xref: /openbmc/linux/kernel/locking/rwsem.c (revision 36a7b63f069630e854beb305e99c151cddd3b8e5)
1 // SPDX-License-Identifier: GPL-2.0
2 /* kernel/rwsem.c: R/W semaphores, public implementation
3  *
4  * Written by David Howells (dhowells@redhat.com).
5  * Derived from asm-i386/semaphore.h
6  *
7  * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
8  * and Michel Lespinasse <walken@google.com>
9  *
10  * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
11  * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
12  *
13  * Rwsem count bit fields re-definition and rwsem rearchitecture by
14  * Waiman Long <longman@redhat.com> and
15  * Peter Zijlstra <peterz@infradead.org>.
16  */
17 
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/sched.h>
21 #include <linux/sched/rt.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/clock.h>
27 #include <linux/export.h>
28 #include <linux/rwsem.h>
29 #include <linux/atomic.h>
30 #include <trace/events/lock.h>
31 
32 #ifndef CONFIG_PREEMPT_RT
33 #include "lock_events.h"
34 
35 /*
36  * The least significant 2 bits of the owner value has the following
37  * meanings when set.
38  *  - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers
39  *  - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock
40  *
41  * When the rwsem is reader-owned and a spinning writer has timed out,
42  * the nonspinnable bit will be set to disable optimistic spinning.
43 
44  * When a writer acquires a rwsem, it puts its task_struct pointer
45  * into the owner field. It is cleared after an unlock.
46  *
47  * When a reader acquires a rwsem, it will also puts its task_struct
48  * pointer into the owner field with the RWSEM_READER_OWNED bit set.
49  * On unlock, the owner field will largely be left untouched. So
50  * for a free or reader-owned rwsem, the owner value may contain
51  * information about the last reader that acquires the rwsem.
52  *
53  * That information may be helpful in debugging cases where the system
54  * seems to hang on a reader owned rwsem especially if only one reader
55  * is involved. Ideally we would like to track all the readers that own
56  * a rwsem, but the overhead is simply too big.
57  *
58  * A fast path reader optimistic lock stealing is supported when the rwsem
59  * is previously owned by a writer and the following conditions are met:
60  *  - rwsem is not currently writer owned
61  *  - the handoff isn't set.
62  */
63 #define RWSEM_READER_OWNED	(1UL << 0)
64 #define RWSEM_NONSPINNABLE	(1UL << 1)
65 #define RWSEM_OWNER_FLAGS_MASK	(RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
66 
67 #ifdef CONFIG_DEBUG_RWSEMS
68 # define DEBUG_RWSEMS_WARN_ON(c, sem)	do {			\
69 	if (!debug_locks_silent &&				\
70 	    WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
71 		#c, atomic_long_read(&(sem)->count),		\
72 		(unsigned long) sem->magic,			\
73 		atomic_long_read(&(sem)->owner), (long)current,	\
74 		list_empty(&(sem)->wait_list) ? "" : "not "))	\
75 			debug_locks_off();			\
76 	} while (0)
77 #else
78 # define DEBUG_RWSEMS_WARN_ON(c, sem)
79 #endif
80 
81 /*
82  * On 64-bit architectures, the bit definitions of the count are:
83  *
84  * Bit  0    - writer locked bit
85  * Bit  1    - waiters present bit
86  * Bit  2    - lock handoff bit
87  * Bits 3-7  - reserved
88  * Bits 8-62 - 55-bit reader count
89  * Bit  63   - read fail bit
90  *
91  * On 32-bit architectures, the bit definitions of the count are:
92  *
93  * Bit  0    - writer locked bit
94  * Bit  1    - waiters present bit
95  * Bit  2    - lock handoff bit
96  * Bits 3-7  - reserved
97  * Bits 8-30 - 23-bit reader count
98  * Bit  31   - read fail bit
99  *
100  * It is not likely that the most significant bit (read fail bit) will ever
101  * be set. This guard bit is still checked anyway in the down_read() fastpath
102  * just in case we need to use up more of the reader bits for other purpose
103  * in the future.
104  *
105  * atomic_long_fetch_add() is used to obtain reader lock, whereas
106  * atomic_long_cmpxchg() will be used to obtain writer lock.
107  *
108  * There are three places where the lock handoff bit may be set or cleared.
109  * 1) rwsem_mark_wake() for readers		-- set, clear
110  * 2) rwsem_try_write_lock() for writers	-- set, clear
111  * 3) rwsem_del_waiter()			-- clear
112  *
113  * For all the above cases, wait_lock will be held. A writer must also
114  * be the first one in the wait_list to be eligible for setting the handoff
115  * bit. So concurrent setting/clearing of handoff bit is not possible.
116  */
117 #define RWSEM_WRITER_LOCKED	(1UL << 0)
118 #define RWSEM_FLAG_WAITERS	(1UL << 1)
119 #define RWSEM_FLAG_HANDOFF	(1UL << 2)
120 #define RWSEM_FLAG_READFAIL	(1UL << (BITS_PER_LONG - 1))
121 
122 #define RWSEM_READER_SHIFT	8
123 #define RWSEM_READER_BIAS	(1UL << RWSEM_READER_SHIFT)
124 #define RWSEM_READER_MASK	(~(RWSEM_READER_BIAS - 1))
125 #define RWSEM_WRITER_MASK	RWSEM_WRITER_LOCKED
126 #define RWSEM_LOCK_MASK		(RWSEM_WRITER_MASK|RWSEM_READER_MASK)
127 #define RWSEM_READ_FAILED_MASK	(RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
128 				 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
129 
130 /*
131  * All writes to owner are protected by WRITE_ONCE() to make sure that
132  * store tearing can't happen as optimistic spinners may read and use
133  * the owner value concurrently without lock. Read from owner, however,
134  * may not need READ_ONCE() as long as the pointer value is only used
135  * for comparison and isn't being dereferenced.
136  */
137 static inline void rwsem_set_owner(struct rw_semaphore *sem)
138 {
139 	atomic_long_set(&sem->owner, (long)current);
140 }
141 
142 static inline void rwsem_clear_owner(struct rw_semaphore *sem)
143 {
144 	atomic_long_set(&sem->owner, 0);
145 }
146 
147 /*
148  * Test the flags in the owner field.
149  */
150 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags)
151 {
152 	return atomic_long_read(&sem->owner) & flags;
153 }
154 
155 /*
156  * The task_struct pointer of the last owning reader will be left in
157  * the owner field.
158  *
159  * Note that the owner value just indicates the task has owned the rwsem
160  * previously, it may not be the real owner or one of the real owners
161  * anymore when that field is examined, so take it with a grain of salt.
162  *
163  * The reader non-spinnable bit is preserved.
164  */
165 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
166 					    struct task_struct *owner)
167 {
168 	unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED |
169 		(atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE);
170 
171 	atomic_long_set(&sem->owner, val);
172 }
173 
174 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem)
175 {
176 	__rwsem_set_reader_owned(sem, current);
177 }
178 
179 /*
180  * Return true if the rwsem is owned by a reader.
