xref: /openbmc/linux/kernel/locking/rwsem.c (revision 249592bf)
1 // SPDX-License-Identifier: GPL-2.0
2 /* kernel/rwsem.c: R/W semaphores, public implementation
3  *
4  * Written by David Howells (dhowells@redhat.com).
5  * Derived from asm-i386/semaphore.h
6  *
7  * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
8  * and Michel Lespinasse <walken@google.com>
9  *
10  * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
11  * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
12  *
13  * Rwsem count bit fields re-definition and rwsem rearchitecture by
14  * Waiman Long <longman@redhat.com> and
15  * Peter Zijlstra <peterz@infradead.org>.
16  */
17 
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/sched.h>
21 #include <linux/sched/rt.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/clock.h>
27 #include <linux/export.h>
28 #include <linux/rwsem.h>
29 #include <linux/atomic.h>
30 
31 #include "lock_events.h"
32 
33 /*
34  * The least significant 2 bits of the owner value has the following
35  * meanings when set.
36  *  - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers
37  *  - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock
38  *
39  * When the rwsem is reader-owned and a spinning writer has timed out,
40  * the nonspinnable bit will be set to disable optimistic spinning.
41 
42  * When a writer acquires a rwsem, it puts its task_struct pointer
43  * into the owner field. It is cleared after an unlock.
44  *
45  * When a reader acquires a rwsem, it will also puts its task_struct
46  * pointer into the owner field with the RWSEM_READER_OWNED bit set.
47  * On unlock, the owner field will largely be left untouched. So
48  * for a free or reader-owned rwsem, the owner value may contain
49  * information about the last reader that acquires the rwsem.
50  *
51  * That information may be helpful in debugging cases where the system
52  * seems to hang on a reader owned rwsem especially if only one reader
53  * is involved. Ideally we would like to track all the readers that own
54  * a rwsem, but the overhead is simply too big.
55  *
56  * A fast path reader optimistic lock stealing is supported when the rwsem
57  * is previously owned by a writer and the following conditions are met:
58  *  - OSQ is empty
59  *  - rwsem is not currently writer owned
60  *  - the handoff isn't set.
61  */
62 #define RWSEM_READER_OWNED	(1UL << 0)
63 #define RWSEM_NONSPINNABLE	(1UL << 1)
64 #define RWSEM_OWNER_FLAGS_MASK	(RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
65 
66 #ifdef CONFIG_DEBUG_RWSEMS
67 # define DEBUG_RWSEMS_WARN_ON(c, sem)	do {			\
68 	if (!debug_locks_silent &&				\
69 	    WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
70 		#c, atomic_long_read(&(sem)->count),		\
71 		(unsigned long) sem->magic,			\
72 		atomic_long_read(&(sem)->owner), (long)current,	\
73 		list_empty(&(sem)->wait_list) ? "" : "not "))	\
74 			debug_locks_off();			\
75 	} while (0)
76 #else
77 # define DEBUG_RWSEMS_WARN_ON(c, sem)
78 #endif
79 
80 /*
81  * On 64-bit architectures, the bit definitions of the count are:
82  *
83  * Bit  0    - writer locked bit
84  * Bit  1    - waiters present bit
85  * Bit  2    - lock handoff bit
86  * Bits 3-7  - reserved
87  * Bits 8-62 - 55-bit reader count
88  * Bit  63   - read fail bit
89  *
90  * On 32-bit architectures, the bit definitions of the count are:
91  *
92  * Bit  0    - writer locked bit
93  * Bit  1    - waiters present bit
94  * Bit  2    - lock handoff bit
95  * Bits 3-7  - reserved
96  * Bits 8-30 - 23-bit reader count
97  * Bit  31   - read fail bit
98  *
99  * It is not likely that the most significant bit (read fail bit) will ever
100  * be set. This guard bit is still checked anyway in the down_read() fastpath
101  * just in case we need to use up more of the reader bits for other purpose
102  * in the future.
103  *
104  * atomic_long_fetch_add() is used to obtain reader lock, whereas
105  * atomic_long_cmpxchg() will be used to obtain writer lock.
106  *
107  * There are three places where the lock handoff bit may be set or cleared.
108  * 1) rwsem_mark_wake() for readers.
109  * 2) rwsem_try_write_lock() for writers.
110  * 3) Error path of rwsem_down_write_slowpath().
111  *
112  * For all the above cases, wait_lock will be held. A writer must also
113  * be the first one in the wait_list to be eligible for setting the handoff
114  * bit. So concurrent setting/clearing of handoff bit is not possible.
