1 // SPDX-License-Identifier: GPL-2.0 2 /* kernel/rwsem.c: R/W semaphores, public implementation 3 * 4 * Written by David Howells (dhowells@redhat.com). 5 * Derived from asm-i386/semaphore.h 6 * 7 * Writer lock-stealing by Alex Shi <alex.shi@intel.com> 8 * and Michel Lespinasse <walken@google.com> 9 * 10 * Optimistic spinning by Tim Chen <tim.c.chen@intel.com> 11 * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes. 12 * 13 * Rwsem count bit fields re-definition and rwsem rearchitecture by 14 * Waiman Long <longman@redhat.com> and 15 * Peter Zijlstra <peterz@infradead.org>. 16 */ 17 18 #include <linux/types.h> 19 #include <linux/kernel.h> 20 #include <linux/sched.h> 21 #include <linux/sched/rt.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/debug.h> 24 #include <linux/sched/wake_q.h> 25 #include <linux/sched/signal.h> 26 #include <linux/sched/clock.h> 27 #include <linux/export.h> 28 #include <linux/rwsem.h> 29 #include <linux/atomic.h> 30 31 #include "lock_events.h" 32 33 /* 34 * The least significant 3 bits of the owner value has the following 35 * meanings when set. 36 * - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers 37 * - Bit 1: RWSEM_RD_NONSPINNABLE - Readers cannot spin on this lock. 38 * - Bit 2: RWSEM_WR_NONSPINNABLE - Writers cannot spin on this lock. 39 * 40 * When the rwsem is either owned by an anonymous writer, or it is 41 * reader-owned, but a spinning writer has timed out, both nonspinnable 42 * bits will be set to disable optimistic spinning by readers and writers. 43 * In the later case, the last unlocking reader should then check the 44 * writer nonspinnable bit and clear it only to give writers preference 45 * to acquire the lock via optimistic spinning, but not readers. Similar 46 * action is also done in the reader slowpath. 47 48 * When a writer acquires a rwsem, it puts its task_struct pointer 49 * into the owner field. It is cleared after an unlock. 50 * 51 * When a reader acquires a rwsem, it will also puts its task_struct 52 * pointer into the owner field with the RWSEM_READER_OWNED bit set. 53 * On unlock, the owner field will largely be left untouched. So 54 * for a free or reader-owned rwsem, the owner value may contain 55 * information about the last reader that acquires the rwsem. 56 * 57 * That information may be helpful in debugging cases where the system 58 * seems to hang on a reader owned rwsem especially if only one reader 59 * is involved. Ideally we would like to track all the readers that own 60 * a rwsem, but the overhead is simply too big. 61 * 62 * Reader optimistic spinning is helpful when the reader critical section 63 * is short and there aren't that many readers around. It makes readers 64 * relatively more preferred than writers. When a writer times out spinning 65 * on a reader-owned lock and set the nospinnable bits, there are two main 66 * reasons for that. 67 * 68 * 1) The reader critical section is long, perhaps the task sleeps after 69 * acquiring the read lock. 70 * 2) There are just too many readers contending the lock causing it to 71 * take a while to service all of them. 72 * 73 * In the former case, long reader critical section will impede the progress 74 * of writers which is usually more important for system performance. In 75 * the later case, reader optimistic spinning tends to make the reader 76 * groups that contain readers that acquire the lock together smaller 77 * leading to more of them. That may hurt performance in some cases. In 78 * other words, the setting of nonspinnable bits indicates that reader 79 * optimistic spinning may not be helpful for those workloads that cause 80 * it. 81 * 82 * Therefore, any writers that had observed the setting of the writer 83 * nonspinnable bit for a given rwsem after they fail to acquire the lock 84 * via optimistic spinning will set the reader nonspinnable bit once they 85 * acquire the write lock. Similarly, readers that observe the setting 86 * of reader nonspinnable bit at slowpath entry will set the reader 87 * nonspinnable bits when they acquire the read lock via the wakeup path. 88 * 89 * Once the reader nonspinnable bit is on, it will only be reset when 90 * a writer is able to acquire the rwsem in the fast path or somehow a 91 * reader or writer in the slowpath doesn't observe the nonspinable bit. 92 * 93 * This is to discourage reader optmistic spinning on that particular 94 * rwsem and make writers more preferred. This adaptive disabling of reader 95 * optimistic spinning will alleviate the negative side effect of this 96 * feature. 97 */ 98 #define RWSEM_READER_OWNED (1UL << 0) 99 #define RWSEM_RD_NONSPINNABLE (1UL << 1) 100 #define RWSEM_WR_NONSPINNABLE (1UL << 2) 101 #define RWSEM_NONSPINNABLE (RWSEM_RD_NONSPINNABLE | RWSEM_WR_NONSPINNABLE) 102 #define RWSEM_OWNER_FLAGS_MASK (RWSEM_READER_OWNED | RWSEM_NONSPINNABLE) 103 104 #ifdef CONFIG_DEBUG_RWSEMS 105 # define DEBUG_RWSEMS_WARN_ON(c, sem) do { \ 106 if (!debug_locks_silent && \ 107 WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\ 108 #c, atomic_long_read(&(sem)->count), \ 109 (unsigned long) sem->magic, \ 110 atomic_long_read(&(sem)->owner), (long)current, \ 111 list_empty(&(sem)->wait_list) ? "" : "not ")) \ 112 debug_locks_off(); \ 113 } while (0) 114 #else 115 # define DEBUG_RWSEMS_WARN_ON(c, sem) 116 #endif 117 118 /* 119 * On 64-bit architectures, the bit definitions of the count are: 120 * 121 * Bit 0 - writer locked bit 122 * Bit 1 - waiters present bit 123 * Bit 2 - lock handoff bit 124 * Bits 3-7 - reserved 125 * Bits 8-62 - 55-bit reader count 126 * Bit 63 - read fail bit 127 * 128 * On 32-bit architectures, the bit definitions of the count are: 129 * 130 * Bit 0 - writer locked bit 131 * Bit 1 - waiters present bit 132 * Bit 2 - lock handoff bit 133 * Bits 3-7 - reserved 134 * Bits 8-30 - 23-bit reader count 135 * Bit 31 - read fail bit 136 * 137 * It is not likely that the most significant bit (read fail bit) will ever 138 * be set. This guard bit is still checked anyway in the down_read() fastpath 139 * just in case we need to use up more of the reader bits for other purpose 140 * in the future. 141 * 142 * atomic_long_fetch_add() is used to obtain reader lock, whereas 143 * atomic_long_cmpxchg() will be used to obtain writer lock. 144 * 145 * There are three places where the lock handoff bit may be set or cleared. 146 * 1) rwsem_mark_wake() for readers. 147 * 2) rwsem_try_write_lock() for writers. 148 * 3) Error path of rwsem_down_write_slowpath(). 