakeup call.
510 		 */
511 		if (unlikely(woken >= MAX_READERS_WAKEUP))
512 			break;
513 	}
514 
515 	adjustment = woken * RWSEM_READER_BIAS - adjustment;
516 	lockevent_cond_inc(rwsem_wake_reader, woken);
517 
518 	oldcount = atomic_long_read(&sem->count);
519 	if (list_empty(&sem->wait_list)) {
520 		/*
521 		 * Combined with list_move_tail() above, this implies
522 		 * rwsem_del_waiter().
523 		 */
524 		adjustment -= RWSEM_FLAG_WAITERS;
525 		if (oldcount & RWSEM_FLAG_HANDOFF)
526 			adjustment -= RWSEM_FLAG_HANDOFF;
527 	} else if (woken) {
528 		/*
529 		 * When we've woken a reader, we no longer need to force
530 		 * writers to give up the lock and we can clear HANDOFF.
531 		 */
532 		if (oldcount & RWSEM_FLAG_HANDOFF)
533 			adjustment -= RWSEM_FLAG_HANDOFF;
534 	}
535 
536 	if (adjustment)
537 		atomic_long_add(adjustment, &sem->count);
538 
539 	/* 2nd pass */
540 	list_for_each_entry_safe(waiter, tmp, &wlist, list) {
541 		struct task_struct *tsk;
542 
543 		tsk = waiter->task;
544 		get_task_struct(tsk);
545 
546 		/*
547 		 * Ensure calling get_task_struct() before setting the reader
548 		 * waiter to nil such that rwsem_down_read_slowpath() cannot
549 		 * race with do_exit() by always holding a reference count
550 		 * to the task to wakeup.
551 		 */
552 		smp_store_release(&waiter->task, NULL);
553 		/*
554 		 * Ensure issuing the wakeup (either by us or someone else)
555 		 * after setting the reader waiter to nil.
556 		 */
557 		wake_q_add_safe(wake_q, tsk);
558 	}
559 }
560 
561 /*
562  * This function must be called with the sem->wait_lock held to prevent
563  * race conditions between checking the rwsem wait list and setting the
564  * sem->count accordingly.
565  *
566  * Implies rwsem_del_waiter() on success.
567  */
568 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
569 					struct rwsem_waiter *waiter)
570 {
571 	bool first = rwsem_first_waiter(sem) == waiter;
572 	long count, new;
573 
574 	lockdep_assert_held(&sem->wait_lock);
575 
576 	count = atomic_long_read(&sem->count);
577 	do {
578 		bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF);
579 
580 		if (has_handoff) {
581 			if (!first)
582 				return false;
583 
584 			/* First waiter inherits a previously set handoff bit */
585 			waiter->handoff_set = true;
586 		}
587 
588 		new = count;
589 
590 		if (count & RWSEM_LOCK_MASK) {
591 			if (has_handoff || (!rt_task(waiter->task) &&
592 					    !time_after(jiffies, waiter->timeout)))
593 				return false;
594 
595 			new |= RWSEM_FLAG_HANDOFF;
596 		} else {
597 			new |= RWSEM_WRITER_LOCKED;
598 			new &= ~RWSEM_FLAG_HANDOFF;
599 
600 			if (list_is_singular(&sem->wait_list))
601 				new &= ~RWSEM_FLAG_WAITERS;
602 		}
603 	} while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new));
604 
605 	/*
606 	 * We have either acquired the lock with handoff bit cleared or
607 	 * set the handoff bit.
608 	 */
609 	if (new & RWSEM_FLAG_HANDOFF) {
610 		waiter->handoff_set = true;
611 		lockevent_inc(rwsem_wlock_handoff);
612 		return false;
613 	}
614 
615 	/*
616 	 * Have rwsem_try_write_lock() fully imply rwsem_del_waiter() on
617 	 * success.
618 	 */
619 	list_del(&waiter->list);
620 	rwsem_set_owner(sem);
621 	return true;
622 }
623 
624 /*
625  * The rwsem_spin_on_owner() function returns the following 4 values
626  * depending on the lock owner state.
627  *   OWNER_NULL  : owner is currently NULL
628  *   OWNER_WRITER: when owner changes and is a writer
629  *   OWNER_READER: when owner changes and the new owner may be a reader.
630  *   OWNER_NONSPINNABLE:
631  *		   when optimistic spinning has to stop because either the
632  *		   owner stops running, is unknown, or its timeslice has
633  *		   been used up.
634  */
635 enum owner_state {
636 	OWNER_NULL		= 1 << 0,
637 	OWNER_WRITER		= 1 << 1,
638 	OWNER_READER		= 1 << 2,
639 	OWNER_NONSPINNABLE	= 1 << 3,
640 };
641 
642 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
643 /*
644  * Try to acquire write lock before the writer has been put on wait queue.