115  */
116 #define RWSEM_WRITER_LOCKED	(1UL << 0)
117 #define RWSEM_FLAG_WAITERS	(1UL << 1)
118 #define RWSEM_FLAG_HANDOFF	(1UL << 2)
119 #define RWSEM_FLAG_READFAIL	(1UL << (BITS_PER_LONG - 1))
120 
121 #define RWSEM_READER_SHIFT	8
122 #define RWSEM_READER_BIAS	(1UL << RWSEM_READER_SHIFT)
123 #define RWSEM_READER_MASK	(~(RWSEM_READER_BIAS - 1))
124 #define RWSEM_WRITER_MASK	RWSEM_WRITER_LOCKED
125 #define RWSEM_LOCK_MASK		(RWSEM_WRITER_MASK|RWSEM_READER_MASK)
126 #define RWSEM_READ_FAILED_MASK	(RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
127 				 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
128 
129 /*
130  * All writes to owner are protected by WRITE_ONCE() to make sure that
131  * store tearing can't happen as optimistic spinners may read and use
132  * the owner value concurrently without lock. Read from owner, however,
133  * may not need READ_ONCE() as long as the pointer value is only used
134  * for comparison and isn't being dereferenced.
135  */
136 static inline void rwsem_set_owner(struct rw_semaphore *sem)
137 {
138 	atomic_long_set(&sem->owner, (long)current);
139 }
140 
141 static inline void rwsem_clear_owner(struct rw_semaphore *sem)
142 {
143 	atomic_long_set(&sem->owner, 0);
144 }
145 
146 /*
147  * Test the flags in the owner field.
148  */
149 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags)
150 {
151 	return atomic_long_read(&sem->owner) & flags;
152 }
153 
154 /*
155  * The task_struct pointer of the last owning reader will be left in
156  * the owner field.
157  *
158  * Note that the owner value just indicates the task has owned the rwsem
159  * previously, it may not be the real owner or one of the real owners
160  * anymore when that field is examined, so take it with a grain of salt.
161  *
162  * The reader non-spinnable bit is preserved.
163  */
164 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
165 					    struct task_struct *owner)
166 {
167 	unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED |
168 		(atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE);
169 
170 	atomic_long_set(&sem->owner, val);
171 }
172 
173 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem)
174 {
175 	__rwsem_set_reader_owned(sem, current);
176 }
177 
178 /*
179  * Return true if the rwsem is owned by a reader.
180  */
181 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
182 {
183 #ifdef CONFIG_DEBUG_RWSEMS
184 	/*
185 	 * Check the count to see if it is write-locked.
186 	 */
187 	long count = atomic_long_read(&sem->count);
188 
189 	if (count & RWSEM_WRITER_MASK)
190 		return false;
191 #endif
192 	return rwsem_test_oflags(sem, RWSEM_READER_OWNED);
193 }
194 
195 #ifdef CONFIG_DEBUG_RWSEMS
196 /*
197  * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there
198  * is a task pointer in owner of a reader-owned rwsem, it will be the
199  * real owner or one of the real owners. The only exception is when the
200  * unlock is done by up_read_non_owner().
201  */
202 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
203 {
204 	unsigned long val = atomic_long_read(&sem->owner);
205 
206 	while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) {
207 		if (atomic_long_try_cmpxchg(&sem->owner, &val,
208 					    val & RWSEM_OWNER_FLAGS_MASK))
209 			return;
210 	}
211 }
212 #else
213 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
214 {
215 }
216 #endif
217 
218 /*
219  * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
220  * remains set. Otherwise, the operation will be aborted.
221  */
222 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem)
223 {
224 	unsigned long owner = atomic_long_read(&sem->owner);
225 
226 	do {
227 		if (!(owner & RWSEM_READER_OWNED))
228 			break;
229 		if (owner & RWSEM_NONSPINNABLE)
230 			break;
231 	} while (!atomic_long_try_cmpxchg(&sem->owner, &owner,
232 					  owner | RWSEM_NONSPINNABLE));
233 }
234 
235 static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp)
236 {
237 	*cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count);
238 
239 	if (WARN_ON_ONCE(*cntp < 0))
240 		rwsem_set_nonspinnable(sem);
241 
242 	if (!(*cntp & RWSEM_READ_FAILED_MASK)) {
243 		rwsem_set_reader_owned(sem);
244 		return true;
245 	}
246 
247 	return false;
248 }
249 
250 static inline bool rwsem_write_trylock(struct rw_semaphore *sem)
251 {
252 	long tmp = RWSEM_UNLOCKED_VALUE;
253 
254 	if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) {
255 		rwsem_set_owner(sem);
256 		return true;
257 	}
258 
259 	return false;
260 }
261 
262 /*
263  * Return just the real task structure pointer of the owner
264  */
265 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem)
266 {
267 	return (struct task_struct *)
268 		(atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK);
269 }
270 
271 /*
272  * Return the real task structure pointer of the owner and the embedded
273  * flags in the owner. pflags must be non-NULL.