149 * 150 * For all the above cases, wait_lock will be held. A writer must also 151 * be the first one in the wait_list to be eligible for setting the handoff 152 * bit. So concurrent setting/clearing of handoff bit is not possible. 153 */ 154 #define RWSEM_WRITER_LOCKED (1UL << 0) 155 #define RWSEM_FLAG_WAITERS (1UL << 1) 156 #define RWSEM_FLAG_HANDOFF (1UL << 2) 157 #define RWSEM_FLAG_READFAIL (1UL << (BITS_PER_LONG - 1)) 158 159 #define RWSEM_READER_SHIFT 8 160 #define RWSEM_READER_BIAS (1UL << RWSEM_READER_SHIFT) 161 #define RWSEM_READER_MASK (~(RWSEM_READER_BIAS - 1)) 162 #define RWSEM_WRITER_MASK RWSEM_WRITER_LOCKED 163 #define RWSEM_LOCK_MASK (RWSEM_WRITER_MASK|RWSEM_READER_MASK) 164 #define RWSEM_READ_FAILED_MASK (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\ 165 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL) 166 167 /* 168 * All writes to owner are protected by WRITE_ONCE() to make sure that 169 * store tearing can't happen as optimistic spinners may read and use 170 * the owner value concurrently without lock. Read from owner, however, 171 * may not need READ_ONCE() as long as the pointer value is only used 172 * for comparison and isn't being dereferenced. 173 */ 174 static inline void rwsem_set_owner(struct rw_semaphore *sem) 175 { 176 atomic_long_set(&sem->owner, (long)current); 177 } 178 179 static inline void rwsem_clear_owner(struct rw_semaphore *sem) 180 { 181 atomic_long_set(&sem->owner, 0); 182 } 183 184 /* 185 * Test the flags in the owner field. 186 */ 187 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags) 188 { 189 return atomic_long_read(&sem->owner) & flags; 190 } 191 192 /* 193 * The task_struct pointer of the last owning reader will be left in 194 * the owner field. 195 * 196 * Note that the owner value just indicates the task has owned the rwsem 197 * previously, it may not be the real owner or one of the real owners 198 * anymore when that field is examined, so take it with a grain of salt. 199 * 200 * The reader non-spinnable bit is preserved. 201 */ 202 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem, 203 struct task_struct *owner) 204 { 205 unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED | 206 (atomic_long_read(&sem->owner) & RWSEM_RD_NONSPINNABLE); 207 208 atomic_long_set(&sem->owner, val); 209 } 210 211 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem) 212 { 213 __rwsem_set_reader_owned(sem, current); 214 } 215 216 /* 217 * Return true if the rwsem is owned by a reader. 218 */ 219 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem) 220 { 221 #ifdef CONFIG_DEBUG_RWSEMS 222 /* 223 * Check the count to see if it is write-locked. 224 */ 225 long count = atomic_long_read(&sem->count); 226 227 if (count & RWSEM_WRITER_MASK) 228 return false; 229 #endif 230 return rwsem_test_oflags(sem, RWSEM_READER_OWNED); 231 } 232 233 #ifdef CONFIG_DEBUG_RWSEMS 234 /* 235 * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there 236 * is a task pointer in owner of a reader-owned rwsem, it will be the 237 * real owner or one of the real owners. The only exception is when the 238 * unlock is done by up_read_non_owner(). 239 */ 240 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) 241 { 242 unsigned long val = atomic_long_read(&sem->owner); 243 244 while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) { 245 if (atomic_long_try_cmpxchg(&sem->owner, &val, 246 val & RWSEM_OWNER_FLAGS_MASK)) 247 return; 248 } 249 } 250 #else 251 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) 252 { 253 } 254 #endif 255 256 /* 257 * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag 258 * remains set. Otherwise, the operation will be aborted. 259 */ 260 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem) 261 { 262 unsigned long owner = atomic_long_read(&sem->owner); 263 264 do { 265 if (!(owner & RWSEM_READER_OWNED)) 266 break; 267 if (owner & RWSEM_NONSPINNABLE) 268 break; 269 } while (!atomic_long_try_cmpxchg(&sem->owner, &owner, 270 owner | RWSEM_NONSPINNABLE)); 271 } 272 273 static inline bool rwsem_read_trylock(struct rw_semaphore *sem) 274 { 275 long cnt = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count); 276 if (WARN_ON_ONCE(cnt < 0)) 277 rwsem_set_nonspinnable(sem); 278 return !(cnt & RWSEM_READ_FAILED_MASK); 279 } 280 281 /* 282 * Return just the real task structure pointer of the owner 283 */ 284 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem) 285 { 286 return (struct task_struct *) 287 (atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK); 288 } 289 290 /* 291 * Return the real task structure pointer of the owner and the embedded 292 * flags in the owner. pflags must be non-NULL. 293 */ 294 static inline struct task_struct * 295 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags) 296 { 297 unsigned long owner = atomic_long_read(&sem->owner); 298 299 *pflags = owner & RWSEM_OWNER_FLAGS_MASK; 300 return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK); 301 } 302 303 /* 304 * Guide to the rw_semaphore's count field. 305 * 306 * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned 307 * by a writer. 308 * 309 * The lock is owned by readers when 310 * (1) the RWSEM_WRITER_LOCKED isn't set in count, 311 * (2) some of the reader bits are set in count, and 312 * (3) the owner field has RWSEM_READ_OWNED bit set. 313 * 314 * Having some reader bits set is not enough to guarantee a readers owned 315 * lock as the readers may be in the process of backing out from the count 316 * and a writer has just released the lock. So another writer may steal 317 * the lock immediately after that. 318 */ 319 320 /* 321 * Initialize an rwsem: 322 */ 323 void __init_rwsem(struct rw_semaphore *sem, const char *name, 324 struct lock_class_key *key) 325 { 326 #ifdef CONFIG_DEBUG_LOCK_ALLOC 327 /* 328 * Make sure we are not reinitializing a held semaphore: 329 */ 330 debug_check_no_locks_freed((void *)sem, sizeof(*sem)); 331 lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP); 332 #endif 333 #ifdef CONFIG_DEBUG_RWSEMS 334 sem->magic = sem; 335 #endif 336 atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE); 337 raw_spin_lock_init(&sem->wait_lock); 338 INIT_LIST_HEAD(&sem->wait_list); 339 atomic_long_set(&sem->owner, 0L); 340 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER 341 osq_lock_init(&sem->osq); 342 #endif 343 } 344 EXPORT_SYMBOL(__init_rwsem); 345 346 enum rwsem_waiter_type { 347 RWSEM_WAITING_FOR_WRITE, 348 RWSEM_WAITING_FOR_READ 349 }; 350 351 struct rwsem_waiter { 352 struct list_head list; 353 struct task_struct *task; 354 enum rwsem_waiter_type type; 355 unsigned long timeout; 356 unsigned long last_rowner; 357 }; 358 #define rwsem_first_waiter(sem) \ 359 list_first_entry(&sem->wait_list, struct rwsem_waiter, list) 360 361 enum rwsem_wake_type { 362 RWSEM_WAKE_ANY, /* Wake whatever's at head of wait list */ 363 RWSEM_WAKE_READERS, /* Wake readers only */ 364 RWSEM_WAKE_READ_OWNED /* Waker thread holds the read lock */ 365 }; 366 367 enum writer_wait_state { 368 WRITER_NOT_FIRST, /* Writer is not first in wait list */ 369 WRITER_FIRST, /* Writer is first in wait list */ 370 WRITER_HANDOFF /* Writer is first & handoff needed */ 371 }; 372 373 /* 374 * The typical HZ value is either 250 or 1000. So set the minimum waiting 375 * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait 376 * queue before initiating the handoff protocol. 