181  */
182 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
183 {
184 #ifdef CONFIG_DEBUG_RWSEMS
185 	/*
186 	 * Check the count to see if it is write-locked.
187 	 */
188 	long count = atomic_long_read(&sem->count);
189 
190 	if (count & RWSEM_WRITER_MASK)
191 		return false;
192 #endif
193 	return rwsem_test_oflags(sem, RWSEM_READER_OWNED);
194 }
195 
196 #ifdef CONFIG_DEBUG_RWSEMS
197 /*
198  * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there
199  * is a task pointer in owner of a reader-owned rwsem, it will be the
200  * real owner or one of the real owners. The only exception is when the
201  * unlock is done by up_read_non_owner().
202  */
203 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
204 {
205 	unsigned long val = atomic_long_read(&sem->owner);
206 
207 	while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) {
208 		if (atomic_long_try_cmpxchg(&sem->owner, &val,
209 					    val & RWSEM_OWNER_FLAGS_MASK))
210 			return;
211 	}
212 }
213 #else
214 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
215 {
216 }
217 #endif
218 
219 /*
220  * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
221  * remains set. Otherwise, the operation will be aborted.
222  */
223 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem)
224 {
225 	unsigned long owner = atomic_long_read(&sem->owner);
226 
227 	do {
228 		if (!(owner & RWSEM_READER_OWNED))
229 			break;
230 		if (owner & RWSEM_NONSPINNABLE)
231 			break;
232 	} while (!atomic_long_try_cmpxchg(&sem->owner, &owner,
233 					  owner | RWSEM_NONSPINNABLE));
234 }
235 
236 static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp)
237 {
238 	*cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count);
239 
240 	if (WARN_ON_ONCE(*cntp < 0))
241 		rwsem_set_nonspinnable(sem);
242 
243 	if (!(*cntp & RWSEM_READ_FAILED_MASK)) {
244 		rwsem_set_reader_owned(sem);
245 		return true;
246 	}
247 
248 	return false;
249 }
250 
251 static inline bool rwsem_write_trylock(struct rw_semaphore *sem)
252 {
253 	long tmp = RWSEM_UNLOCKED_VALUE;
254 
255 	if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) {
256 		rwsem_set_owner(sem);
257 		return true;
258 	}
259 
260 	return false;
261 }
262 
263 /*
264  * Return just the real task structure pointer of the owner
265  */
266 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem)
267 {
268 	return (struct task_struct *)
269 		(atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK);
270 }
271 
272 /*
273  * Return the real task structure pointer of the owner and the embedded
274  * flags in the owner. pflags must be non-NULL.
275  */
276 static inline struct task_struct *
277 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags)
278 {
279 	unsigned long owner = atomic_long_read(&sem->owner);
280 
281 	*pflags = owner & RWSEM_OWNER_FLAGS_MASK;
282 	return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK);
283 }
284 
285 /*
286  * Guide to the rw_semaphore's count field.
287  *
288  * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
289  * by a writer.
290  *
291  * The lock is owned by readers when
292  * (1) the RWSEM_WRITER_LOCKED isn't set in count,
293  * (2) some of the reader bits are set in count, and
294  * (3) the owner field has RWSEM_READ_OWNED bit set.
295  *
296  * Having some reader bits set is not enough to guarantee a readers owned
297  * lock as the readers may be in the process of backing out from the count
298  * and a writer has just released the lock. So another writer may steal
299  * the lock immediately after that.
300  */
301 
302 /*
303  * Initialize an rwsem:
304  */
305 void __init_rwsem(struct rw_semaphore *sem, const char *name,
306 		  struct lock_class_key *key)
307 {
308 #ifdef CONFIG_DEBUG_LOCK_ALLOC
309 	/*
310 	 * Make sure we are not reinitializing a held semaphore:
311 	 */
312 	debug_check_no_locks_freed((void *)sem, sizeof(*sem));
313 	lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
314 #endif
315 #ifdef CONFIG_DEBUG_RWSEMS
316 	sem->magic = sem;
317 #endif
318 	atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
319 	raw_spin_lock_init(&sem->wait_lock);
320 	INIT_LIST_HEAD(&sem->wait_list);
321 	atomic_long_set(&sem->owner, 0L);
322 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
323 	osq_lock_init(&sem->osq);
324 #endif
325 }
326 EXPORT_SYMBOL(__init_rwsem);
327 
328 enum rwsem_waiter_type {
329 	RWSEM_WAITING_FOR_WRITE,
330 	RWSEM_WAITING_FOR_READ
331 };
332 
333 struct rwsem_waiter {
334 	struct list_head list;
335 	struct task_struct *task;
336 	enum rwsem_waiter_type type;
337 	unsigned long timeout;
338 
339 	/* Writer only, not initialized in reader */
340 	bool handoff_set;
341 };
342 #define rwsem_first_waiter(sem) \
343 	list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
344 
345 enum rwsem_wake_type {
346 	RWSEM_WAKE_ANY,		/* Wake whatever's at head of wait list */
347 	RWSEM_WAKE_READERS,	/* Wake readers only */
348 	RWSEM_WAKE_READ_OWNED	/* Waker thread holds the read lock */
349 };
350 
351 /*
352  * The typical HZ value is either 250 or 1000. So set the minimum waiting
353  * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
354  * queue before initiating the handoff protocol.
355  */
356 #define RWSEM_WAIT_TIMEOUT	DIV_ROUND_UP(HZ, 250)
357 
358 /*
359  * Magic number to batch-wakeup waiting readers, even when writers are
360  * also present in the queue. This both limits the amount of work the
361  * waking thread must do and also prevents any potential counter overflow,
362  * however unlikely.
363  */
364 #define MAX_READERS_WAKEUP	0x100
365 
366 static inline void
367 rwsem_add_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
368 {
369 	lockdep_assert_held(&sem->wait_lock);
370 	list_add_tail(&waiter->list, &sem->wait_list);
371 	/* caller will set RWSEM_FLAG_WAITERS */
372 }
373 
374 /*
375  * Remove a waiter from the wait_list and clear flags.
376  *
377  * Both rwsem_mark_wake() and rwsem_try_write_lock() contain a full 'copy' of
378  * this function. Modify with care.
379  *
380  * Return: true if wait_list isn't empty and false otherwise
381  */
382 static inline bool
383 rwsem_del_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
384 {
385 	lockdep_assert_held(&sem->wait_lock);
386 	list_del(&waiter->list);
387 	if (likely(!list_empty(&sem->wait_list)))
388 		return true;
389 
390 	atomic_long_andnot(RWSEM_FLAG_HANDOFF | RWSEM_FLAG_WAITERS, &sem->count);
391 	return false;
392 }
393 
394 /*
395  * handle the lock release when processes blocked on it that can now run
396  * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
397  *   have been set.
398  * - there must be someone on the queue
399  * - the wait_lock must be held by the caller
400  * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
401  *   to actually wakeup the blocked task(s) and drop the reference count,
402  *   preferably when the wait_lock is released
403  * - woken process blocks are discarded from the list after having task zeroed
404  * - writers are only marked woken if downgrading is false
405  *
406  * Implies rwsem_del_waiter() for all woken readers.