274  */
275 static inline struct task_struct *
276 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags)
277 {
278 	unsigned long owner = atomic_long_read(&sem->owner);
279 
280 	*pflags = owner & RWSEM_OWNER_FLAGS_MASK;
281 	return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK);
282 }
283 
284 /*
285  * Guide to the rw_semaphore's count field.
286  *
287  * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
288  * by a writer.
289  *
290  * The lock is owned by readers when
291  * (1) the RWSEM_WRITER_LOCKED isn't set in count,
292  * (2) some of the reader bits are set in count, and
293  * (3) the owner field has RWSEM_READ_OWNED bit set.
294  *
295  * Having some reader bits set is not enough to guarantee a readers owned
296  * lock as the readers may be in the process of backing out from the count
297  * and a writer has just released the lock. So another writer may steal
298  * the lock immediately after that.
299  */
300 
301 /*
302  * Initialize an rwsem:
303  */
304 void __init_rwsem(struct rw_semaphore *sem, const char *name,
305 		  struct lock_class_key *key)
306 {
307 #ifdef CONFIG_DEBUG_LOCK_ALLOC
308 	/*
309 	 * Make sure we are not reinitializing a held semaphore:
310 	 */
311 	debug_check_no_locks_freed((void *)sem, sizeof(*sem));
312 	lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
313 #endif
314 #ifdef CONFIG_DEBUG_RWSEMS
315 	sem->magic = sem;
316 #endif
317 	atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
318 	raw_spin_lock_init(&sem->wait_lock);
319 	INIT_LIST_HEAD(&sem->wait_list);
320 	atomic_long_set(&sem->owner, 0L);
321 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
322 	osq_lock_init(&sem->osq);
323 #endif
324 }
325 EXPORT_SYMBOL(__init_rwsem);
326 
327 enum rwsem_waiter_type {
328 	RWSEM_WAITING_FOR_WRITE,
329 	RWSEM_WAITING_FOR_READ
330 };
331 
332 struct rwsem_waiter {
333 	struct list_head list;
334 	struct task_struct *task;
335 	enum rwsem_waiter_type type;
336 	unsigned long timeout;
337 };
338 #define rwsem_first_waiter(sem) \
339 	list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
340 
341 enum rwsem_wake_type {
342 	RWSEM_WAKE_ANY,		/* Wake whatever's at head of wait list */
343 	RWSEM_WAKE_READERS,	/* Wake readers only */
344 	RWSEM_WAKE_READ_OWNED	/* Waker thread holds the read lock */
345 };
346 
347 enum writer_wait_state {
348 	WRITER_NOT_FIRST,	/* Writer is not first in wait list */
349 	WRITER_FIRST,		/* Writer is first in wait list     */
350 	WRITER_HANDOFF		/* Writer is first & handoff needed */
351 };
352 
353 /*
354  * The typical HZ value is either 250 or 1000. So set the minimum waiting
355  * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
356  * queue before initiating the handoff protocol.
357  */
358 #define RWSEM_WAIT_TIMEOUT	DIV_ROUND_UP(HZ, 250)
359 
360 /*
361  * Magic number to batch-wakeup waiting readers, even when writers are
362  * also present in the queue. This both limits the amount of work the
363  * waking thread must do and also prevents any potential counter overflow,
364  * however unlikely.
365  */
366 #define MAX_READERS_WAKEUP	0x100
367 
368 /*
369  * handle the lock release when processes blocked on it that can now run
370  * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
371  *   have been set.
372  * - there must be someone on the queue
373  * - the wait_lock must be held by the caller
374  * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
375  *   to actually wakeup the blocked task(s) and drop the reference count,
376  *   preferably when the wait_lock is released
377  * - woken process blocks are discarded from the list after having task zeroed
378  * - writers are only marked woken if downgrading is false
379  */
380 static void rwsem_mark_wake(struct rw_semaphore *sem,
381 			    enum rwsem_wake_type wake_type,
382 			    struct wake_q_head *wake_q)
383 {
384 	struct rwsem_waiter *waiter, *tmp;
385 	long oldcount, woken = 0, adjustment = 0;
386 	struct list_head wlist;
387 
388 	lockdep_assert_held(&sem->wait_lock);
389 
390 	/*
391 	 * Take a peek at the queue head waiter such that we can determine
392 	 * the wakeup(s) to perform.