377 */ 378 #define RWSEM_WAIT_TIMEOUT DIV_ROUND_UP(HZ, 250) 379 380 /* 381 * Magic number to batch-wakeup waiting readers, even when writers are 382 * also present in the queue. This both limits the amount of work the 383 * waking thread must do and also prevents any potential counter overflow, 384 * however unlikely. 385 */ 386 #define MAX_READERS_WAKEUP 0x100 387 388 /* 389 * handle the lock release when processes blocked on it that can now run 390 * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must 391 * have been set. 392 * - there must be someone on the queue 393 * - the wait_lock must be held by the caller 394 * - tasks are marked for wakeup, the caller must later invoke wake_up_q() 395 * to actually wakeup the blocked task(s) and drop the reference count, 396 * preferably when the wait_lock is released 397 * - woken process blocks are discarded from the list after having task zeroed 398 * - writers are only marked woken if downgrading is false 399 */ 400 static void rwsem_mark_wake(struct rw_semaphore *sem, 401 enum rwsem_wake_type wake_type, 402 struct wake_q_head *wake_q) 403 { 404 struct rwsem_waiter *waiter, *tmp; 405 long oldcount, woken = 0, adjustment = 0; 406 struct list_head wlist; 407 408 lockdep_assert_held(&sem->wait_lock); 409 410 /* 411 * Take a peek at the queue head waiter such that we can determine 412 * the wakeup(s) to perform. 413 */ 414 waiter = rwsem_first_waiter(sem); 415 416 if (waiter->type == RWSEM_WAITING_FOR_WRITE) { 417 if (wake_type == RWSEM_WAKE_ANY) { 418 /* 419 * Mark writer at the front of the queue for wakeup. 420 * Until the task is actually later awoken later by 421 * the caller, other writers are able to steal it. 422 * Readers, on the other hand, will block as they 423 * will notice the queued writer. 424 */ 425 wake_q_add(wake_q, waiter->task); 426 lockevent_inc(rwsem_wake_writer); 427 } 428 429 return; 430 } 431 432 /* 433 * No reader wakeup if there are too many of them already. 434 */ 435 if (unlikely(atomic_long_read(&sem->count) < 0)) 436 return; 437 438 /* 439 * Writers might steal the lock before we grant it to the next reader. 440 * We prefer to do the first reader grant before counting readers 441 * so we can bail out early if a writer stole the lock. 442 */ 443 if (wake_type != RWSEM_WAKE_READ_OWNED) { 444 struct task_struct *owner; 445 446 adjustment = RWSEM_READER_BIAS; 447 oldcount = atomic_long_fetch_add(adjustment, &sem->count); 448 if (unlikely(oldcount & RWSEM_WRITER_MASK)) { 449 /* 450 * When we've been waiting "too" long (for writers 451 * to give up the lock), request a HANDOFF to 452 * force the issue. 453 */ 454 if (!(oldcount & RWSEM_FLAG_HANDOFF) && 455 time_after(jiffies, waiter->timeout)) { 456 adjustment -= RWSEM_FLAG_HANDOFF; 457 lockevent_inc(rwsem_rlock_handoff); 458 } 459 460 atomic_long_add(-adjustment, &sem->count); 461 return; 462 } 463 /* 464 * Set it to reader-owned to give spinners an early 465 * indication that readers now have the lock. 466 * The reader nonspinnable bit seen at slowpath entry of 467 * the reader is copied over. 468 */ 469 owner = waiter->task; 470 if (waiter->last_rowner & RWSEM_RD_NONSPINNABLE) { 471 owner = (void *)((unsigned long)owner | RWSEM_RD_NONSPINNABLE); 472 lockevent_inc(rwsem_opt_norspin); 473 } 474 __rwsem_set_reader_owned(sem, owner); 475 } 476 477 /* 478 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the 479 * queue. We know that the woken will be at least 1 as we accounted 480 * for above. Note we increment the 'active part' of the count by the 481 * number of readers before waking any processes up. 482 * 483 * This is an adaptation of the phase-fair R/W locks where at the 484 * reader phase (first waiter is a reader), all readers are eligible 485 * to acquire the lock at the same time irrespective of their order 486 * in the queue. The writers acquire the lock according to their 487 * order in the queue. 488 * 489 * We have to do wakeup in 2 passes to prevent the possibility that 490 * the reader count may be decremented before it is incremented. It 491 * is because the to-be-woken waiter may not have slept yet. So it 492 * may see waiter->task got cleared, finish its critical section and 493 * do an unlock before the reader count increment. 494 * 495 * 1) Collect the read-waiters in a separate list, count them and 496 * fully increment the reader count in rwsem. 497 * 2) For each waiters in the new list, clear waiter->task and 498 * put them into wake_q to be woken up later. 499 */ 500 INIT_LIST_HEAD(&wlist); 501 list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) { 502 if (waiter->type == RWSEM_WAITING_FOR_WRITE) 503 continue; 504 505 woken++; 506 list_move_tail(&waiter->list, &wlist); 507 508 /* 509 * Limit # of readers that can be woken up per wakeup call. 510 */ 511 if (woken >= MAX_READERS_WAKEUP) 512 break; 513 } 514 515 adjustment = woken * RWSEM_READER_BIAS - adjustment; 516 lockevent_cond_inc(rwsem_wake_reader, woken); 517 if (list_empty(&sem->wait_list)) { 518 /* hit end of list above */ 519 adjustment -= RWSEM_FLAG_WAITERS; 520 } 521 522 /* 523 * When we've woken a reader, we no longer need to force writers 524 * to give up the lock and we can clear HANDOFF. 525 */ 526 if (woken && (atomic_long_read(&sem->count) & RWSEM_FLAG_HANDOFF)) 527 adjustment -= RWSEM_FLAG_HANDOFF; 528 529 if (adjustment) 530 atomic_long_add(adjustment, &sem->count); 531 532 /* 2nd pass */ 533 list_for_each_entry_safe(waiter, tmp, &wlist, list) { 534 struct task_struct *tsk; 535 536 tsk = waiter->task; 537 get_task_struct(tsk); 538 539 /* 540 * Ensure calling get_task_struct() before setting the reader 541 * waiter to nil such that rwsem_down_read_slowpath() cannot 542 * race with do_exit() by always holding a reference count 543 * to the task to wakeup. 