407  */
408 static void rwsem_mark_wake(struct rw_semaphore *sem,
409 			    enum rwsem_wake_type wake_type,
410 			    struct wake_q_head *wake_q)
411 {
412 	struct rwsem_waiter *waiter, *tmp;
413 	long oldcount, woken = 0, adjustment = 0;
414 	struct list_head wlist;
415 
416 	lockdep_assert_held(&sem->wait_lock);
417 
418 	/*
419 	 * Take a peek at the queue head waiter such that we can determine
420 	 * the wakeup(s) to perform.
421 	 */
422 	waiter = rwsem_first_waiter(sem);
423 
424 	if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
425 		if (wake_type == RWSEM_WAKE_ANY) {
426 			/*
427 			 * Mark writer at the front of the queue for wakeup.
428 			 * Until the task is actually later awoken later by
429 			 * the caller, other writers are able to steal it.
430 			 * Readers, on the other hand, will block as they
431 			 * will notice the queued writer.
432 			 */
433 			wake_q_add(wake_q, waiter->task);
434 			lockevent_inc(rwsem_wake_writer);
435 		}
436 
437 		return;
438 	}
439 
440 	/*
441 	 * No reader wakeup if there are too many of them already.
442 	 */
443 	if (unlikely(atomic_long_read(&sem->count) < 0))
444 		return;
445 
446 	/*
447 	 * Writers might steal the lock before we grant it to the next reader.
448 	 * We prefer to do the first reader grant before counting readers
449 	 * so we can bail out early if a writer stole the lock.
450 	 */
451 	if (wake_type != RWSEM_WAKE_READ_OWNED) {
452 		struct task_struct *owner;
453 
454 		adjustment = RWSEM_READER_BIAS;
455 		oldcount = atomic_long_fetch_add(adjustment, &sem->count);
456 		if (unlikely(oldcount & RWSEM_WRITER_MASK)) {
457 			/*
458 			 * When we've been waiting "too" long (for writers
459 			 * to give up the lock), request a HANDOFF to
460 			 * force the issue.
461 			 */
462 			if (!(oldcount & RWSEM_FLAG_HANDOFF) &&
463 			    time_after(jiffies, waiter->timeout)) {
464 				adjustment -= RWSEM_FLAG_HANDOFF;
465 				lockevent_inc(rwsem_rlock_handoff);
466 			}
467 
468 			atomic_long_add(-adjustment, &sem->count);
469 			return;
470 		}
471 		/*
472 		 * Set it to reader-owned to give spinners an early
473 		 * indication that readers now have the lock.
474 		 * The reader nonspinnable bit seen at slowpath entry of
475 		 * the reader is copied over.
476 		 */
477 		owner = waiter->task;
478 		__rwsem_set_reader_owned(sem, owner);
479 	}
480 
481 	/*
482 	 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
483 	 * queue. We know that the woken will be at least 1 as we accounted
484 	 * for above. Note we increment the 'active part' of the count by the
485 	 * number of readers before waking any processes up.
486 	 *
487 	 * This is an adaptation of the phase-fair R/W locks where at the
488 	 * reader phase (first waiter is a reader), all readers are eligible
489 	 * to acquire the lock at the same time irrespective of their order
490 	 * in the queue. The writers acquire the lock according to their
491 	 * order in the queue.
492 	 *
493 	 * We have to do wakeup in 2 passes to prevent the possibility that
494 	 * the reader count may be decremented before it is incremented. It
495 	 * is because the to-be-woken waiter may not have slept yet. So it
496 	 * may see waiter->task got cleared, finish its critical section and
497 	 * do an unlock before the reader count increment.
498 	 *
499 	 * 1) Collect the read-waiters in a separate list, count them and
500 	 *    fully increment the reader count in rwsem.
501 	 * 2) For each waiters in the new list, clear waiter->task and
502 	 *    put them into wake_q to be woken up later.
503 	 */
504 	INIT_LIST_HEAD(&wlist);
505 	list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
506 		if (waiter->type == RWSEM_WAITING_FOR_WRITE)
507 			continue;
508 
509 		woken++;
510 		list_move_tail(&waiter->list, &wlist);
511 
512 		/*
513 		 * Limit # of readers that can be woken up per wakeup call.
514 		 */
515 		if (unlikely(woken >= MAX_READERS_WAKEUP))
516 			break;
517 	}
518 
519 	adjustment = woken * RWSEM_READER_BIAS - adjustment;
520 	lockevent_cond_inc(rwsem_wake_reader, woken);
521 
522 	oldcount = atomic_long_read(&sem->count);
523 	if (list_empty(&sem->wait_list)) {
524 		/*
525 		 * Combined with list_move_tail() above, this implies
526 		 * rwsem_del_waiter().
527 		 */
528 		adjustment -= RWSEM_FLAG_WAITERS;
529 		if (oldcount & RWSEM_FLAG_HANDOFF)
530 			adjustment -= RWSEM_FLAG_HANDOFF;
531 	} else if (woken) {
532 		/*
533 		 * When we've woken a reader, we no longer need to force
534 		 * writers to give up the lock and we can clear HANDOFF.
535 		 */
536 		if (oldcount & RWSEM_FLAG_HANDOFF)
537 			adjustment -= RWSEM_FLAG_HANDOFF;
538 	}
539 
540 	if (adjustment)
541 		atomic_long_add(adjustment, &sem->count);
542 
543 	/* 2nd pass */
544 	list_for_each_entry_safe(waiter, tmp, &wlist, list) {
545 		struct task_struct *tsk;
546 
547 		tsk = waiter->task;
548 		get_task_struct(tsk);
549 
550 		/*
551 		 * Ensure calling get_task_struct() before setting the reader
552 		 * waiter to nil such that rwsem_down_read_slowpath() cannot
553 		 * race with do_exit() by always holding a reference count
554 		 * to the task to wakeup.
555 		 */
556 		smp_store_release(&waiter->task, NULL);
557 		/*
558 		 * Ensure issuing the wakeup (either by us or someone else)
559 		 * after setting the reader waiter to nil.
560 		 */
561 		wake_q_add_safe(wake_q, tsk);
562 	}
563 }
564 
565 /*
566  * Remove a waiter and try to wake up other waiters in the wait queue
567  * This function is called from the out_nolock path of both the reader and
568  * writer slowpaths with wait_lock held. It releases the wait_lock and
569  * optionally wake up waiters before it returns.
570  */
571 static inline void
572 rwsem_del_wake_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter,
573 		      struct wake_q_head *wake_q)
574 		      __releases(&sem->wait_lock)
575 {
576 	bool first = rwsem_first_waiter(sem) == waiter;
577 
578 	wake_q_init(wake_q);
579 
580 	/*
581 	 * If the wait_list isn't empty and the waiter to be deleted is
582 	 * the first waiter, we wake up the remaining waiters as they may
583 	 * be eligible to acquire or spin on the lock.
584 	 */
585 	if (rwsem_del_waiter(sem, waiter) && first)
586 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, wake_q);
587 	raw_spin_unlock_irq(&sem->wait_lock);
588 	if (!wake_q_empty(wake_q))
589 		wake_up_q(wake_q);
590 }
591 
592 /*
593  * This function must be called with the sem->wait_lock held to prevent
594  * race conditions between checking the rwsem wait list and setting the
595  * sem->count accordingly.