645  */
646 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
647 {
648 	long count = atomic_long_read(&sem->count);
649 
650 	while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) {
651 		if (atomic_long_try_cmpxchg_acquire(&sem->count, &count,
652 					count | RWSEM_WRITER_LOCKED)) {
653 			rwsem_set_owner(sem);
654 			lockevent_inc(rwsem_opt_lock);
655 			return true;
656 		}
657 	}
658 	return false;
659 }
660 
661 static inline bool owner_on_cpu(struct task_struct *owner)
662 {
663 	/*
664 	 * As lock holder preemption issue, we both skip spinning if
665 	 * task is not on cpu or its cpu is preempted
666 	 */
667 	return owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
668 }
669 
670 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
671 {
672 	struct task_struct *owner;
673 	unsigned long flags;
674 	bool ret = true;
675 
676 	if (need_resched()) {
677 		lockevent_inc(rwsem_opt_fail);
678 		return false;
679 	}
680 
681 	preempt_disable();
682 	/*
683 	 * Disable preemption is equal to the RCU read-side crital section,
684 	 * thus the task_strcut structure won't go away.
685 	 */
686 	owner = rwsem_owner_flags(sem, &flags);
687 	/*
688 	 * Don't check the read-owner as the entry may be stale.
689 	 */
690 	if ((flags & RWSEM_NONSPINNABLE) ||
691 	    (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner)))
692 		ret = false;
693 	preempt_enable();
694 
695 	lockevent_cond_inc(rwsem_opt_fail, !ret);
696 	return ret;
697 }
698 
699 #define OWNER_SPINNABLE		(OWNER_NULL | OWNER_WRITER | OWNER_READER)
700 
701 static inline enum owner_state
702 rwsem_owner_state(struct task_struct *owner, unsigned long flags)
703 {
704 	if (flags & RWSEM_NONSPINNABLE)
705 		return OWNER_NONSPINNABLE;
706 
707 	if (flags & RWSEM_READER_OWNED)
708 		return OWNER_READER;
709 
710 	return owner ? OWNER_WRITER : OWNER_NULL;
711 }
712 
713 static noinline enum owner_state
714 rwsem_spin_on_owner(struct rw_semaphore *sem)
715 {
716 	struct task_struct *new, *owner;
717 	unsigned long flags, new_flags;
718 	enum owner_state state;
719 
720 	lockdep_assert_preemption_disabled();
721 
722 	owner = rwsem_owner_flags(sem, &flags);
723 	state = rwsem_owner_state(owner, flags);
724 	if (state != OWNER_WRITER)
725 		return state;
726 
727 	for (;;) {
728 		/*
729 		 * When a waiting writer set the handoff flag, it may spin
730 		 * on the owner as well. Once that writer acquires the lock,
731 		 * we can spin on it. So we don't need to quit even when the
732 		 * handoff bit is set.
733 		 */
734 		new = rwsem_owner_flags(sem, &new_flags);
735 		if ((new != owner) || (new_flags != flags)) {
736 			state = rwsem_owner_state(new, new_flags);
737 			break;
738 		}
739 
740 		/*
741 		 * Ensure we emit the owner->on_cpu, dereference _after_
742 		 * checking sem->owner still matches owner, if that fails,
743 		 * owner might point to free()d memory, if it still matches,
744 		 * our spinning context already disabled preemption which is
745 		 * equal to RCU read-side crital section ensures the memory
746 		 * stays valid.
747 		 */
748 		barrier();
749 
750 		if (need_resched() || !owner_on_cpu(owner)) {
751 			state = OWNER_NONSPINNABLE;
752 			break;
753 		}
754 
755 		cpu_relax();
756 	}
757 
758 	return state;
759 }
760 
761 /*
762  * Calculate reader-owned rwsem spinning threshold for writer
763  *
764  * The more readers own the rwsem, the longer it will take for them to
765  * wind down and free the rwsem. So the empirical formula used to
766  * determine the actual spinning time limit here is:
767  *
768  *   Spinning threshold = (10 + nr_readers/2)us
769  *
770  * The limit is capped to a maximum of 25us (30 readers). This is just
771  * a heuristic and is subjected to change in the future.
772  */
773 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem)
774 {
775 	long count = atomic_long_read(&sem->count);
776 	int readers = count >> RWSEM_READER_SHIFT;
777 	u64 delta;
778 
779 	if (readers > 30)
780 		readers = 30;
781 	delta = (20 + readers) * NSEC_PER_USEC / 2;
782 
783 	return sched_clock() + delta;
784 }
785 
786 static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
787 {
788 	bool taken = false;
789 	int prev_owner_state = OWNER_NULL;
790 	int loop = 0;
791 	u64 rspin_threshold = 0;
792 
793 	preempt_disable();
794 
795 	/* sem->wait_lock should not be held when doing optimistic spinning */
796 	if (!osq_lock(&sem->osq))
797 		goto done;
798 
799 	/*
800 	 * Optimistically spin on the owner field and attempt to acquire the
801 	 * lock whenever the owner changes. Spinning will be stopped when:
802 	 *  1) the owning writer isn't running; or
803 	 *  2) readers own the lock and spinning time has exceeded limit.