544 */ 545 smp_store_release(&waiter->task, NULL); 546 /* 547 * Ensure issuing the wakeup (either by us or someone else) 548 * after setting the reader waiter to nil. 549 */ 550 wake_q_add_safe(wake_q, tsk); 551 } 552 } 553 554 /* 555 * This function must be called with the sem->wait_lock held to prevent 556 * race conditions between checking the rwsem wait list and setting the 557 * sem->count accordingly. 558 * 559 * If wstate is WRITER_HANDOFF, it will make sure that either the handoff 560 * bit is set or the lock is acquired with handoff bit cleared. 561 */ 562 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem, 563 enum writer_wait_state wstate) 564 { 565 long count, new; 566 567 lockdep_assert_held(&sem->wait_lock); 568 569 count = atomic_long_read(&sem->count); 570 do { 571 bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF); 572 573 if (has_handoff && wstate == WRITER_NOT_FIRST) 574 return false; 575 576 new = count; 577 578 if (count & RWSEM_LOCK_MASK) { 579 if (has_handoff || (wstate != WRITER_HANDOFF)) 580 return false; 581 582 new |= RWSEM_FLAG_HANDOFF; 583 } else { 584 new |= RWSEM_WRITER_LOCKED; 585 new &= ~RWSEM_FLAG_HANDOFF; 586 587 if (list_is_singular(&sem->wait_list)) 588 new &= ~RWSEM_FLAG_WAITERS; 589 } 590 } while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new)); 591 592 /* 593 * We have either acquired the lock with handoff bit cleared or 594 * set the handoff bit. 595 */ 596 if (new & RWSEM_FLAG_HANDOFF) 597 return false; 598 599 rwsem_set_owner(sem); 600 return true; 601 } 602 603 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER 604 /* 605 * Try to acquire read lock before the reader is put on wait queue. 606 * Lock acquisition isn't allowed if the rwsem is locked or a writer handoff 607 * is ongoing. 608 */ 609 static inline bool rwsem_try_read_lock_unqueued(struct rw_semaphore *sem) 610 { 611 long count = atomic_long_read(&sem->count); 612 613 if (count & (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF)) 614 return false; 615 616 count = atomic_long_fetch_add_acquire(RWSEM_READER_BIAS, &sem->count); 617 if (!(count & (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))) { 618 rwsem_set_reader_owned(sem); 619 lockevent_inc(rwsem_opt_rlock); 620 return true; 621 } 622 623 /* Back out the change */ 624 atomic_long_add(-RWSEM_READER_BIAS, &sem->count); 625 return false; 626 } 627 628 /* 629 * Try to acquire write lock before the writer has been put on wait queue. 630 */ 631 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem) 632 { 633 long count = atomic_long_read(&sem->count); 634 635 while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) { 636 if (atomic_long_try_cmpxchg_acquire(&sem->count, &count, 637 count | RWSEM_WRITER_LOCKED)) { 638 rwsem_set_owner(sem); 639 lockevent_inc(rwsem_opt_wlock); 640 return true; 641 } 642 } 643 return false; 644 } 645 646 static inline bool owner_on_cpu(struct task_struct *owner) 647 { 648 /* 649 * As lock holder preemption issue, we both skip spinning if 650 * task is not on cpu or its cpu is preempted 651 */ 652 return owner->on_cpu && !vcpu_is_preempted(task_cpu(owner)); 653 } 654 655 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem, 656 unsigned long nonspinnable) 657 { 658 struct task_struct *owner; 659 unsigned long flags; 660 bool ret = true; 661 662 if (need_resched()) { 663 lockevent_inc(rwsem_opt_fail); 664 return false; 665 } 666 667 preempt_disable(); 668 rcu_read_lock(); 669 owner = rwsem_owner_flags(sem, &flags); 670 /* 671 * Don't check the read-owner as the entry may be stale. 672 */ 673 if ((flags & nonspinnable) || 674 (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner))) 675 ret = false; 676 rcu_read_unlock(); 677 preempt_enable(); 678 679 lockevent_cond_inc(rwsem_opt_fail, !ret); 680 return ret; 681 } 682 683 /* 684 * The rwsem_spin_on_owner() function returns the folowing 4 values 685 * depending on the lock owner state. 686 * OWNER_NULL : owner is currently NULL 687 * OWNER_WRITER: when owner changes and is a writer 688 * OWNER_READER: when owner changes and the new owner may be a reader. 689 * OWNER_NONSPINNABLE: 690 * when optimistic spinning has to stop because either the 691 * owner stops running, is unknown, or its timeslice has 692 * been used up. 693 */ 694 enum owner_state { 695 OWNER_NULL = 1 << 0, 696 OWNER_WRITER = 1 << 1, 697 OWNER_READER = 1 << 2, 698 OWNER_NONSPINNABLE = 1 << 3, 699 }; 700 #define OWNER_SPINNABLE (OWNER_NULL | OWNER_WRITER | OWNER_READER) 701 702 static inline enum owner_state 703 rwsem_owner_state(struct task_struct *owner, unsigned long flags, unsigned long nonspinnable) 704 { 705 if (flags & nonspinnable) 706 return OWNER_NONSPINNABLE; 707 708 if (flags & RWSEM_READER_OWNED) 709 return OWNER_READER; 710 711 return owner ? OWNER_WRITER : OWNER_NULL; 712 } 713 714 static noinline enum owner_state 715 rwsem_spin_on_owner(struct rw_semaphore *sem, unsigned long nonspinnable) 716 { 717 struct task_struct *new, *owner; 718 unsigned long flags, new_flags; 719 enum owner_state state; 720 721 owner = rwsem_owner_flags(sem, &flags); 722 state = rwsem_owner_state(owner, flags, nonspinnable); 723 if (state != OWNER_WRITER) 724 return state; 725 726 rcu_read_lock(); 727 for (;;) { 728 /* 729 * When a waiting writer set the handoff flag, it may spin 730 * on the owner as well. Once that writer acquires the lock, 731 * we can spin on it. So we don't need to quit even when the 732 * handoff bit is set. 733 */ 734 new = rwsem_owner_flags(sem, &new_flags); 735 if ((new != owner) || (new_flags != flags)) { 736 state = rwsem_owner_state(new, new_flags, nonspinnable); 737 break; 738 } 739 740 /* 741 * Ensure we emit the owner->on_cpu, dereference _after_ 742 * checking sem->owner still matches owner, if that fails, 743 * owner might point to free()d memory, if it still matches, 744 * the rcu_read_lock() ensures the memory stays valid. 745 */ 746 barrier(); 747 748 if (need_resched() || !owner_on_cpu(owner)) { 749 state = OWNER_NONSPINNABLE; 750 break; 751 } 752 753 cpu_relax(); 754 } 755 rcu_read_unlock(); 756 757 return state; 758 } 759 760 /* 761 * Calculate reader-owned rwsem spinning threshold for writer 762 * 763 * The more readers own the rwsem, the longer it will take for them to 764 * wind down and free the rwsem. So the empirical formula used to 765 * determine the actual spinning time limit here is: 766 * 767 * Spinning threshold = (10 + nr_readers/2)us 768 * 769 * The limit is capped to a maximum of 25us (30 readers). This is just 770 * a heuristic and is subjected to change in the future. 