596  *
597  * Implies rwsem_del_waiter() on success.
598  */
599 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
600 					struct rwsem_waiter *waiter)
601 {
602 	bool first = rwsem_first_waiter(sem) == waiter;
603 	long count, new;
604 
605 	lockdep_assert_held(&sem->wait_lock);
606 
607 	count = atomic_long_read(&sem->count);
608 	do {
609 		bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF);
610 
611 		if (has_handoff) {
612 			if (!first)
613 				return false;
614 
615 			/* First waiter inherits a previously set handoff bit */
616 			waiter->handoff_set = true;
617 		}
618 
619 		new = count;
620 
621 		if (count & RWSEM_LOCK_MASK) {
622 			if (has_handoff || (!rt_task(waiter->task) &&
623 					    !time_after(jiffies, waiter->timeout)))
624 				return false;
625 
626 			new |= RWSEM_FLAG_HANDOFF;
627 		} else {
628 			new |= RWSEM_WRITER_LOCKED;
629 			new &= ~RWSEM_FLAG_HANDOFF;
630 
631 			if (list_is_singular(&sem->wait_list))
632 				new &= ~RWSEM_FLAG_WAITERS;
633 		}
634 	} while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new));
635 
636 	/*
637 	 * We have either acquired the lock with handoff bit cleared or
638 	 * set the handoff bit.
639 	 */
640 	if (new & RWSEM_FLAG_HANDOFF) {
641 		waiter->handoff_set = true;
642 		lockevent_inc(rwsem_wlock_handoff);
643 		return false;
644 	}
645 
646 	/*
647 	 * Have rwsem_try_write_lock() fully imply rwsem_del_waiter() on
648 	 * success.
649 	 */
650 	list_del(&waiter->list);
651 	rwsem_set_owner(sem);
652 	return true;
653 }
654 
655 /*
656  * The rwsem_spin_on_owner() function returns the following 4 values
657  * depending on the lock owner state.
658  *   OWNER_NULL  : owner is currently NULL
659  *   OWNER_WRITER: when owner changes and is a writer
660  *   OWNER_READER: when owner changes and the new owner may be a reader.
661  *   OWNER_NONSPINNABLE:
662  *		   when optimistic spinning has to stop because either the
663  *		   owner stops running, is unknown, or its timeslice has
664  *		   been used up.
665  */
666 enum owner_state {
667 	OWNER_NULL		= 1 << 0,
668 	OWNER_WRITER		= 1 << 1,
669 	OWNER_READER		= 1 << 2,
670 	OWNER_NONSPINNABLE	= 1 << 3,
671 };
672 
673 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
674 /*
675  * Try to acquire write lock before the writer has been put on wait queue.
676  */
677 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
678 {
679 	long count = atomic_long_read(&sem->count);
680 
681 	while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) {
682 		if (atomic_long_try_cmpxchg_acquire(&sem->count, &count,
683 					count | RWSEM_WRITER_LOCKED)) {
684 			rwsem_set_owner(sem);
685 			lockevent_inc(rwsem_opt_lock);
686 			return true;
687 		}
688 	}
689 	return false;
690 }
691 
692 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
693 {
694 	struct task_struct *owner;
695 	unsigned long flags;
696 	bool ret = true;
697 
698 	if (need_resched()) {
699 		lockevent_inc(rwsem_opt_fail);
700 		return false;
701 	}
702 
703 	preempt_disable();
704 	/*
705 	 * Disable preemption is equal to the RCU read-side crital section,
706 	 * thus the task_strcut structure won't go away.
707 	 */
708 	owner = rwsem_owner_flags(sem, &flags);
709 	/*
710 	 * Don't check the read-owner as the entry may be stale.
711 	 */
712 	if ((flags & RWSEM_NONSPINNABLE) ||
713 	    (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner)))
714 		ret = false;
715 	preempt_enable();
716 
717 	lockevent_cond_inc(rwsem_opt_fail, !ret);
718 	return ret;
719 }
720 
721 #define OWNER_SPINNABLE		(OWNER_NULL | OWNER_WRITER | OWNER_READER)
722 
723 static inline enum owner_state
724 rwsem_owner_state(struct task_struct *owner, unsigned long flags)
725 {
726 	if (flags & RWSEM_NONSPINNABLE)
727 		return OWNER_NONSPINNABLE;
728 
729 	if (flags & RWSEM_READER_OWNED)
730 		return OWNER_READER;
731 
732 	return owner ? OWNER_WRITER : OWNER_NULL;
733 }
734 
735 static noinline enum owner_state
736 rwsem_spin_on_owner(struct rw_semaphore *sem)
737 {
738 	struct task_struct *new, *owner;
739 	unsigned long flags, new_flags;
740 	enum owner_state state;
741 
742 	lockdep_assert_preemption_disabled();
743 
744 	owner = rwsem_owner_flags(sem, &flags);
745 	state = rwsem_owner_state(owner, flags);
746 	if (state != OWNER_WRITER)
747 		return state;
748 
749 	for (;;) {
750 		/*
751 		 * When a waiting writer set the handoff flag, it may spin
752 		 * on the owner as well. Once that writer acquires the lock,
753 		 * we can spin on it. So we don't need to quit even when the
754 		 * handoff bit is set.
755 		 */
756 		new = rwsem_owner_flags(sem, &new_flags);
757 		if ((new != owner) || (new_flags != flags)) {
758 			state = rwsem_owner_state(new, new_flags);
759 			break;
760 		}
761 
762 		/*
763 		 * Ensure we emit the owner->on_cpu, dereference _after_
764 		 * checking sem->owner still matches owner, if that fails,
765 		 * owner might point to free()d memory, if it still matches,
766 		 * our spinning context already disabled preemption which is
767 		 * equal to RCU read-side crital section ensures the memory
768 		 * stays valid.
769 		 */
770 		barrier();
771 
772 		if (need_resched() || !owner_on_cpu(owner)) {
773 			state = OWNER_NONSPINNABLE;
774 			break;
775 		}
776 
777 		cpu_relax();
778 	}
779 
780 	return state;
781 }
782 
783 /*
784  * Calculate reader-owned rwsem spinning threshold for writer
785  *
786  * The more readers own the rwsem, the longer it will take for them to
787  * wind down and free the rwsem. So the empirical formula used to
788  * determine the actual spinning time limit here is:
789  *
790  *   Spinning threshold = (10 + nr_readers/2)us
791  *
792  * The limit is capped to a maximum of 25us (30 readers). This is just
793  * a heuristic and is subjected to change in the future.