804 	 */
805 	for (;;) {
806 		enum owner_state owner_state;
807 
808 		owner_state = rwsem_spin_on_owner(sem);
809 		if (!(owner_state & OWNER_SPINNABLE))
810 			break;
811 
812 		/*
813 		 * Try to acquire the lock
814 		 */
815 		taken = rwsem_try_write_lock_unqueued(sem);
816 
817 		if (taken)
818 			break;
819 
820 		/*
821 		 * Time-based reader-owned rwsem optimistic spinning
822 		 */
823 		if (owner_state == OWNER_READER) {
824 			/*
825 			 * Re-initialize rspin_threshold every time when
826 			 * the owner state changes from non-reader to reader.
827 			 * This allows a writer to steal the lock in between
828 			 * 2 reader phases and have the threshold reset at
829 			 * the beginning of the 2nd reader phase.
830 			 */
831 			if (prev_owner_state != OWNER_READER) {
832 				if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
833 					break;
834 				rspin_threshold = rwsem_rspin_threshold(sem);
835 				loop = 0;
836 			}
837 
838 			/*
839 			 * Check time threshold once every 16 iterations to
840 			 * avoid calling sched_clock() too frequently so
841 			 * as to reduce the average latency between the times
842 			 * when the lock becomes free and when the spinner
843 			 * is ready to do a trylock.
844 			 */
845 			else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) {
846 				rwsem_set_nonspinnable(sem);
847 				lockevent_inc(rwsem_opt_nospin);
848 				break;
849 			}
850 		}
851 
852 		/*
853 		 * An RT task cannot do optimistic spinning if it cannot
854 		 * be sure the lock holder is running or live-lock may
855 		 * happen if the current task and the lock holder happen
856 		 * to run in the same CPU. However, aborting optimistic
857 		 * spinning while a NULL owner is detected may miss some
858 		 * opportunity where spinning can continue without causing
859 		 * problem.
860 		 *
861 		 * There are 2 possible cases where an RT task may be able
862 		 * to continue spinning.
863 		 *
864 		 * 1) The lock owner is in the process of releasing the
865 		 *    lock, sem->owner is cleared but the lock has not
866 		 *    been released yet.
867 		 * 2) The lock was free and owner cleared, but another
868 		 *    task just comes in and acquire the lock before
869 		 *    we try to get it. The new owner may be a spinnable
870 		 *    writer.
871 		 *
872 		 * To take advantage of two scenarios listed above, the RT
873 		 * task is made to retry one more time to see if it can
874 		 * acquire the lock or continue spinning on the new owning
875 		 * writer. Of course, if the time lag is long enough or the
876 		 * new owner is not a writer or spinnable, the RT task will
877 		 * quit spinning.
878 		 *
879 		 * If the owner is a writer, the need_resched() check is
880 		 * done inside rwsem_spin_on_owner(). If the owner is not
881 		 * a writer, need_resched() check needs to be done here.
882 		 */
883 		if (owner_state != OWNER_WRITER) {
884 			if (need_resched())
885 				break;
886 			if (rt_task(current) &&
887 			   (prev_owner_state != OWNER_WRITER))
888 				break;
889 		}
890 		prev_owner_state = owner_state;
891 
892 		/*
893 		 * The cpu_relax() call is a compiler barrier which forces
894 		 * everything in this loop to be re-loaded. We don't need
895 		 * memory barriers as we'll eventually observe the right
896 		 * values at the cost of a few extra spins.
897 		 */
898 		cpu_relax();
899 	}
900 	osq_unlock(&sem->osq);
901 done:
902 	preempt_enable();
903 	lockevent_cond_inc(rwsem_opt_fail, !taken);
904 	return taken;
905 }
906 
907 /*
908  * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should
909  * only be called when the reader count reaches 0.