771 */ 772 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem) 773 { 774 long count = atomic_long_read(&sem->count); 775 int readers = count >> RWSEM_READER_SHIFT; 776 u64 delta; 777 778 if (readers > 30) 779 readers = 30; 780 delta = (20 + readers) * NSEC_PER_USEC / 2; 781 782 return sched_clock() + delta; 783 } 784 785 static bool rwsem_optimistic_spin(struct rw_semaphore *sem, bool wlock) 786 { 787 bool taken = false; 788 int prev_owner_state = OWNER_NULL; 789 int loop = 0; 790 u64 rspin_threshold = 0; 791 unsigned long nonspinnable = wlock ? RWSEM_WR_NONSPINNABLE 792 : RWSEM_RD_NONSPINNABLE; 793 794 preempt_disable(); 795 796 /* sem->wait_lock should not be held when doing optimistic spinning */ 797 if (!osq_lock(&sem->osq)) 798 goto done; 799 800 /* 801 * Optimistically spin on the owner field and attempt to acquire the 802 * lock whenever the owner changes. Spinning will be stopped when: 803 * 1) the owning writer isn't running; or 804 * 2) readers own the lock and spinning time has exceeded limit. 805 */ 806 for (;;) { 807 enum owner_state owner_state; 808 809 owner_state = rwsem_spin_on_owner(sem, nonspinnable); 810 if (!(owner_state & OWNER_SPINNABLE)) 811 break; 812 813 /* 814 * Try to acquire the lock 815 */ 816 taken = wlock ? rwsem_try_write_lock_unqueued(sem) 817 : rwsem_try_read_lock_unqueued(sem); 818 819 if (taken) 820 break; 821 822 /* 823 * Time-based reader-owned rwsem optimistic spinning 824 */ 825 if (wlock && (owner_state == OWNER_READER)) { 826 /* 827 * Re-initialize rspin_threshold every time when 828 * the owner state changes from non-reader to reader. 829 * This allows a writer to steal the lock in between 830 * 2 reader phases and have the threshold reset at 831 * the beginning of the 2nd reader phase. 832 */ 833 if (prev_owner_state != OWNER_READER) { 834 if (rwsem_test_oflags(sem, nonspinnable)) 835 break; 836 rspin_threshold = rwsem_rspin_threshold(sem); 837 loop = 0; 838 } 839 840 /* 841 * Check time threshold once every 16 iterations to 842 * avoid calling sched_clock() too frequently so 843 * as to reduce the average latency between the times 844 * when the lock becomes free and when the spinner 845 * is ready to do a trylock. 846 */ 847 else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) { 848 rwsem_set_nonspinnable(sem); 849 lockevent_inc(rwsem_opt_nospin); 850 break; 851 } 852 } 853 854 /* 855 * An RT task cannot do optimistic spinning if it cannot 856 * be sure the lock holder is running or live-lock may 857 * happen if the current task and the lock holder happen 858 * to run in the same CPU. However, aborting optimistic 859 * spinning while a NULL owner is detected may miss some 860 * opportunity where spinning can continue without causing 861 * problem. 862 * 863 * There are 2 possible cases where an RT task may be able 864 * to continue spinning. 865 * 866 * 1) The lock owner is in the process of releasing the 867 * lock, sem->owner is cleared but the lock has not 868 * been released yet. 869 * 2) The lock was free and owner cleared, but another 870 * task just comes in and acquire the lock before 871 * we try to get it. The new owner may be a spinnable 872 * writer. 873 * 874 * To take advantage of two scenarios listed agove, the RT 875 * task is made to retry one more time to see if it can 876 * acquire the lock or continue spinning on the new owning 877 * writer. Of course, if the time lag is long enough or the 878 * new owner is not a writer or spinnable, the RT task will 879 * quit spinning. 880 * 881 * If the owner is a writer, the need_resched() check is 882 * done inside rwsem_spin_on_owner(). If the owner is not 883 * a writer, need_resched() check needs to be done here. 884 */ 885 if (owner_state != OWNER_WRITER) { 886 if (need_resched()) 887 break; 888 if (rt_task(current) && 889 (prev_owner_state != OWNER_WRITER)) 890 break; 891 } 892 prev_owner_state = owner_state; 893 894 /* 895 * The cpu_relax() call is a compiler barrier which forces 896 * everything in this loop to be re-loaded. We don't need 897 * memory barriers as we'll eventually observe the right 898 * values at the cost of a few extra spins. 899 */ 900 cpu_relax(); 901 } 902 osq_unlock(&sem->osq); 903 done: 904 preempt_enable(); 905 lockevent_cond_inc(rwsem_opt_fail, !taken); 906 return taken; 907 } 908 909 /* 910 * Clear the owner's RWSEM_WR_NONSPINNABLE bit if it is set. This should 911 * only be called when the reader count reaches 0. 912 * 913 * This give writers better chance to acquire the rwsem first before 914 * readers when the rwsem was being held by readers for a relatively long 915 * period of time. Race can happen that an optimistic spinner may have 916 * just stolen the rwsem and set the owner, but just clearing the 917 * RWSEM_WR_NONSPINNABLE bit will do no harm anyway. 918 */ 919 static inline void clear_wr_nonspinnable(struct rw_semaphore *sem) 920 { 921 if (rwsem_test_oflags(sem, RWSEM_WR_NONSPINNABLE)) 922 atomic_long_andnot(RWSEM_WR_NONSPINNABLE, &sem->owner); 923 } 924 925 /* 926 * This function is called when the reader fails to acquire the lock via 927 * optimistic spinning. In this case we will still attempt to do a trylock 928 * when comparing the rwsem state right now with the state when entering 929 * the slowpath indicates that the reader is still in a valid reader phase. 930 * This happens when the following conditions are true: 931 * 932 * 1) The lock is currently reader owned, and 933 * 2) The lock is previously not reader-owned or the last read owner changes. 934 * 935 * In the former case, we have transitioned from a writer phase to a 936 * reader-phase while spinning. In the latter case, it means the reader 937 * phase hasn't ended when we entered the optimistic spinning loop. In 938 * both cases, the reader is eligible to acquire the lock. This is the 939 * secondary path where a read lock is acquired optimistically. 940 * 941 * The reader non-spinnable bit wasn't set at time of entry or it will 942 * not be here at all. 943 */ 944 static inline bool rwsem_reader_phase_trylock(struct rw_semaphore *sem, 945 unsigned long last_rowner) 946 { 947 unsigned long owner = atomic_long_read(&sem->owner); 948 949 if (!