393 	 */
394 	waiter = rwsem_first_waiter(sem);
395 
396 	if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
397 		if (wake_type == RWSEM_WAKE_ANY) {
398 			/*
399 			 * Mark writer at the front of the queue for wakeup.
400 			 * Until the task is actually later awoken later by
401 			 * the caller, other writers are able to steal it.
402 			 * Readers, on the other hand, will block as they
403 			 * will notice the queued writer.
404 			 */
405 			wake_q_add(wake_q, waiter->task);
406 			lockevent_inc(rwsem_wake_writer);
407 		}
408 
409 		return;
410 	}
411 
412 	/*
413 	 * No reader wakeup if there are too many of them already.
414 	 */
415 	if (unlikely(atomic_long_read(&sem->count) < 0))
416 		return;
417 
418 	/*
419 	 * Writers might steal the lock before we grant it to the next reader.
420 	 * We prefer to do the first reader grant before counting readers
421 	 * so we can bail out early if a writer stole the lock.
422 	 */
423 	if (wake_type != RWSEM_WAKE_READ_OWNED) {
424 		struct task_struct *owner;
425 
426 		adjustment = RWSEM_READER_BIAS;
427 		oldcount = atomic_long_fetch_add(adjustment, &sem->count);
428 		if (unlikely(oldcount & RWSEM_WRITER_MASK)) {
429 			/*
430 			 * When we've been waiting "too" long (for writers
431 			 * to give up the lock), request a HANDOFF to
432 			 * force the issue.
433 			 */
434 			if (!(oldcount & RWSEM_FLAG_HANDOFF) &&
435 			    time_after(jiffies, waiter->timeout)) {
436 				adjustment -= RWSEM_FLAG_HANDOFF;
437 				lockevent_inc(rwsem_rlock_handoff);
438 			}
439 
440 			atomic_long_add(-adjustment, &sem->count);
441 			return;
442 		}
443 		/*
444 		 * Set it to reader-owned to give spinners an early
445 		 * indication that readers now have the lock.
446 		 * The reader nonspinnable bit seen at slowpath entry of
447 		 * the reader is copied over.
448 		 */
449 		owner = waiter->task;
450 		__rwsem_set_reader_owned(sem, owner);
451 	}
452 
453 	/*
454 	 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
455 	 * queue. We know that the woken will be at least 1 as we accounted
456 	 * for above. Note we increment the 'active part' of the count by the
457 	 * number of readers before waking any processes up.
458 	 *
459 	 * This is an adaptation of the phase-fair R/W locks where at the
460 	 * reader phase (first waiter is a reader), all readers are eligible
461 	 * to acquire the lock at the same time irrespective of their order
462 	 * in the queue. The writers acquire the lock according to their
463 	 * order in the queue.
464 	 *
465 	 * We have to do wakeup in 2 passes to prevent the possibility that
466 	 * the reader count may be decremented before it is incremented. It
467 	 * is because the to-be-woken waiter may not have slept yet. So it
468 	 * may see waiter->task got cleared, finish its critical section and
469 	 * do an unlock before the reader count increment.
470 	 *
471 	 * 1) Collect the read-waiters in a separate list, count them and
472 	 *    fully increment the reader count in rwsem.
473 	 * 2) For each waiters in the new list, clear waiter->task and
474 	 *    put them into wake_q to be woken up later.
475 	 */
476 	INIT_LIST_HEAD(&wlist);
477 	list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
478 		if (waiter->type == RWSEM_WAITING_FOR_WRITE)
479 			continue;
480 
481 		woken++;
482 		list_move_tail(&waiter->list, &wlist);
483 
484 		/*
485 		 * Limit # of readers that can be woken up per wakeup call.
486 		 */
487 		if (woken >= MAX_READERS_WAKEUP)
488 			break;
489 	}
490 
491 	adjustment = woken * RWSEM_READER_BIAS - adjustment;
492 	lockevent_cond_inc(rwsem_wake_reader, woken);
493 	if (list_empty(&sem->wait_list)) {
494 		/* hit end of list above */
495 		adjustment -= RWSEM_FLAG_WAITERS;
496 	}
497 
498 	/*
499 	 * When we've woken a reader, we no longer need to force writers
500 	 * to give up the lock and we can clear HANDOFF.