910  */
911 static inline void clear_nonspinnable(struct rw_semaphore *sem)
912 {
913 	if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
914 		atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner);
915 }
916 
917 #else
918 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
919 {
920 	return false;
921 }
922 
923 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem)
924 {
925 	return false;
926 }
927 
928 static inline void clear_nonspinnable(struct rw_semaphore *sem) { }
929 
930 static inline enum owner_state
931 rwsem_spin_on_owner(struct rw_semaphore *sem)
932 {
933 	return OWNER_NONSPINNABLE;
934 }
935 #endif
936 
937 /*
938  * Wait for the read lock to be granted
939  */
940 static struct rw_semaphore __sched *
941 rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state)
942 {
943 	long adjustment = -RWSEM_READER_BIAS;
944 	long rcnt = (count >> RWSEM_READER_SHIFT);
945 	struct rwsem_waiter waiter;
946 	DEFINE_WAKE_Q(wake_q);
947 	bool wake = false;
948 
949 	/*
950 	 * To prevent a constant stream of readers from starving a sleeping
951 	 * waiter, don't attempt optimistic lock stealing if the lock is
952 	 * currently owned by readers.
953 	 */
954 	if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) &&
955 	    (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED))
956 		goto queue;
957 
958 	/*
959 	 * Reader optimistic lock stealing.
960 	 */
961 	if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) {
962 		rwsem_set_reader_owned(sem);
963 		lockevent_inc(rwsem_rlock_steal);
964 
965 		/*
966 		 * Wake up other readers in the wait queue if it is
967 		 * the first reader.
968 		 */
969 		if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) {
970 			raw_spin_lock_irq(&sem->wait_lock);
971 			if (!list_empty(&sem->wait_list))
972 				rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED,
973 						&wake_q);
974 			raw_spin_unlock_irq(&sem->wait_lock);
975 			wake_up_q(&wake_q);
976 		}
977 		return sem;
978 	}
979 
980 queue:
981 	waiter.task = current;
982 	waiter.type = RWSEM_WAITING_FOR_READ;
983 	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
984 
985 	raw_spin_lock_irq(&sem->wait_lock);
986 	if (list_empty(&sem->wait_list)) {
987 		/*
988 		 * In case the wait queue is empty and the lock isn't owned
989 		 * by a writer or has the handoff bit set, this reader can
990 		 * exit the slowpath and return immediately as its
991 		 * RWSEM_READER_BIAS has already been set in the count.
992 		 */
993 		if (!(atomic_long_read(&sem->count) &
994 		     (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))) {
995 			/* Provide lock ACQUIRE */
996 			smp_acquire__after_ctrl_dep();
997 			raw_spin_unlock_irq(&sem->wait_lock);
998 			rwsem_set_reader_owned(sem);
999 			lockevent_inc(rwsem_rlock_fast);
1000 			return sem;
1001 		}
1002 		adjustment += RWSEM_FLAG_WAITERS;
1003 	}
1004 	rwsem_add_waiter(sem, &waiter);
1005 
1006 	/* we're now waiting on the lock, but no longer actively locking */
1007 	count = atomic_long_add_return(adjustment, &sem->count);
1008 
1009 	/*
1010 	 * If there are no active locks, wake the front queued process(es).
1011 	 *
1012 	 * If there are no writers and we are first in the queue,
1013 	 * wake our own waiter to join the existing active readers !
1014 	 */
1015 	if (!(count & RWSEM_LOCK_MASK)) {
1016 		clear_nonspinnable(sem);
1017 		wake = true;
1018 	}
1019 	if (wake || (!(count & RWSEM_WRITER_MASK) &&
1020 		    (adjustment & RWSEM_FLAG_WAITERS)))
1021 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1022 
1023 	raw_spin_unlock_irq(&sem->wait_lock);
1024 	wake_up_q(&wake_q);
1025 
1026 	/* wait to be given the lock */
1027 	for (;;) {
1028 		set_current_state(state);
1029 		if (!smp_load_acquire(&waiter.task)) {
1030 			/* Matches rwsem_mark_wake()'s smp_store_release(). */
1031 			break;
1032 		}
1033 		if (signal_pending_state(state, current)) {
1034 			raw_spin_lock_irq(&sem->wait_lock);
1035 			if (waiter.task)
1036 				goto out_nolock;
1037 			raw_spin_unlock_irq(&sem->wait_lock);
1038 			/* Ordered by sem->wait_lock against rwsem_mark_wake(). */
1039 			break;
1040 		}
1041 		schedule();
1042 		lockevent_inc(rwsem_sleep_reader);
1043 	}
1044 
1045 	__set_current_state(TASK_RUNNING);
1046 	lockevent_inc(rwsem_rlock);
1047 	return sem;
1048 
1049 out_nolock:
1050 	rwsem_del_waiter(sem, &waiter);
1051 	raw_spin_unlock_irq(&sem->wait_lock);
1052 	__set_current_state(TASK_RUNNING);
1053 	lockevent_inc(rwsem_rlock_fail);
1054 	return ERR_PTR(-EINTR);
1055 }
1056 
1057 /*
1058  * Wait until we successfully acquire the write lock
1059  */
1060 static struct rw_semaphore *
1061 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state)
1062 {
1063 	long count;
1064 	struct rwsem_waiter waiter;
1065 	DEFINE_WAKE_Q(wake_q);
1066 
1067 	/* do optimistic spinning and steal lock if possible */
1068 	if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) {
1069 		/* rwsem_optimistic_spin() implies ACQUIRE on success */
1070 		return sem;
1071 	}
1072 
1073 	/*
1074 	 * Optimistic spinning failed, proceed to the slowpath
1075 	 * and block until we can acquire the sem.