(owner & RWSEM_READER_OWNED)) 950 return false; 951 952 if (((owner ^ last_rowner) & ~RWSEM_OWNER_FLAGS_MASK) && 953 rwsem_try_read_lock_unqueued(sem)) { 954 lockevent_inc(rwsem_opt_rlock2); 955 lockevent_add(rwsem_opt_fail, -1); 956 return true; 957 } 958 return false; 959 } 960 #else 961 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem, 962 unsigned long nonspinnable) 963 { 964 return false; 965 } 966 967 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem, bool wlock) 968 { 969 return false; 970 } 971 972 static inline void clear_wr_nonspinnable(struct rw_semaphore *sem) { } 973 974 static inline bool rwsem_reader_phase_trylock(struct rw_semaphore *sem, 975 unsigned long last_rowner) 976 { 977 return false; 978 } 979 980 static inline int 981 rwsem_spin_on_owner(struct rw_semaphore *sem, unsigned long nonspinnable) 982 { 983 return 0; 984 } 985 #define OWNER_NULL 1 986 #endif 987 988 /* 989 * Wait for the read lock to be granted 990 */ 991 static struct rw_semaphore __sched * 992 rwsem_down_read_slowpath(struct rw_semaphore *sem, int state) 993 { 994 long count, adjustment = -RWSEM_READER_BIAS; 995 struct rwsem_waiter waiter; 996 DEFINE_WAKE_Q(wake_q); 997 bool wake = false; 998 999 /* 1000 * Save the current read-owner of rwsem, if available, and the 1001 * reader nonspinnable bit. 1002 */ 1003 waiter.last_rowner = atomic_long_read(&sem->owner); 1004 if (!(waiter.last_rowner & RWSEM_READER_OWNED)) 1005 waiter.last_rowner &= RWSEM_RD_NONSPINNABLE; 1006 1007 if (!rwsem_can_spin_on_owner(sem, RWSEM_RD_NONSPINNABLE)) 1008 goto queue; 1009 1010 /* 1011 * Undo read bias from down_read() and do optimistic spinning. 1012 */ 1013 atomic_long_add(-RWSEM_READER_BIAS, &sem->count); 1014 adjustment = 0; 1015 if (rwsem_optimistic_spin(sem, false)) { 1016 /* rwsem_optimistic_spin() implies ACQUIRE on success */ 1017 /* 1018 * Wake up other readers in the wait list if the front 1019 * waiter is a reader. 1020 */ 1021 if ((atomic_long_read(&sem->count) & RWSEM_FLAG_WAITERS)) { 1022 raw_spin_lock_irq(&sem->wait_lock); 1023 if (!list_empty(&sem->wait_list)) 1024 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, 1025 &wake_q); 1026 raw_spin_unlock_irq(&sem->wait_lock); 1027 wake_up_q(&wake_q); 1028 } 1029 return sem; 1030 } else if (rwsem_reader_phase_trylock(sem, waiter.last_rowner)) { 1031 /* rwsem_reader_phase_trylock() implies ACQUIRE on success */ 1032 return sem; 1033 } 1034 1035 queue: 1036 waiter.task = current; 1037 waiter.type = RWSEM_WAITING_FOR_READ; 1038 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT; 1039 1040 raw_spin_lock_irq(&sem->wait_lock); 1041 if (list_empty(&sem->wait_list)) { 1042 /* 1043 * In case the wait queue is empty and the lock isn't owned 1044 * by a writer or has the handoff bit set, this reader can 1045 * exit the slowpath and return immediately as its 1046 * RWSEM_READER_BIAS has already been set in the count. 1047 */ 1048 if (adjustment && !(atomic_long_read(&sem->count) & 1049 (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))) { 1050 /* Provide lock ACQUIRE */ 1051 smp_acquire__after_ctrl_dep(); 1052 raw_spin_unlock_irq(&sem->wait_lock); 1053 rwsem_set_reader_owned(sem); 1054 lockevent_inc(rwsem_rlock_fast); 1055 return sem; 1056 } 1057 adjustment += RWSEM_FLAG_WAITERS; 1058 } 1059 list_add_tail(&waiter.list, &sem->wait_list); 1060 1061 /* we're now waiting on the lock, but no longer actively locking */ 1062 if (adjustment) 1063 count = atomic_long_add_return(adjustment, &sem->count); 1064 else 1065 count = atomic_long_read(&sem->count); 1066 1067 /* 1068 * If there are no active locks, wake the front queued process(es). 1069 * 1070 * If there are no writers and we are first in the queue, 1071 * wake our own waiter to join the existing active readers ! 1072 */ 1073 if (!(count & RWSEM_LOCK_MASK)) { 1074 clear_wr_nonspinnable(sem); 1075 wake = true; 1076 } 1077 if (wake || (!(count & RWSEM_WRITER_MASK) && 1078 (adjustment & RWSEM_FLAG_WAITERS))) 1079 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); 1080 1081 raw_spin_unlock_irq(&sem->wait_lock); 1082 wake_up_q(&wake_q); 1083 1084 /* wait to be given the lock */ 1085 for (;;) { 1086 set_current_state(state); 1087 if (!smp_load_acquire(&waiter.task)) { 1088 /* Matches rwsem_mark_wake()'s smp_store_release(). */ 1089 break; 1090 } 1091 if (signal_pending_state(state, current)) { 1092 raw_spin_lock_irq(&sem->wait_lock); 1093 if (waiter.task) 1094 goto out_nolock; 1095 raw_spin_unlock_irq(&sem->wait_lock); 1096 /* Ordered by sem->wait_lock against rwsem_mark_wake(). */ 1097 break; 1098 } 1099 schedule(); 1100 lockevent_inc(rwsem_sleep_reader); 1101 } 1102 1103 __set_current_state(TASK_RUNNING); 1104 lockevent_inc(rwsem_rlock); 1105 return sem; 1106 1107 out_nolock: 1108 list_del(&waiter.list); 1109 if (list_empty(&sem->wait_list)) { 1110 atomic_long_andnot(RWSEM_FLAG_WAITERS|RWSEM_FLAG_HANDOFF, 1111 &sem->count); 1112 } 1113 raw_spin_unlock_irq(&sem->wait_lock); 1114 __set_current_state(TASK_RUNNING); 1115 lockevent_inc(rwsem_rlock_fail); 1116 return ERR_PTR(-EINTR); 1117 } 1118 1119 /* 1120 * This function is called by the a write lock owner. So the owner value 1121 * won't get changed by others. 1122 */ 1123 static inline void rwsem_disable_reader_optspin(struct rw_semaphore *sem, 1124 bool disable) 1125 { 1126 if (unlikely(disable)) { 1127 atomic_long_or(RWSEM_RD_NONSPINNABLE, &sem->owner); 1128 lockevent_inc(rwsem_opt_norspin); 1129 } 1130 } 1131 1132 /* 1133 * Wait until we successfully acquire the write lock 1134 */ 1135 static struct rw_semaphore * 1136 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state) 1137 { 1138 long count; 1139 bool disable_rspin; 1140 enum writer_wait_state wstate; 1141 struct rwsem_waiter waiter; 1142 struct rw_semaphore *ret = sem; 1143 DEFINE_WAKE_Q(wake_q); 1144 1145 /* do optimistic spinning and steal lock if possible */ 1146 if (rwsem_can_spin_on_owner(sem, RWSEM_WR_NONSPINNABLE) && 1147 rwsem_optimistic_spin(sem, true)) { 1148 /* rwsem_optimistic_spin() implies ACQUIRE on success */ 1149 return sem; 1150 } 1151 1152 /* 1153 * Disable reader optimistic spinning for this rwsem after 1154 * acquiring the write lock when the setting of the nonspinnable 1155 * bits are observed. 