501 	 */
502 	if (woken && (atomic_long_read(&sem->count) & RWSEM_FLAG_HANDOFF))
503 		adjustment -= RWSEM_FLAG_HANDOFF;
504 
505 	if (adjustment)
506 		atomic_long_add(adjustment, &sem->count);
507 
508 	/* 2nd pass */
509 	list_for_each_entry_safe(waiter, tmp, &wlist, list) {
510 		struct task_struct *tsk;
511 
512 		tsk = waiter->task;
513 		get_task_struct(tsk);
514 
515 		/*
516 		 * Ensure calling get_task_struct() before setting the reader
517 		 * waiter to nil such that rwsem_down_read_slowpath() cannot
518 		 * race with do_exit() by always holding a reference count
519 		 * to the task to wakeup.
520 		 */
521 		smp_store_release(&waiter->task, NULL);
522 		/*
523 		 * Ensure issuing the wakeup (either by us or someone else)
524 		 * after setting the reader waiter to nil.
525 		 */
526 		wake_q_add_safe(wake_q, tsk);
527 	}
528 }
529 
530 /*
531  * This function must be called with the sem->wait_lock held to prevent
532  * race conditions between checking the rwsem wait list and setting the
533  * sem->count accordingly.
534  *
535  * If wstate is WRITER_HANDOFF, it will make sure that either the handoff
536  * bit is set or the lock is acquired with handoff bit cleared.
537  */
538 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
539 					enum writer_wait_state wstate)
540 {
541 	long count, new;
542 
543 	lockdep_assert_held(&sem->wait_lock);
544 
545 	count = atomic_long_read(&sem->count);
546 	do {
547 		bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF);
548 
549 		if (has_handoff && wstate == WRITER_NOT_FIRST)
550 			return false;
551 
552 		new = count;
553 
554 		if (count & RWSEM_LOCK_MASK) {
555 			if (has_handoff || (wstate != WRITER_HANDOFF))
556 				return false;
557 
558 			new |= RWSEM_FLAG_HANDOFF;
559 		} else {
560 			new |= RWSEM_WRITER_LOCKED;
561 			new &= ~RWSEM_FLAG_HANDOFF;
562 
563 			if (list_is_singular(&sem->wait_list))
564 				new &= ~RWSEM_FLAG_WAITERS;
565 		}
566 	} while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new));
567 
568 	/*
569 	 * We have either acquired the lock with handoff bit cleared or
570 	 * set the handoff bit.
571 	 */
572 	if (new & RWSEM_FLAG_HANDOFF)
573 		return false;
574 
575 	rwsem_set_owner(sem);
576 	return true;
577 }
578 
579 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
580 /*
581  * Try to acquire write lock before the writer has been put on wait queue.
582  */
583 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
584 {
585 	long count = atomic_long_read(&sem->count);
586 
587 	while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) {
588 		if (atomic_long_try_cmpxchg_acquire(&sem->count, &count,
589 					count | RWSEM_WRITER_LOCKED)) {
590 			rwsem_set_owner(sem);
591 			lockevent_inc(rwsem_opt_lock);
592 			return true;
593 		}
594 	}
595 	return false;
596 }
597 
598 static inline bool owner_on_cpu(struct task_struct *owner)
599 {
600 	/*
601 	 * As lock holder preemption issue, we both skip spinning if
602 	 * task is not on cpu or its cpu is preempted
603 	 */
604 	return owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
605 }
606 
607 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
608 {
609 	struct task_struct *owner;
610 	unsigned long flags;
611 	bool ret = true;
612 
613 	if (need_resched()) {
614 		lockevent_inc(rwsem_opt_fail);
615 		return false;
616 	}
617 
618 	preempt_disable();
619 	rcu_read_lock();
620 	owner = rwsem_owner_flags(sem, &flags);
621 	/*
622 	 * Don't check the read-owner as the entry may be stale.
623 	 */
624 	if ((flags & RWSEM_NONSPINNABLE) ||
625 	    (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner)))
626 		ret = false;
627 	rcu_read_unlock();
628 	preempt_enable();
629 
630 	lockevent_cond_inc(rwsem_opt_fail, !ret);
631 	return ret;
632 }
633 
634 /*
635  * The rwsem_spin_on_owner() function returns the following 4 values
636  * depending on the lock owner state.