794  */
795 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem)
796 {
797 	long count = atomic_long_read(&sem->count);
798 	int readers = count >> RWSEM_READER_SHIFT;
799 	u64 delta;
800 
801 	if (readers > 30)
802 		readers = 30;
803 	delta = (20 + readers) * NSEC_PER_USEC / 2;
804 
805 	return sched_clock() + delta;
806 }
807 
808 static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
809 {
810 	bool taken = false;
811 	int prev_owner_state = OWNER_NULL;
812 	int loop = 0;
813 	u64 rspin_threshold = 0;
814 
815 	preempt_disable();
816 
817 	/* sem->wait_lock should not be held when doing optimistic spinning */
818 	if (!osq_lock(&sem->osq))
819 		goto done;
820 
821 	/*
822 	 * Optimistically spin on the owner field and attempt to acquire the
823 	 * lock whenever the owner changes. Spinning will be stopped when:
824 	 *  1) the owning writer isn't running; or
825 	 *  2) readers own the lock and spinning time has exceeded limit.
826 	 */
827 	for (;;) {
828 		enum owner_state owner_state;
829 
830 		owner_state = rwsem_spin_on_owner(sem);
831 		if (!(owner_state & OWNER_SPINNABLE))
832 			break;
833 
834 		/*
835 		 * Try to acquire the lock
836 		 */
837 		taken = rwsem_try_write_lock_unqueued(sem);
838 
839 		if (taken)
840 			break;
841 
842 		/*
843 		 * Time-based reader-owned rwsem optimistic spinning
844 		 */
845 		if (owner_state == OWNER_READER) {
846 			/*
847 			 * Re-initialize rspin_threshold every time when
848 			 * the owner state changes from non-reader to reader.
849 			 * This allows a writer to steal the lock in between
850 			 * 2 reader phases and have the threshold reset at
851 			 * the beginning of the 2nd reader phase.
852 			 */
853 			if (prev_owner_state != OWNER_READER) {
854 				if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
855 					break;
856 				rspin_threshold = rwsem_rspin_threshold(sem);
857 				loop = 0;
858 			}
859 
860 			/*
861 			 * Check time threshold once every 16 iterations to
862 			 * avoid calling sched_clock() too frequently so
863 			 * as to reduce the average latency between the times
864 			 * when the lock becomes free and when the spinner
865 			 * is ready to do a trylock.
866 			 */
867 			else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) {
868 				rwsem_set_nonspinnable(sem);
869 				lockevent_inc(rwsem_opt_nospin);
870 				break;
871 			}
872 		}
873 
874 		/*
875 		 * An RT task cannot do optimistic spinning if it cannot
876 		 * be sure the lock holder is running or live-lock may
877 		 * happen if the current task and the lock holder happen
878 		 * to run in the same CPU. However, aborting optimistic
879 		 * spinning while a NULL owner is detected may miss some
880 		 * opportunity where spinning can continue without causing
881 		 * problem.
882 		 *
883 		 * There are 2 possible cases where an RT task may be able
884 		 * to continue spinning.
885 		 *
886 		 * 1) The lock owner is in the process of releasing the
887 		 *    lock, sem->owner is cleared but the lock has not
888 		 *    been released yet.
889 		 * 2) The lock was free and owner cleared, but another
890 		 *    task just comes in and acquire the lock before
891 		 *    we try to get it. The new owner may be a spinnable
892 		 *    writer.
893 		 *
894 		 * To take advantage of two scenarios listed above, the RT
895 		 * task is made to retry one more time to see if it can
896 		 * acquire the lock or continue spinning on the new owning
897 		 * writer. Of course, if the time lag is long enough or the
898 		 * new owner is not a writer or spinnable, the RT task will
899 		 * quit spinning.
900 		 *
901 		 * If the owner is a writer, the need_resched() check is
902 		 * done inside rwsem_spin_on_owner(). If the owner is not
903 		 * a writer, need_resched() check needs to be done here.
904 		 */
905 		if (owner_state != OWNER_WRITER) {
906 			if (need_resched())
907 				break;
908 			if (rt_task(current) &&
909 			   (prev_owner_state != OWNER_WRITER))
910 				break;
911 		}
912 		prev_owner_state = owner_state;
913 
914 		/*
915 		 * The cpu_relax() call is a compiler barrier which forces
916 		 * everything in this loop to be re-loaded. We don't need
917 		 * memory barriers as we'll eventually observe the right
918 		 * values at the cost of a few extra spins.
919 		 */
920 		cpu_relax();
921 	}
922 	osq_unlock(&sem->osq);
923 done:
924 	preempt_enable();
925 	lockevent_cond_inc(rwsem_opt_fail, !taken);
926 	return taken;
927 }
928 
929 /*
930  * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should
931  * only be called when the reader count reaches 0.
932  */
933 static inline void clear_nonspinnable(struct rw_semaphore *sem)
934 {
935 	if (unlikely(rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)))
936 		atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner);
937 }
938 
939 #else
940 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
941 {
942 	return false;
943 }
944 
945 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem)
946 {
947 	return false;
948 }
949 
950 static inline void clear_nonspinnable(struct rw_semaphore *sem) { }
951 
952 static inline enum owner_state
953 rwsem_spin_on_owner(struct rw_semaphore *sem)
954 {
955 	return OWNER_NONSPINNABLE;
956 }
957 #endif
958 
959 /*
960  * Prepare to wake up waiter(s) in the wait queue by putting them into the
961  * given wake_q if the rwsem lock owner isn't a writer. If rwsem is likely
962  * reader-owned, wake up read lock waiters in queue front or wake up any
963  * front waiter otherwise.
964 
965  * This is being called from both reader and writer slow paths.
966  */
967 static inline void rwsem_cond_wake_waiter(struct rw_semaphore *sem, long count,
968 					  struct wake_q_head *wake_q)
969 {
970 	enum rwsem_wake_type wake_type;
971 
972 	if (count & RWSEM_WRITER_MASK)
973 		return;
974 
975 	if (count & RWSEM_READER_MASK) {
976 		wake_type = RWSEM_WAKE_READERS;
977 	} else {
978 		wake_type = RWSEM_WAKE_ANY;
979 		clear_nonspinnable(sem);
980 	}
981 	rwsem_mark_wake(sem, wake_type, wake_q);
982 }
983 
984 /*
985  * Wait for the read lock to be granted
986  */
987 static struct rw_semaphore __sched *
988 rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state)
989 {
990 	long adjustment = -RWSEM_READER_BIAS;
991 	long rcnt = (count >> RWSEM_READER_SHIFT);
992 	struct rwsem_waiter waiter;
993 	DEFINE_WAKE_Q(wake_q);
994 
995 	/*
996 	 * To prevent a constant stream of readers from starving a sleeping
997 	 * waiter, don't attempt optimistic lock stealing if the lock is
998 	 * currently owned by readers.
999 	 */
1000 	if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) &&
1001 	    (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED))
1002 		goto queue;
1003 
1004 	/*
1005 	 * Reader optimistic lock stealing.
1006 	 */
1007 	if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) {
1008 		rwsem_set_reader_owned(sem);
1009 		lockevent_inc(rwsem_rlock_steal);
1010 
1011 		/*
1012 		 * Wake up other readers in the wait queue if it is
1013 		 * the first reader.