1076 	 */
1077 	waiter.task = current;
1078 	waiter.type = RWSEM_WAITING_FOR_WRITE;
1079 	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1080 	waiter.handoff_set = false;
1081 
1082 	raw_spin_lock_irq(&sem->wait_lock);
1083 	rwsem_add_waiter(sem, &waiter);
1084 
1085 	/* we're now waiting on the lock */
1086 	if (rwsem_first_waiter(sem) != &waiter) {
1087 		count = atomic_long_read(&sem->count);
1088 
1089 		/*
1090 		 * If there were already threads queued before us and:
1091 		 *  1) there are no active locks, wake the front
1092 		 *     queued process(es) as the handoff bit might be set.
1093 		 *  2) there are no active writers and some readers, the lock
1094 		 *     must be read owned; so we try to wake any read lock
1095 		 *     waiters that were queued ahead of us.
1096 		 */
1097 		if (count & RWSEM_WRITER_MASK)
1098 			goto wait;
1099 
1100 		rwsem_mark_wake(sem, (count & RWSEM_READER_MASK)
1101 					? RWSEM_WAKE_READERS
1102 					: RWSEM_WAKE_ANY, &wake_q);
1103 
1104 		if (!wake_q_empty(&wake_q)) {
1105 			/*
1106 			 * We want to minimize wait_lock hold time especially
1107 			 * when a large number of readers are to be woken up.
1108 			 */
1109 			raw_spin_unlock_irq(&sem->wait_lock);
1110 			wake_up_q(&wake_q);
1111 			wake_q_init(&wake_q);	/* Used again, reinit */
1112 			raw_spin_lock_irq(&sem->wait_lock);
1113 		}
1114 	} else {
1115 		atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count);
1116 	}
1117 
1118 wait:
1119 	/* wait until we successfully acquire the lock */
1120 	set_current_state(state);
1121 	for (;;) {
1122 		if (rwsem_try_write_lock(sem, &waiter)) {
1123 			/* rwsem_try_write_lock() implies ACQUIRE on success */
1124 			break;
1125 		}
1126 
1127 		raw_spin_unlock_irq(&sem->wait_lock);
1128 
1129 		if (signal_pending_state(state, current))
1130 			goto out_nolock;
1131 
1132 		/*
1133 		 * After setting the handoff bit and failing to acquire
1134 		 * the lock, attempt to spin on owner to accelerate lock
1135 		 * transfer. If the previous owner is a on-cpu writer and it
1136 		 * has just released the lock, OWNER_NULL will be returned.
1137 		 * In this case, we attempt to acquire the lock again
1138 		 * without sleeping.
1139 		 */
1140 		if (waiter.handoff_set) {
1141 			enum owner_state owner_state;
1142 
1143 			preempt_disable();
1144 			owner_state = rwsem_spin_on_owner(sem);
1145 			preempt_enable();
1146 
1147 			if (owner_state == OWNER_NULL)
1148 				goto trylock_again;
1149 		}
1150 
1151 		schedule();
1152 		lockevent_inc(rwsem_sleep_writer);
1153 		set_current_state(state);
1154 trylock_again:
1155 		raw_spin_lock_irq(&sem->wait_lock);
1156 	}
1157 	__set_current_state(TASK_RUNNING);
1158 	raw_spin_unlock_irq(&sem->wait_lock);
1159 	lockevent_inc(rwsem_wlock);
1160 	return sem;
1161 
1162 out_nolock:
1163 	__set_current_state(TASK_RUNNING);
1164 	raw_spin_lock_irq(&sem->wait_lock);
1165 	rwsem_del_waiter(sem, &waiter);
1166 	if (!list_empty(&sem->wait_list))
1167 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1168 	raw_spin_unlock_irq(&sem->wait_lock);
1169 	wake_up_q(&wake_q);
1170 	lockevent_inc(rwsem_wlock_fail);
1171 	return ERR_PTR(-EINTR);
1172 }
1173 
1174 /*
1175  * handle waking up a waiter on the semaphore
1176  * - up_read/up_write has decremented the active part of count if we come here
1177  */
1178 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem)
1179 {
1180 	unsigned long flags;
1181 	DEFINE_WAKE_Q(wake_q);
1182 
1183 	raw_spin_lock_irqsave(&sem->wait_lock, flags);
1184 
1185 	if (!list_empty(&sem->wait_list))
1186 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1187 
1188 	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1189 	wake_up_q(&wake_q);
1190 
1191 	return sem;
1192 }
1193 
1194 /*
1195  * downgrade a write lock into a read lock
1196  * - caller incremented waiting part of count and discovered it still negative
1197  * - just wake up any readers at the front of the queue
1198  */
1199 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
1200 {
1201 	unsigned long flags;
1202 	DEFINE_WAKE_Q(wake_q);