637  *   OWNER_NULL  : owner is currently NULL
638  *   OWNER_WRITER: when owner changes and is a writer
639  *   OWNER_READER: when owner changes and the new owner may be a reader.
640  *   OWNER_NONSPINNABLE:
641  *		   when optimistic spinning has to stop because either the
642  *		   owner stops running, is unknown, or its timeslice has
643  *		   been used up.
644  */
645 enum owner_state {
646 	OWNER_NULL		= 1 << 0,
647 	OWNER_WRITER		= 1 << 1,
648 	OWNER_READER		= 1 << 2,
649 	OWNER_NONSPINNABLE	= 1 << 3,
650 };
651 #define OWNER_SPINNABLE		(OWNER_NULL | OWNER_WRITER | OWNER_READER)
652 
653 static inline enum owner_state
654 rwsem_owner_state(struct task_struct *owner, unsigned long flags)
655 {
656 	if (flags & RWSEM_NONSPINNABLE)
657 		return OWNER_NONSPINNABLE;
658 
659 	if (flags & RWSEM_READER_OWNED)
660 		return OWNER_READER;
661 
662 	return owner ? OWNER_WRITER : OWNER_NULL;
663 }
664 
665 static noinline enum owner_state
666 rwsem_spin_on_owner(struct rw_semaphore *sem)
667 {
668 	struct task_struct *new, *owner;
669 	unsigned long flags, new_flags;
670 	enum owner_state state;
671 
672 	owner = rwsem_owner_flags(sem, &flags);
673 	state = rwsem_owner_state(owner, flags);
674 	if (state != OWNER_WRITER)
675 		return state;
676 
677 	rcu_read_lock();
678 	for (;;) {
679 		/*
680 		 * When a waiting writer set the handoff flag, it may spin
681 		 * on the owner as well. Once that writer acquires the lock,
682 		 * we can spin on it. So we don't need to quit even when the
683 		 * handoff bit is set.
684 		 */
685 		new = rwsem_owner_flags(sem, &new_flags);
686 		if ((new != owner) || (new_flags != flags)) {
687 			state = rwsem_owner_state(new, new_flags);
688 			break;
689 		}
690 
691 		/*
692 		 * Ensure we emit the owner->on_cpu, dereference _after_
693 		 * checking sem->owner still matches owner, if that fails,
694 		 * owner might point to free()d memory, if it still matches,
695 		 * the rcu_read_lock() ensures the memory stays valid.
696 		 */
697 		barrier();
698 
699 		if (need_resched() || !owner_on_cpu(owner)) {
700 			state = OWNER_NONSPINNABLE;
701 			break;
702 		}
703 
704 		cpu_relax();
705 	}
706 	rcu_read_unlock();
707 
708 	return state;
709 }
710 
711 /*
712  * Calculate reader-owned rwsem spinning threshold for writer
713  *
714  * The more readers own the rwsem, the longer it will take for them to
715  * wind down and free the rwsem. So the empirical formula used to
716  * determine the actual spinning time limit here is:
717  *
718  *   Spinning threshold = (10 + nr_readers/2)us
719  *
720  * The limit is capped to a maximum of 25us (30 readers). This is just
721  * a heuristic and is subjected to change in the future.
722  */
723 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem)
724 {
725 	long count = atomic_long_read(&sem->count);
726 	int readers = count >> RWSEM_READER_SHIFT;
727 	u64 delta;
728 
729 	if (readers > 30)
730 		readers = 30;
731 	delta = (20 + readers) * NSEC_PER_USEC / 2;
732 
733 	return sched_clock() + delta;
734 }
735 
736 static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
737 {
738 	bool taken = false;
739 	int prev_owner_state = OWNER_NULL;
740 	int loop = 0;
741 	u64 rspin_threshold = 0;
742 
743 	preempt_disable();
744 
745 	/* sem->wait_lock should not be held when doing optimistic spinning */
746 	if (!osq_lock(&sem->osq))
747 		goto done;
748 
749 	/*
750 	 * Optimistically spin on the owner field and attempt to acquire the
751 	 * lock whenever the owner changes. Spinning will be stopped when:
752 	 *  1) the owning writer isn't running; or
753 	 *  2) readers own the lock and spinning time has exceeded limit.