1014 		 */
1015 		if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) {
1016 			raw_spin_lock_irq(&sem->wait_lock);
1017 			if (!list_empty(&sem->wait_list))
1018 				rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED,
1019 						&wake_q);
1020 			raw_spin_unlock_irq(&sem->wait_lock);
1021 			wake_up_q(&wake_q);
1022 		}
1023 		return sem;
1024 	}
1025 
1026 queue:
1027 	waiter.task = current;
1028 	waiter.type = RWSEM_WAITING_FOR_READ;
1029 	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1030 
1031 	raw_spin_lock_irq(&sem->wait_lock);
1032 	if (list_empty(&sem->wait_list)) {
1033 		/*
1034 		 * In case the wait queue is empty and the lock isn't owned
1035 		 * by a writer, this reader can exit the slowpath and return
1036 		 * immediately as its RWSEM_READER_BIAS has already been set
1037 		 * in the count.
1038 		 */
1039 		if (!(atomic_long_read(&sem->count) & RWSEM_WRITER_MASK)) {
1040 			/* Provide lock ACQUIRE */
1041 			smp_acquire__after_ctrl_dep();
1042 			raw_spin_unlock_irq(&sem->wait_lock);
1043 			rwsem_set_reader_owned(sem);
1044 			lockevent_inc(rwsem_rlock_fast);
1045 			return sem;
1046 		}
1047 		adjustment += RWSEM_FLAG_WAITERS;
1048 	}
1049 	rwsem_add_waiter(sem, &waiter);
1050 
1051 	/* we're now waiting on the lock, but no longer actively locking */
1052 	count = atomic_long_add_return(adjustment, &sem->count);
1053 
1054 	rwsem_cond_wake_waiter(sem, count, &wake_q);
1055 	raw_spin_unlock_irq(&sem->wait_lock);
1056 
1057 	if (!wake_q_empty(&wake_q))
1058 		wake_up_q(&wake_q);
1059 
1060 	trace_contention_begin(sem, LCB_F_READ);
1061 
1062 	/* wait to be given the lock */
1063 	for (;;) {
1064 		set_current_state(state);
1065 		if (!smp_load_acquire(&waiter.task)) {
1066 			/* Matches rwsem_mark_wake()'s smp_store_release(). */
1067 			break;
1068 		}
1069 		if (signal_pending_state(state, current)) {
1070 			raw_spin_lock_irq(&sem->wait_lock);
1071 			if (waiter.task)
1072 				goto out_nolock;
1073 			raw_spin_unlock_irq(&sem->wait_lock);
1074 			/* Ordered by sem->wait_lock against rwsem_mark_wake(). */
1075 			break;
1076 		}
1077 		schedule();
1078 		lockevent_inc(rwsem_sleep_reader);
1079 	}
1080 
1081 	__set_current_state(TASK_RUNNING);
1082 	lockevent_inc(rwsem_rlock);
1083 	trace_contention_end(sem, 0);
1084 	return sem;
1085 
1086 out_nolock:
1087 	rwsem_del_wake_waiter(sem, &waiter, &wake_q);
1088 	__set_current_state(TASK_RUNNING);
1089 	lockevent_inc(rwsem_rlock_fail);
1090 	trace_contention_end(sem, -EINTR);
1091 	return ERR_PTR(-EINTR);
1092 }
1093 
1094 /*
1095  * Wait until we successfully acquire the write lock
1096  */
1097 static struct rw_semaphore __sched *
1098 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state)
1099 {
1100 	struct rwsem_waiter waiter;
1101 	DEFINE_WAKE_Q(wake_q);
1102 
1103 	/* do optimistic spinning and steal lock if possible */
1104 	if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) {
1105 		/* rwsem_optimistic_spin() implies ACQUIRE on success */
1106 		return sem;
1107 	}
1108 
1109 	/*
1110 	 * Optimistic spinning failed, proceed to the slowpath
1111 	 * and block until we can acquire the sem.
1112 	 */
1113 	waiter.task = current;
1114 	waiter.type = RWSEM_WAITING_FOR_WRITE;
1115 	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1116 	waiter.handoff_set = false;
1117 
1118 	raw_spin_lock_irq(&sem->wait_lock);
1119 	rwsem_add_waiter(sem, &waiter);
1120 
1121 	/* we're now waiting on the lock */
1122 	if (rwsem_first_waiter(sem) != &waiter) {
1123 		rwsem_cond_wake_waiter(sem, atomic_long_read(&sem->count),
1124 				       &wake_q);
1125 		if (!wake_q_empty(&wake_q)) {
1126 			/*
1127 			 * We want to minimize wait_lock hold time especially
1128 			 * when a large number of readers are to be woken up.
1129 			 */
1130 			raw_spin_unlock_irq(&sem->wait_lock);
1131 			wake_up_q(&wake_q);
1132 			raw_spin_lock_irq(&sem->wait_lock);
1133 		}
1134 	} else {
1135 		atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count);
1136 	}
1137 
1138 	/* wait until we successfully acquire the lock */
1139 	set_current_state(state);
1140 	trace_contention_begin(sem, LCB_F_WRITE);
1141 
1142 	for (;;) {
1143 		if (rwsem_try_write_lock(sem, &waiter)) {
1144 			/* rwsem_try_write_lock() implies ACQUIRE on success */
1145 			break;
1146 		}
1147 
1148 		raw_spin_unlock_irq(&sem->wait_lock);
1149 
1150 		if (signal_pending_state(state, current))
1151 			goto out_nolock;
1152 
1153 		/*
1154 		 * After setting the handoff bit and failing to acquire
1155 		 * the lock, attempt to spin on owner to accelerate lock
1156 		 * transfer. If the previous owner is a on-cpu writer and it
1157 		 * has just released the lock, OWNER_NULL will be returned.
1158 		 * In this case, we attempt to acquire the lock again
1159 		 * without sleeping.