1203 
1204 	raw_spin_lock_irqsave(&sem->wait_lock, flags);
1205 
1206 	if (!list_empty(&sem->wait_list))
1207 		rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
1208 
1209 	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1210 	wake_up_q(&wake_q);
1211 
1212 	return sem;
1213 }
1214 
1215 /*
1216  * lock for reading
1217  */
1218 static inline int __down_read_common(struct rw_semaphore *sem, int state)
1219 {
1220 	long count;
1221 
1222 	if (!rwsem_read_trylock(sem, &count)) {
1223 		if (IS_ERR(rwsem_down_read_slowpath(sem, count, state)))
1224 			return -EINTR;
1225 		DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1226 	}
1227 	return 0;
1228 }
1229 
1230 static inline void __down_read(struct rw_semaphore *sem)
1231 {
1232 	__down_read_common(sem, TASK_UNINTERRUPTIBLE);
1233 }
1234 
1235 static inline int __down_read_interruptible(struct rw_semaphore *sem)
1236 {
1237 	return __down_read_common(sem, TASK_INTERRUPTIBLE);
1238 }
1239 
1240 static inline int __down_read_killable(struct rw_semaphore *sem)
1241 {
1242 	return __down_read_common(sem, TASK_KILLABLE);
1243 }
1244 
1245 static inline int __down_read_trylock(struct rw_semaphore *sem)
1246 {
1247 	long tmp;
1248 
1249 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1250 
1251 	tmp = atomic_long_read(&sem->count);
1252 	while (!(tmp & RWSEM_READ_FAILED_MASK)) {
1253 		if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1254 						    tmp + RWSEM_READER_BIAS)) {
1255 			rwsem_set_reader_owned(sem);
1256 			return 1;
1257 		}
1258 	}
1259 	return 0;
1260 }
1261 
1262 /*
1263  * lock for writing
1264  */
1265 static inline int __down_write_common(struct rw_semaphore *sem, int state)
1266 {
1267 	if (unlikely(!rwsem_write_trylock(sem))) {
1268 		if (IS_ERR(rwsem_down_write_slowpath(sem, state)))
1269 			return -EINTR;
1270 	}
1271 
1272 	return 0;
1273 }
1274 
1275 static inline void __down_write(struct rw_semaphore *sem)
1276 {
1277 	__down_write_common(sem, TASK_UNINTERRUPTIBLE);
1278 }
1279 
1280 static inline int __down_write_killable(struct rw_semaphore *sem)
1281 {
1282 	return __down_write_common(sem, TASK_KILLABLE);
1283 }
1284 
1285 static inline int __down_write_trylock(struct rw_semaphore *sem)
1286 {
1287 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1288 	return rwsem_write_trylock(sem);
1289 }
1290 
1291 /*
1292  * unlock after reading
1293  */
1294 static inline void __up_read(struct rw_semaphore *sem)
1295 {
1296 	long tmp;
1297 
1298 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1299 	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1300 
1301 	rwsem_clear_reader_owned(sem);
1302 	tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count);
1303 	DEBUG_RWSEMS_WARN_ON(tmp < 0, sem);
1304 	if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) ==
1305 		      RWSEM_FLAG_WAITERS)) {
1306 		clear_nonspinnable(sem);
1307 		rwsem_wake(sem);
1308 	}
1309 }
1310 
1311 /*
1312  * unlock after writing
1313  */
1314 static inline void __up_write(struct rw_semaphore *sem)
1315 {
1316 	long tmp;
1317 
1318 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1319 	/*
1320 	 * sem->owner may differ from current if the ownership is transferred
1321 	 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
1322 	 */
1323 	DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) &&
1324 			    !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem);
1325 
1326 	rwsem_clear_owner(sem);
1327 	tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count);
1328 	if (unlikely(tmp & RWSEM_FLAG_WAITERS))
1329 		rwsem_wake(sem);
1330 }
1331 
1332 /*
1333  * downgrade write lock to read lock
1334  */
1335 static inline void __downgrade_write(struct rw_semaphore *sem)
1336 {
1337 	long tmp;
1338 
1339 	/*
1340 	 * When downgrading from exclusive to shared ownership,
1341 	 * anything inside the write-locked region cannot leak
1342 	 * into the read side. In contrast, anything in the
1343 	 * read-locked region is ok to be re-ordered into the
1344 	 * write side. As such, rely on RELEASE semantics.