754 	 */
755 	for (;;) {
756 		enum owner_state owner_state;
757 
758 		owner_state = rwsem_spin_on_owner(sem);
759 		if (!(owner_state & OWNER_SPINNABLE))
760 			break;
761 
762 		/*
763 		 * Try to acquire the lock
764 		 */
765 		taken = rwsem_try_write_lock_unqueued(sem);
766 
767 		if (taken)
768 			break;
769 
770 		/*
771 		 * Time-based reader-owned rwsem optimistic spinning
772 		 */
773 		if (owner_state == OWNER_READER) {
774 			/*
775 			 * Re-initialize rspin_threshold every time when
776 			 * the owner state changes from non-reader to reader.
777 			 * This allows a writer to steal the lock in between
778 			 * 2 reader phases and have the threshold reset at
779 			 * the beginning of the 2nd reader phase.
780 			 */
781 			if (prev_owner_state != OWNER_READER) {
782 				if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
783 					break;
784 				rspin_threshold = rwsem_rspin_threshold(sem);
785 				loop = 0;
786 			}
787 
788 			/*
789 			 * Check time threshold once every 16 iterations to
790 			 * avoid calling sched_clock() too frequently so
791 			 * as to reduce the average latency between the times
792 			 * when the lock becomes free and when the spinner
793 			 * is ready to do a trylock.
794 			 */
795 			else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) {
796 				rwsem_set_nonspinnable(sem);
797 				lockevent_inc(rwsem_opt_nospin);
798 				break;
799 			}
800 		}
801 
802 		/*
803 		 * An RT task cannot do optimistic spinning if it cannot
804 		 * be sure the lock holder is running or live-lock may
805 		 * happen if the current task and the lock holder happen
806 		 * to run in the same CPU. However, aborting optimistic
807 		 * spinning while a NULL owner is detected may miss some
808 		 * opportunity where spinning can continue without causing
809 		 * problem.
810 		 *
811 		 * There are 2 possible cases where an RT task may be able
812 		 * to continue spinning.
813 		 *
814 		 * 1) The lock owner is in the process of releasing the
815 		 *    lock, sem->owner is cleared but the lock has not
816 		 *    been released yet.
817 		 * 2) The lock was free and owner cleared, but another
818 		 *    task just comes in and acquire the lock before
819 		 *    we try to get it. The new owner may be a spinnable
820 		 *    writer.
821 		 *
822 		 * To take advantage of two scenarios listed above, the RT
823 		 * task is made to retry one more time to see if it can
824 		 * acquire the lock or continue spinning on the new owning
825 		 * writer. Of course, if the time lag is long enough or the
826 		 * new owner is not a writer or spinnable, the RT task will
827 		 * quit spinning.
828 		 *
829 		 * If the owner is a writer, the need_resched() check is
830 		 * done inside rwsem_spin_on_owner(). If the owner is not
831 		 * a writer, need_resched() check needs to be done here.
832 		 */
833 		if (owner_state != OWNER_WRITER) {
834 			if (need_resched())
835 				break;
836 			if (rt_task(current) &&
837 			   (prev_owner_state != OWNER_WRITER))
838 				break;
839 		}
840 		prev_owner_state = owner_state;
841 
842 		/*
843 		 * The cpu_relax() call is a compiler barrier which forces
844 		 * everything in this loop to be re-loaded. We don't need
845 		 * memory barriers as we'll eventually observe the right
846 		 * values at the cost of a few extra spins.
847 		 */
848 		cpu_relax();
849 	}
850 	osq_unlock(&sem->osq);
851 done:
852 	preempt_enable();
853 	lockevent_cond_inc(rwsem_opt_fail, !taken);
854 	return taken;
855 }
856 
857 /*
858  * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should
859  * only be called when the reader count reaches 0.
860  */
861 static inline void clear_nonspinnable(struct rw_semaphore *sem)
862 {
863 	if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
864 		atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner);
865 }
866 
867 #else
868 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
869 {
870 	return false;
871 }
872 
873 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem)
874 {
875 	return false;
876 }
877 
878 static inline void clear_nonspinnable(struct rw_semaphore *sem) { }
879 
880 static inline int
881 rwsem_spin_on_owner(struct rw_semaphore *sem)
882 {
883 	return 0;
884 }
885 #define OWNER_NULL	1
886 #endif
887 
888 /*
889  * Wait for the read lock to be granted
890  */
891 static struct rw_semaphore __sched *
892 rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, int state)
893 {
894 	long adjustment = -RWSEM_READER_BIAS;
895 	long rcnt = (count >> RWSEM_READER_SHIFT);
896 	struct rwsem_waiter waiter;
897 	DEFINE_WAKE_Q(wake_q);
898 	bool wake = false;
899 
900 	/*
901 	 * To prevent a constant stream of readers from starving a sleeping
902 	 * waiter, don't attempt optimistic lock stealing if the lock is
903 	 * currently owned by readers.