1160 		 */
1161 		if (waiter.handoff_set) {
1162 			enum owner_state owner_state;
1163 
1164 			preempt_disable();
1165 			owner_state = rwsem_spin_on_owner(sem);
1166 			preempt_enable();
1167 
1168 			if (owner_state == OWNER_NULL)
1169 				goto trylock_again;
1170 		}
1171 
1172 		schedule();
1173 		lockevent_inc(rwsem_sleep_writer);
1174 		set_current_state(state);
1175 trylock_again:
1176 		raw_spin_lock_irq(&sem->wait_lock);
1177 	}
1178 	__set_current_state(TASK_RUNNING);
1179 	raw_spin_unlock_irq(&sem->wait_lock);
1180 	lockevent_inc(rwsem_wlock);
1181 	trace_contention_end(sem, 0);
1182 	return sem;
1183 
1184 out_nolock:
1185 	__set_current_state(TASK_RUNNING);
1186 	raw_spin_lock_irq(&sem->wait_lock);
1187 	rwsem_del_wake_waiter(sem, &waiter, &wake_q);
1188 	lockevent_inc(rwsem_wlock_fail);
1189 	trace_contention_end(sem, -EINTR);
1190 	return ERR_PTR(-EINTR);
1191 }
1192 
1193 /*
1194  * handle waking up a waiter on the semaphore
1195  * - up_read/up_write has decremented the active part of count if we come here
1196  */
1197 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem)
1198 {
1199 	unsigned long flags;
1200 	DEFINE_WAKE_Q(wake_q);
1201 
1202 	raw_spin_lock_irqsave(&sem->wait_lock, flags);
1203 
1204 	if (!list_empty(&sem->wait_list))
1205 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1206 
1207 	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1208 	wake_up_q(&wake_q);
1209 
1210 	return sem;
1211 }
1212 
1213 /*
1214  * downgrade a write lock into a read lock
1215  * - caller incremented waiting part of count and discovered it still negative
1216  * - just wake up any readers at the front of the queue
1217  */
1218 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
1219 {
1220 	unsigned long flags;
1221 	DEFINE_WAKE_Q(wake_q);
1222 
1223 	raw_spin_lock_irqsave(&sem->wait_lock, flags);
1224 
1225 	if (!list_empty(&sem->wait_list))
1226 		rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
1227 
1228 	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1229 	wake_up_q(&wake_q);
1230 
1231 	return sem;
1232 }
1233 
1234 /*
1235  * lock for reading
1236  */
1237 static inline int __down_read_common(struct rw_semaphore *sem, int state)
1238 {
1239 	long count;
1240 
1241 	if (!rwsem_read_trylock(sem, &count)) {
1242 		if (IS_ERR(rwsem_down_read_slowpath(sem, count, state)))
1243 			return -EINTR;
1244 		DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1245 	}
1246 	return 0;
1247 }
1248 
1249 static inline void __down_read(struct rw_semaphore *sem)
1250 {
1251 	__down_read_common(sem, TASK_UNINTERRUPTIBLE);
1252 }
1253 
1254 static inline int __down_read_interruptible(struct rw_semaphore *sem)
1255 {
1256 	return __down_read_common(sem, TASK_INTERRUPTIBLE);
1257 }
1258 
1259 static inline int __down_read_killable(struct rw_semaphore *sem)
1260 {
1261 	return __down_read_common(sem, TASK_KILLABLE);
1262 }
1263 
1264 static inline int __down_read_trylock(struct rw_semaphore *sem)
1265 {
1266 	long tmp;
1267 
1268 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1269 
1270 	tmp = atomic_long_read(&sem->count);
1271 	while (!(tmp & RWSEM_READ_FAILED_MASK)) {
1272 		if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1273 						    tmp + RWSEM_READER_BIAS)) {
1274 			rwsem_set_reader_owned(sem);
1275 			return 1;
1276 		}
1277 	}
1278 	return 0;
1279 }
1280 
1281 /*
1282  * lock for writing
1283  */
1284 static inline int __down_write_common(struct rw_semaphore *sem, int state)
1285 {
1286 	if (unlikely(!rwsem_write_trylock(sem))) {
1287 		if (IS_ERR(rwsem_down_write_slowpath(sem, state)))
1288 			return -EINTR;
1289 	}
1290 
1291 	return 0;
1292 }
1293 
1294 static inline void __down_write(struct rw_semaphore *sem)
1295 {
1296 	__down_write_common(sem, TASK_UNINTERRUPTIBLE);
1297 }
1298 
1299 static inline int __down_write_killable(struct rw_semaphore *sem)
1300 {
1301 	return __down_write_common(sem, TASK_KILLABLE);
1302 }
1303 
1304 static inline int __down_write_trylock(struct rw_semaphore *sem)
1305 {
1306 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1307 	return rwsem_write_trylock(sem);
1308 }
1309 
1310 /*
1311  * unlock after reading
1312  */
1313 static inline void __up_read(struct rw_semaphore *sem)
1314 {
1315 	long tmp;
1316 
1317 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1318 	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1319 
1320 	rwsem_clear_reader_owned(sem);
1321 	tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count);
1322 	DEBUG_RWSEMS_WARN_ON(tmp < 0, sem);
1323 	if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) ==
1324 		      RWSEM_FLAG_WAITERS)) {
1325 		clear_nonspinnable(sem);
1326 		rwsem_wake(sem);
1327 	}
1328 }
1329 
1330 /*
1331  * unlock after writing
1332  */
1333 static inline void __up_write(struct rw_semaphore *sem)
1334 {
1335 	long tmp;
1336 
1337 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1338 	/*
1339 	 * sem->owner may differ from current if the ownership is transferred
1340 	 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
1341 	 */
1342 	DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) &&
1343 			    !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem);
1344 
1345 	rwsem_clear_owner(sem);
1346 	tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count);
1347 	if (unlikely(tmp & RWSEM_FLAG_WAITERS))
1348 		rwsem_wake(sem);
1349 }
1350 
1351 /*
1352  * downgrade write lock to read lock
1353  */
1354 static inline void __downgrade_write(struct rw_semaphore *sem)
1355 {
1356 	long tmp;
1357 
1358 	/*
1359 	 * When downgrading from exclusive to shared ownership,
1360 	 * anything inside the write-locked region cannot leak
1361 	 * into the read side. In contrast, anything in the
1362 	 * read-locked region is ok to be re-ordered into the
1363 	 * write side. As such, rely on RELEASE semantics.
1364 	 */
1365 	DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem);
1366 	tmp = atomic_long_fetch_add_release(
1367 		-RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count);
1368 	rwsem_set_reader_owned(sem);
1369 	if (tmp & RWSEM_FLAG_WAITERS)
1370 		rwsem_downgrade_wake(sem);
1371 }
1372 
1373 #else /* !CONFIG_PREEMPT_RT */
1374 
1375 #define RT_MUTEX_BUILD_MUTEX
1376 #include "rtmutex.c"
1377 
1378 #define rwbase_set_and_save_current_state(state)	\
1379 	set_current_state(state)
1380 
1381 #define rwbase_restore_current_state()			\
1382 	__set_current_state(TASK_RUNNING)
1383 
1384 #define rwbase_rtmutex_lock_state(rtm, state)		\
1385 	__rt_mutex_lock(rtm, state)
1386 
1387 #define rwbase_rtmutex_slowlock_locked(rtm, state)	\
1388 	__rt_mutex_slowlock_locked(rtm, NULL, state)
1389 
1390 #define rwbase_rtmutex_unlock(rtm)			\
1391 	__rt_mutex_unlock(rtm)
1392 
1393 #define rwbase_rtmutex_trylock(rtm)			\
1394 	__rt_mutex_trylock(rtm)
1395 
1396 #define rwbase_signal_pending_state(state, current)	\
1397 	signal_pending_state(state, current)
1398 
1399 #define rwbase_schedule()				\
1400 	schedule()
1401 
1402 #include "rwbase_rt.c"
1403 
1404 void __init_rwsem(struct rw_semaphore *sem, const char *name,
1405 		  struct lock_class_key *key)
1406 {
1407 	init_rwbase_rt(&(sem)->rwbase);
1408 
1409 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1410 	debug_check_no_locks_freed((void *)sem, sizeof(*sem));