1345 	 */
1346 	DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem);
1347 	tmp = atomic_long_fetch_add_release(
1348 		-RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count);
1349 	rwsem_set_reader_owned(sem);
1350 	if (tmp & RWSEM_FLAG_WAITERS)
1351 		rwsem_downgrade_wake(sem);
1352 }
1353 
1354 #else /* !CONFIG_PREEMPT_RT */
1355 
1356 #define RT_MUTEX_BUILD_MUTEX
1357 #include "rtmutex.c"
1358 
1359 #define rwbase_set_and_save_current_state(state)	\
1360 	set_current_state(state)
1361 
1362 #define rwbase_restore_current_state()			\
1363 	__set_current_state(TASK_RUNNING)
1364 
1365 #define rwbase_rtmutex_lock_state(rtm, state)		\
1366 	__rt_mutex_lock(rtm, state)
1367 
1368 #define rwbase_rtmutex_slowlock_locked(rtm, state)	\
1369 	__rt_mutex_slowlock_locked(rtm, NULL, state)
1370 
1371 #define rwbase_rtmutex_unlock(rtm)			\
1372 	__rt_mutex_unlock(rtm)
1373 
1374 #define rwbase_rtmutex_trylock(rtm)			\
1375 	__rt_mutex_trylock(rtm)
1376 
1377 #define rwbase_signal_pending_state(state, current)	\
1378 	signal_pending_state(state, current)
1379 
1380 #define rwbase_schedule()				\
1381 	schedule()
1382 
1383 #include "rwbase_rt.c"
1384 
1385 void __init_rwsem(struct rw_semaphore *sem, const char *name,
1386 		  struct lock_class_key *key)
1387 {
1388 	init_rwbase_rt(&(sem)->rwbase);
1389 
1390 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1391 	debug_check_no_locks_freed((void *)sem, sizeof(*sem));
1392 	lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
1393 #endif
1394 }
1395 EXPORT_SYMBOL(__init_rwsem);
1396 
1397 static inline void __down_read(struct rw_semaphore *sem)
1398 {
1399 	rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1400 }
1401 
1402 static inline int __down_read_interruptible(struct rw_semaphore *sem)
1403 {
1404 	return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE);
1405 }
1406 
1407 static inline int __down_read_killable(struct rw_semaphore *sem)
1408 {
1409 	return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE);
1410 }
1411 
1412 static inline int __down_read_trylock(struct rw_semaphore *sem)
1413 {
1414 	return rwbase_read_trylock(&sem->rwbase);
1415 }
1416 
1417 static inline void __up_read(struct rw_semaphore *sem)
1418 {
1419 	rwbase_read_unlock(&sem->rwbase, TASK_NORMAL);
1420 }
1421 
1422 static inline void __sched __down_write(struct rw_semaphore *sem)
1423 {
1424 	rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1425 }
1426 
1427 static inline int __sched __down_write_killable(struct rw_semaphore *sem)
1428 {
1429 	return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE);
1430 }
1431 
1432 static inline int __down_write_trylock(struct rw_semaphore *sem)
1433 {
1434 	return rwbase_write_trylock(&sem->rwbase);
1435 }
1436 
1437 static inline void __up_write(struct rw_semaphore *sem)
1438 {
1439 	rwbase_write_unlock(&sem->rwbase);
1440 }
1441 
1442 static inline void __downgrade_write(struct rw_semaphore *sem)
1443 {
1444 	rwbase_write_downgrade(&sem->rwbase);
1445 }
1446 
1447 /* Debug stubs for the common API */
1448 #define DEBUG_RWSEMS_WARN_ON(c, sem)
1449 
1450 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
1451 					    struct task_struct *owner)
1452 {
1453 }
1454 
1455 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
1456 {
1457 	int count = atomic_read(&sem->rwbase.readers);
1458 
1459 	return count < 0 && count != READER_BIAS;
1460 }
1461 
1462 #endif /* CONFIG_PREEMPT_RT */
1463 
1464 /*
1465  * lock for reading
1466  */
1467 void __sched down_read(struct rw_semaphore *sem)
1468 {
1469 	might_sleep();
1470 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1471 
1472 	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1473 }
1474 EXPORT_SYMBOL(down_read);
1475 
1476 int __sched down_read_interruptible(struct rw_semaphore *sem)
1477 {
1478 	might_sleep();
1479 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1480 
1481 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) {
1482 		rwsem_release(&sem->dep_map, _RET_IP_);
1483 		return -EINTR;
1484 	}
1485 
1486 	return 0;
1487 }
1488 EXPORT_SYMBOL(down_read_interruptible);
1489 
1490 int __sched down_read_killable(struct rw_semaphore *sem)
1491 {
1492 	might_sleep();
1493 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1494 
1495 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1496 		rwsem_release(&sem->dep_map, _RET_IP_);