1156 */ 1157 disable_rspin = atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE; 1158 1159 /* 1160 * Optimistic spinning failed, proceed to the slowpath 1161 * and block until we can acquire the sem. 1162 */ 1163 waiter.task = current; 1164 waiter.type = RWSEM_WAITING_FOR_WRITE; 1165 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT; 1166 1167 raw_spin_lock_irq(&sem->wait_lock); 1168 1169 /* account for this before adding a new element to the list */ 1170 wstate = list_empty(&sem->wait_list) ? WRITER_FIRST : WRITER_NOT_FIRST; 1171 1172 list_add_tail(&waiter.list, &sem->wait_list); 1173 1174 /* we're now waiting on the lock */ 1175 if (wstate == WRITER_NOT_FIRST) { 1176 count = atomic_long_read(&sem->count); 1177 1178 /* 1179 * If there were already threads queued before us and: 1180 * 1) there are no no active locks, wake the front 1181 * queued process(es) as the handoff bit might be set. 1182 * 2) there are no active writers and some readers, the lock 1183 * must be read owned; so we try to wake any read lock 1184 * waiters that were queued ahead of us. 1185 */ 1186 if (count & RWSEM_WRITER_MASK) 1187 goto wait; 1188 1189 rwsem_mark_wake(sem, (count & RWSEM_READER_MASK) 1190 ? RWSEM_WAKE_READERS 1191 : RWSEM_WAKE_ANY, &wake_q); 1192 1193 if (!wake_q_empty(&wake_q)) { 1194 /* 1195 * We want to minimize wait_lock hold time especially 1196 * when a large number of readers are to be woken up. 1197 */ 1198 raw_spin_unlock_irq(&sem->wait_lock); 1199 wake_up_q(&wake_q); 1200 wake_q_init(&wake_q); /* Used again, reinit */ 1201 raw_spin_lock_irq(&sem->wait_lock); 1202 } 1203 } else { 1204 atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count); 1205 } 1206 1207 wait: 1208 /* wait until we successfully acquire the lock */ 1209 set_current_state(state); 1210 for (;;) { 1211 if (rwsem_try_write_lock(sem, wstate)) { 1212 /* rwsem_try_write_lock() implies ACQUIRE on success */ 1213 break; 1214 } 1215 1216 raw_spin_unlock_irq(&sem->wait_lock); 1217 1218 /* 1219 * After setting the handoff bit and failing to acquire 1220 * the lock, attempt to spin on owner to accelerate lock 1221 * transfer. If the previous owner is a on-cpu writer and it 1222 * has just released the lock, OWNER_NULL will be returned. 1223 * In this case, we attempt to acquire the lock again 1224 * without sleeping. 1225 */ 1226 if (wstate == WRITER_HANDOFF && 1227 rwsem_spin_on_owner(sem, RWSEM_NONSPINNABLE) == OWNER_NULL) 1228 goto trylock_again; 1229 1230 /* Block until there are no active lockers. */ 1231 for (;;) { 1232 if (signal_pending_state(state, current)) 1233 goto out_nolock; 1234 1235 schedule(); 1236 lockevent_inc(rwsem_sleep_writer); 1237 set_current_state(state); 1238 /* 1239 * If HANDOFF bit is set, unconditionally do 1240 * a trylock. 1241 */ 1242 if (wstate == WRITER_HANDOFF) 1243 break; 1244 1245 if ((wstate == WRITER_NOT_FIRST) && 1246 (rwsem_first_waiter(sem) == &waiter)) 1247 wstate = WRITER_FIRST; 1248 1249 count = atomic_long_read(&sem->count); 1250 if (!(count & RWSEM_LOCK_MASK)) 1251 break; 1252 1253 /* 1254 * The setting of the handoff bit is deferred 1255 * until rwsem_try_write_lock() is called. 1256 */ 1257 if ((wstate == WRITER_FIRST) && (rt_task(current) || 1258 time_after(jiffies, waiter.timeout))) { 1259 wstate = WRITER_HANDOFF; 1260 lockevent_inc(rwsem_wlock_handoff); 1261 break; 1262 } 1263 } 1264 trylock_again: 1265 raw_spin_lock_irq(&sem->wait_lock); 1266 } 1267 __set_current_state(TASK_RUNNING); 1268 list_del(&waiter.list); 1269 rwsem_disable_reader_optspin(sem, disable_rspin); 1270 raw_spin_unlock_irq(&sem->wait_lock); 1271 lockevent_inc(rwsem_wlock); 1272 1273 return ret; 1274 1275 out_nolock: 1276 __set_current_state(TASK_RUNNING); 1277 raw_spin_lock_irq(&sem->wait_lock); 1278 list_del(&waiter.list); 1279 1280 if (unlikely(wstate == WRITER_HANDOFF)) 1281 atomic_long_add(-RWSEM_FLAG_HANDOFF, &sem->count); 1282 1283 if (list_empty(&sem->wait_list)) 1284 atomic_long_andnot(RWSEM_FLAG_WAITERS, &sem->count); 1285 else 1286 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); 1287 raw_spin_unlock_irq(&sem->wait_lock); 1288 wake_up_q(&wake_q); 1289 lockevent_inc(rwsem_wlock_fail); 1290 1291 return ERR_PTR(-EINTR); 1292 } 1293 1294 /* 1295 * handle waking up a waiter on the semaphore 1296 * - up_read/up_write has decremented the active part of count if we come here 1297 */ 1298 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem, long count) 1299 { 1300 unsigned long flags; 1301 DEFINE_WAKE_Q(wake_q); 1302 1303 raw_spin_lock_irqsave(&sem->wait_lock, flags); 1304 1305 if (!list_empty(&sem->wait_list)) 1306 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); 1307 1308 raw_spin_unlock_irqrestore(&sem->wait_lock, flags); 1309 wake_up_q(&wake_q); 1310 1311 return sem; 1312 } 1313 1314 /* 1315 * downgrade a write lock into a read lock 1316 * - caller incremented waiting part of count and discovered it still negative 1317 * - just wake up any readers at the front of the queue 1318 */ 1319 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem) 1320 { 1321 unsigned long flags; 1322 DEFINE_WAKE_Q(wake_q); 1323 1324 raw_spin_lock_irqsave(&sem->wait_lock, flags); 1325 1326 if (!list_empty(&sem->wait_list)) 1327 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q); 1328 1329 raw_spin_unlock_irqrestore(&sem->wait_lock, flags); 1330 wake_up_q(&wake_q); 1331 1332 return sem; 1333 } 1334 1335 /* 1336 * lock for reading 1337 */ 1338 static inline void __down_read(struct rw_semaphore *sem) 1339 { 1340 if (!rwsem_read_trylock(sem)) { 1341 rwsem_down_read_slowpath(sem, TASK_UNINTERRUPTIBLE); 1342 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1343 } else { 1344 rwsem_set_reader_owned(sem); 1345 } 1346 } 1347 1348 static inline int __down_read_killable(struct rw_semaphore *sem) 1349 { 1350 if (!rwsem_read_trylock(sem)) { 1351 if (IS_ERR(rwsem_down_read_slowpath(sem, TASK_KILLABLE))) 1352 return -EINTR; 1353 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1354 } else { 1355 rwsem_set_reader_owned(sem); 1356 } 1357 return 0; 1358 } 1359 1360 static inline int __down_read_trylock(struct rw_semaphore *sem) 1361 { 1362 long tmp; 1363 1364 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1365 1366 /* 1367 * Optimize for the case when the rwsem is not locked at all. 1368 */ 1369 tmp = RWSEM_UNLOCKED_VALUE; 1370 do { 1371 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, 1372 tmp + RWSEM_READER_BIAS)) { 1373 rwsem_set_reader_owned(sem); 1374 return 1; 1375 } 1376 } while (!