1411 	lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
1412 #endif
1413 }
1414 EXPORT_SYMBOL(__init_rwsem);
1415 
1416 static inline void __down_read(struct rw_semaphore *sem)
1417 {
1418 	rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1419 }
1420 
1421 static inline int __down_read_interruptible(struct rw_semaphore *sem)
1422 {
1423 	return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE);
1424 }
1425 
1426 static inline int __down_read_killable(struct rw_semaphore *sem)
1427 {
1428 	return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE);
1429 }
1430 
1431 static inline int __down_read_trylock(struct rw_semaphore *sem)
1432 {
1433 	return rwbase_read_trylock(&sem->rwbase);
1434 }
1435 
1436 static inline void __up_read(struct rw_semaphore *sem)
1437 {
1438 	rwbase_read_unlock(&sem->rwbase, TASK_NORMAL);
1439 }
1440 
1441 static inline void __sched __down_write(struct rw_semaphore *sem)
1442 {
1443 	rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1444 }
1445 
1446 static inline int __sched __down_write_killable(struct rw_semaphore *sem)
1447 {
1448 	return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE);
1449 }
1450 
1451 static inline int __down_write_trylock(struct rw_semaphore *sem)
1452 {
1453 	return rwbase_write_trylock(&sem->rwbase);
1454 }
1455 
1456 static inline void __up_write(struct rw_semaphore *sem)
1457 {
1458 	rwbase_write_unlock(&sem->rwbase);
1459 }
1460 
1461 static inline void __downgrade_write(struct rw_semaphore *sem)
1462 {
1463 	rwbase_write_downgrade(&sem->rwbase);
1464 }
1465 
1466 /* Debug stubs for the common API */
1467 #define DEBUG_RWSEMS_WARN_ON(c, sem)
1468 
1469 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
1470 					    struct task_struct *owner)
1471 {
1472 }
1473 
1474 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
1475 {
1476 	int count = atomic_read(&sem->rwbase.readers);
1477 
1478 	return count < 0 && count != READER_BIAS;
1479 }
1480 
1481 #endif /* CONFIG_PREEMPT_RT */
1482 
1483 /*
1484  * lock for reading
1485  */
1486 void __sched down_read(struct rw_semaphore *sem)
1487 {
1488 	might_sleep();
1489 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1490 
1491 	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1492 }
1493 EXPORT_SYMBOL(down_read);
1494 
1495 int __sched down_read_interruptible(struct rw_semaphore *sem)
1496 {
1497 	might_sleep();
1498 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1499 
1500 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) {
1501 		rwsem_release(&sem->dep_map, _RET_IP_);
1502 		return -EINTR;
1503 	}
1504 
1505 	return 0;
1506 }
1507 EXPORT_SYMBOL(down_read_interruptible);
1508 
1509 int __sched down_read_killable(struct rw_semaphore *sem)
1510 {
1511 	might_sleep();
1512 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1513 
1514 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1515 		rwsem_release(&sem->dep_map, _RET_IP_);
1516 		return -EINTR;
1517 	}
1518 
1519 	return 0;
1520 }
1521 EXPORT_SYMBOL(down_read_killable);
1522 
1523 /*
1524  * trylock for reading -- returns 1 if successful, 0 if contention
1525  */
1526 int down_read_trylock(struct rw_semaphore *sem)
1527 {
1528 	int ret = __down_read_trylock(sem);
1529 
1530 	if (ret == 1)
1531 		rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_);
1532 	return ret;
1533 }
1534 EXPORT_SYMBOL(down_read_trylock);
1535 
1536 /*
1537  * lock for writing
1538  */
1539 void __sched down_write(struct rw_semaphore *sem)
1540 {
1541 	might_sleep();
1542 	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1543 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1544 }
1545 EXPORT_SYMBOL(down_write);
1546 
1547 /*
1548  * lock for writing
1549  */
1550 int __sched down_write_killable(struct rw_semaphore *sem)
1551 {
1552 	might_sleep();
1553 	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1554 
1555 	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1556 				  __down_write_killable)) {
1557 		rwsem_release(&sem->dep_map, _RET_IP_);
1558 		return -EINTR;
1559 	}
1560 
1561 	return 0;
1562 }
1563 EXPORT_SYMBOL(down_write_killable);
1564 
1565 /*
1566  * trylock for writing -- returns 1 if successful, 0 if contention
1567  */
1568 int down_write_trylock(struct rw_semaphore *sem)
1569 {
1570 	int ret = __down_write_trylock(sem);
1571 
1572 	if (ret == 1)
1573 		rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_);
1574 
1575 	return ret;
1576 }
1577 EXPORT_SYMBOL(down_write_trylock);
1578 
1579 /*
1580  * release a read lock
1581  */
1582 void up_read(struct rw_semaphore *sem)
1583 {
1584 	rwsem_release(&sem->dep_map, _RET_IP_);
1585 	__up_read(sem);
1586 }
1587 EXPORT_SYMBOL(up_read);
1588 
1589 /*
1590  * release a write lock
1591  */
1592 void up_write(struct rw_semaphore *sem)
1593 {
1594 	rwsem_release(&sem->dep_map, _RET_IP_);
1595 	__up_write(sem);
1596 }
1597 EXPORT_SYMBOL(up_write);
1598 
1599 /*
1600  * downgrade write lock to read lock
1601  */
1602 void downgrade_write(struct rw_semaphore *sem)
1603 {
1604 	lock_downgrade(&sem->dep_map, _RET_IP_);
1605 	__downgrade_write(sem);
1606 }
1607 EXPORT_SYMBOL(downgrade_write);
1608 
1609 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1610 
1611 void down_read_nested(struct rw_semaphore *sem, int subclass)
1612 {
1613 	might_sleep();
1614 	rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1615 	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1616 }
1617 EXPORT_SYMBOL(down_read_nested);
1618 
1619 int down_read_killable_nested(struct rw_semaphore *sem, int subclass)
1620 {
1621 	might_sleep();
1622 	rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1623 
1624 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1625 		rwsem_release(&sem->dep_map, _RET_IP_);
1626 		return -EINTR;
1627 	}
1628 
1629 	return 0;
1630 }
1631 EXPORT_SYMBOL(down_read_killable_nested);
1632 
1633 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest)
1634 {
1635 	might_sleep();
1636 	rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_);
1637 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1638 }
1639 EXPORT_SYMBOL(_down_write_nest_lock);
1640 
1641 void down_read_non_owner(struct rw_semaphore *sem)
1642 {
1643 	might_sleep();
1644 	__down_read(sem);
1645 	__rwsem_set_reader_owned(sem, NULL);
1646 }
1647 EXPORT_SYMBOL(down_read_non_owner);
1648 
1649 void down_write_nested(struct rw_semaphore *sem, int subclass)
1650 {
1651 	might_sleep();
1652 	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1653 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1654 }
1655 EXPORT_SYMBOL(down_write_nested);
1656 
1657 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass)
1658 {
1659 	might_sleep();
1660 	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1661 
1662 	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1663 				  __down_write_killable)) {
1664 		rwsem_release(&sem->dep_map, _RET_IP_);
1665 		return -EINTR;
1666 	}
1667 
1668 	return 0;
1669 }
1670 EXPORT_SYMBOL(down_write_killable_nested);
1671 
1672 void up_read_non_owner(struct rw_semaphore *sem)
1673 {
1674 	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1675 	__up_read(sem);
1676 }
1677 EXPORT_SYMBOL(up_read_non_owner);
1678 
1679 #endif
1680