1497 		return -EINTR;
1498 	}
1499 
1500 	return 0;
1501 }
1502 EXPORT_SYMBOL(down_read_killable);
1503 
1504 /*
1505  * trylock for reading -- returns 1 if successful, 0 if contention
1506  */
1507 int down_read_trylock(struct rw_semaphore *sem)
1508 {
1509 	int ret = __down_read_trylock(sem);
1510 
1511 	if (ret == 1)
1512 		rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_);
1513 	return ret;
1514 }
1515 EXPORT_SYMBOL(down_read_trylock);
1516 
1517 /*
1518  * lock for writing
1519  */
1520 void __sched down_write(struct rw_semaphore *sem)
1521 {
1522 	might_sleep();
1523 	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1524 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1525 }
1526 EXPORT_SYMBOL(down_write);
1527 
1528 /*
1529  * lock for writing
1530  */
1531 int __sched down_write_killable(struct rw_semaphore *sem)
1532 {
1533 	might_sleep();
1534 	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1535 
1536 	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1537 				  __down_write_killable)) {
1538 		rwsem_release(&sem->dep_map, _RET_IP_);
1539 		return -EINTR;
1540 	}
1541 
1542 	return 0;
1543 }
1544 EXPORT_SYMBOL(down_write_killable);
1545 
1546 /*
1547  * trylock for writing -- returns 1 if successful, 0 if contention
1548  */
1549 int down_write_trylock(struct rw_semaphore *sem)
1550 {
1551 	int ret = __down_write_trylock(sem);
1552 
1553 	if (ret == 1)
1554 		rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_);
1555 
1556 	return ret;
1557 }
1558 EXPORT_SYMBOL(down_write_trylock);
1559 
1560 /*
1561  * release a read lock
1562  */
1563 void up_read(struct rw_semaphore *sem)
1564 {
1565 	rwsem_release(&sem->dep_map, _RET_IP_);
1566 	__up_read(sem);
1567 }
1568 EXPORT_SYMBOL(up_read);
1569 
1570 /*
1571  * release a write lock
1572  */
1573 void up_write(struct rw_semaphore *sem)
1574 {
1575 	rwsem_release(&sem->dep_map, _RET_IP_);
1576 	__up_write(sem);
1577 }
1578 EXPORT_SYMBOL(up_write);
1579 
1580 /*
1581  * downgrade write lock to read lock
1582  */
1583 void downgrade_write(struct rw_semaphore *sem)
1584 {
1585 	lock_downgrade(&sem->dep_map, _RET_IP_);
1586 	__downgrade_write(sem);
1587 }
1588 EXPORT_SYMBOL(downgrade_write);
1589 
1590 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1591 
1592 void down_read_nested(struct rw_semaphore *sem, int subclass)
1593 {
1594 	might_sleep();
1595 	rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1596 	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1597 }
1598 EXPORT_SYMBOL(down_read_nested);
1599 
1600 int down_read_killable_nested(struct rw_semaphore *sem, int subclass)
1601 {
1602 	might_sleep();
1603 	rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1604 
1605 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1606 		rwsem_release(&sem->dep_map, _RET_IP_);
1607 		return -EINTR;
1608 	}
1609 
1610 	return 0;
1611 }
1612 EXPORT_SYMBOL(down_read_killable_nested);
1613 
1614 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest)
1615 {
1616 	might_sleep();
1617 	rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_);
1618 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1619 }
1620 EXPORT_SYMBOL(_down_write_nest_lock);
1621 
1622 void down_read_non_owner(struct rw_semaphore *sem)
1623 {
1624 	might_sleep();
1625 	__down_read(sem);
1626 	__rwsem_set_reader_owned(sem, NULL);
1627 }
1628 EXPORT_SYMBOL(down_read_non_owner);
1629 
1630 void down_write_nested(struct rw_semaphore *sem, int subclass)
1631 {
1632 	might_sleep();
1633 	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1634 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1635 }
1636 EXPORT_SYMBOL(down_write_nested);
1637 
1638 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass)
1639 {
1640 	might_sleep();
1641 	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1642 
1643 	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1644 				  __down_write_killable)) {
1645 		rwsem_release(&sem->dep_map, _RET_IP_);
1646 		return -EINTR;
1647 	}
1648 
1649 	return 0;
1650 }
1651 EXPORT_SYMBOL(down_write_killable_nested);
1652 
1653 void up_read_non_owner(struct rw_semaphore *sem)
1654 {
1655 	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1656 	__up_read(sem);
1657 }
1658 EXPORT_SYMBOL(up_read_non_owner);
1659 
1660 #endif
1661