(tmp & RWSEM_READ_FAILED_MASK)); 1377 return 0; 1378 } 1379 1380 /* 1381 * lock for writing 1382 */ 1383 static inline void __down_write(struct rw_semaphore *sem) 1384 { 1385 long tmp = RWSEM_UNLOCKED_VALUE; 1386 1387 if (unlikely(!atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, 1388 RWSEM_WRITER_LOCKED))) 1389 rwsem_down_write_slowpath(sem, TASK_UNINTERRUPTIBLE); 1390 else 1391 rwsem_set_owner(sem); 1392 } 1393 1394 static inline int __down_write_killable(struct rw_semaphore *sem) 1395 { 1396 long tmp = RWSEM_UNLOCKED_VALUE; 1397 1398 if (unlikely(!atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, 1399 RWSEM_WRITER_LOCKED))) { 1400 if (IS_ERR(rwsem_down_write_slowpath(sem, TASK_KILLABLE))) 1401 return -EINTR; 1402 } else { 1403 rwsem_set_owner(sem); 1404 } 1405 return 0; 1406 } 1407 1408 static inline int __down_write_trylock(struct rw_semaphore *sem) 1409 { 1410 long tmp; 1411 1412 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1413 1414 tmp = RWSEM_UNLOCKED_VALUE; 1415 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, 1416 RWSEM_WRITER_LOCKED)) { 1417 rwsem_set_owner(sem); 1418 return true; 1419 } 1420 return false; 1421 } 1422 1423 /* 1424 * unlock after reading 1425 */ 1426 static inline void __up_read(struct rw_semaphore *sem) 1427 { 1428 long tmp; 1429 1430 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1431 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1432 1433 rwsem_clear_reader_owned(sem); 1434 tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count); 1435 DEBUG_RWSEMS_WARN_ON(tmp < 0, sem); 1436 if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) == 1437 RWSEM_FLAG_WAITERS)) { 1438 clear_wr_nonspinnable(sem); 1439 rwsem_wake(sem, tmp); 1440 } 1441 } 1442 1443 /* 1444 * unlock after writing 1445 */ 1446 static inline void __up_write(struct rw_semaphore *sem) 1447 { 1448 long tmp; 1449 1450 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1451 /* 1452 * sem->owner may differ from current if the ownership is transferred 1453 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits. 1454 */ 1455 DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) && 1456 !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem); 1457 1458 rwsem_clear_owner(sem); 1459 tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count); 1460 if (unlikely(tmp & RWSEM_FLAG_WAITERS)) 1461 rwsem_wake(sem, tmp); 1462 } 1463 1464 /* 1465 * downgrade write lock to read lock 1466 */ 1467 static inline void __downgrade_write(struct rw_semaphore *sem) 1468 { 1469 long tmp; 1470 1471 /* 1472 * When downgrading from exclusive to shared ownership, 1473 * anything inside the write-locked region cannot leak 1474 * into the read side. In contrast, anything in the 1475 * read-locked region is ok to be re-ordered into the 1476 * write side. As such, rely on RELEASE semantics. 1477 */ 1478 DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem); 1479 tmp = atomic_long_fetch_add_release( 1480 -RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count); 1481 rwsem_set_reader_owned(sem); 1482 if (tmp & RWSEM_FLAG_WAITERS) 1483 rwsem_downgrade_wake(sem); 1484 } 1485 1486 /* 1487 * lock for reading 1488 */ 1489 void __sched down_read(struct rw_semaphore *sem) 1490 { 1491 might_sleep(); 1492 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1493 1494 LOCK_CONTENDED(sem, __down_read_trylock, __down_read); 1495 } 1496 EXPORT_SYMBOL(down_read); 1497 1498 int __sched down_read_killable(struct rw_semaphore *sem) 1499 { 1500 might_sleep(); 1501 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1502 1503 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) { 1504 rwsem_release(&sem->dep_map, _RET_IP_); 1505 return -EINTR; 1506 } 1507 1508 return 0; 1509 } 1510 EXPORT_SYMBOL(down_read_killable); 1511 1512 /* 1513 * trylock for reading -- returns 1 if successful, 0 if contention 1514 */ 1515 int down_read_trylock(struct rw_semaphore *sem) 1516 { 1517 int ret = __down_read_trylock(sem); 1518 1519 if (ret == 1) 1520 rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_); 1521 return ret; 1522 } 1523 EXPORT_SYMBOL(down_read_trylock); 1524 1525 /* 1526 * lock for writing 1527 */ 1528 void __sched down_write(struct rw_semaphore *sem) 1529 { 1530 might_sleep(); 1531 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); 1532 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1533 } 1534 EXPORT_SYMBOL(down_write); 1535 1536 /* 1537 * lock for writing 1538 */ 1539 int __sched down_write_killable(struct rw_semaphore *sem) 1540 { 1541 might_sleep(); 1542 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); 1543 1544 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, 1545 __down_write_killable)) { 1546 rwsem_release(&sem->dep_map, _RET_IP_); 1547 return -EINTR; 1548 } 1549 1550 return 0; 1551 } 1552 EXPORT_SYMBOL(down_write_killable); 1553 1554 /* 1555 * trylock for writing -- returns 1 if successful, 0 if contention 1556 */ 1557 int down_write_trylock(struct rw_semaphore *sem) 1558 { 1559 int ret = __down_write_trylock(sem); 1560 1561 if (ret == 1) 1562 rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_); 1563 1564 return ret; 1565 } 1566 EXPORT_SYMBOL(down_write_trylock); 1567 1568 /* 1569 * release a read lock 1570 */ 1571 void up_read(struct rw_semaphore *sem) 1572 { 1573 rwsem_release(&sem->dep_map, _RET_IP_); 1574 __up_read(sem); 1575 } 1576 EXPORT_SYMBOL(up_read); 1577 1578 /* 1579 * release a write lock 1580 */ 1581 void up_write(struct rw_semaphore *sem) 1582 { 1583 rwsem_release(&sem->dep_map, _RET_IP_); 1584 __up_write(sem); 1585 } 1586 EXPORT_SYMBOL(up_write); 1587 1588 /* 1589 * downgrade write lock to read lock 1590 */ 1591 void downgrade_write(struct rw_semaphore *sem) 1592 { 1593 lock_downgrade(&sem->dep_map, _RET_IP_); 1594 __downgrade_write(sem); 1595 } 1596 EXPORT_SYMBOL(downgrade_write); 1597 1598 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1599 1600 void down_read_nested(struct rw_semaphore *sem, int subclass) 1601 { 1602 might_sleep(); 1603 rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_); 1604 LOCK_CONTENDED(sem, __down_read_trylock, __down_read); 1605 } 1606 EXPORT_SYMBOL(down_read_nested); 1607 1608 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest) 1609 { 1610 might_sleep(); 1611 rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_); 1612 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1613 } 1614 EXPORT_SYMBOL(_down_write_nest_lock); 1615 1616 void down_read_non_owner(struct rw_semaphore *sem) 1617 { 1618 might_sleep(); 1619 __down_read(sem); 1620 __rwsem_set_reader_owned(sem, NULL); 1621 } 1622 EXPORT_SYMBOL(down_read_non_owner); 1623 1624 void down_write_nested(struct rw_semaphore *sem, int subclass) 1625 { 1626 might_sleep(); 1627 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); 1628 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1629 } 1630 EXPORT_SYMBOL(down_write_nested); 1631 1632 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass) 1633 { 1634 might_sleep(); 1635 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); 1636 1637 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, 1638 __down_write_killable)) { 1639 rwsem_release(&sem->dep_map, _RET_IP_); 1640 return -EINTR; 1641 } 1642 1643 return 0; 1644 } 1645 EXPORT_SYMBOL(down_write_killable_nested); 1646 1647 void up_read_non_owner(struct rw_semaphore *sem) 1648 { 1649 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1650 __up_read(sem); 1651 } 1652 EXPORT_SYMBOL(up_read_non_owner); 1653 1654 #endif 1655