904 	 */
905 	if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) &&
906 	    (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED))
907 		goto queue;
908 
909 	/*
910 	 * Reader optimistic lock stealing.
911 	 */
912 	if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) {
913 		rwsem_set_reader_owned(sem);
914 		lockevent_inc(rwsem_rlock_steal);
915 
916 		/*
917 		 * Wake up other readers in the wait queue if it is
918 		 * the first reader.
919 		 */
920 		if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) {
921 			raw_spin_lock_irq(&sem->wait_lock);
922 			if (!list_empty(&sem->wait_list))
923 				rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED,
924 						&wake_q);
925 			raw_spin_unlock_irq(&sem->wait_lock);
926 			wake_up_q(&wake_q);
927 		}
928 		return sem;
929 	}
930 
931 queue:
932 	waiter.task = current;
933 	waiter.type = RWSEM_WAITING_FOR_READ;
934 	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
935 
936 	raw_spin_lock_irq(&sem->wait_lock);
937 	if (list_empty(&sem->wait_list)) {
938 		/*
939 		 * In case the wait queue is empty and the lock isn't owned
940 		 * by a writer or has the handoff bit set, this reader can
941 		 * exit the slowpath and return immediately as its
942 		 * RWSEM_READER_BIAS has already been set in the count.
943 		 */
944 		if (!(atomic_long_read(&sem->count) &
945 		     (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))) {
946 			/* Provide lock ACQUIRE */
947 			smp_acquire__after_ctrl_dep();
948 			raw_spin_unlock_irq(&sem->wait_lock);
949 			rwsem_set_reader_owned(sem);
950 			lockevent_inc(rwsem_rlock_fast);
951 			return sem;
952 		}
953 		adjustment += RWSEM_FLAG_WAITERS;
954 	}
955 	list_add_tail(&waiter.list, &sem->wait_list);
956 
957 	/* we're now waiting on the lock, but no longer actively locking */
958 	count = atomic_long_add_return(adjustment, &sem->count);
959 
960 	/*
961 	 * If there are no active locks, wake the front queued process(es).
962 	 *
963 	 * If there are no writers and we are first in the queue,
964 	 * wake our own waiter to join the existing active readers !
965 	 */
966 	if (!(count & RWSEM_LOCK_MASK)) {
967 		clear_nonspinnable(sem);
968 		wake = true;
969 	}
970 	if (wake || (!(count & RWSEM_WRITER_MASK) &&
971 		    (adjustment & RWSEM_FLAG_WAITERS)))
972 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
973 
974 	raw_spin_unlock_irq(&sem->wait_lock);
975 	wake_up_q(&wake_q);
976 
977 	/* wait to be given the lock */
978 	for (;;) {
979 		set_current_state(state);
980 		if (!smp_load_acquire(&waiter.task)) {
981 			/* Matches rwsem_mark_wake()'s smp_store_release(). */
982 			break;
983 		}
984 		if (signal_pending_state(state, current)) {
985 			raw_spin_lock_irq(&sem->wait_lock);
986 			if (waiter.task)
987 				goto out_nolock;
988 			raw_spin_unlock_irq(&sem->wait_lock);
989 			/* Ordered by sem->wait_lock against rwsem_mark_wake(). */
990 			break;
991 		}
992 		schedule();
993 		lockevent_inc(rwsem_sleep_reader);
994 	}
995 
996 	__set_current_state(TASK_RUNNING);
997 	lockevent_inc(rwsem_rlock);
998 	return sem;
999 
1000 out_nolock:
1001 	list_del(&waiter.list);
1002 	if (list_empty(&sem->wait_list)) {
1003 		atomic_long_andnot(RWSEM_FLAG_WAITERS|RWSEM_FLAG_HANDOFF,
1004 				   &sem->count);
1005 	}
1006 	raw_spin_unlock_irq(&sem->wait_lock);
1007 	__set_current_state(TASK_RUNNING);
1008 	lockevent_inc(rwsem_rlock_fail);
1009 	return ERR_PTR(-EINTR);
1010 }
1011 
1012 /*
1013  * Wait until we successfully acquire the write lock
1014  */
1015 static struct rw_semaphore *
1016 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state)
1017 {
1018 	long count;
1019 	enum writer_wait_state wstate;
1020 	struct rwsem_waiter waiter;
1021 	struct rw_semaphore *ret = sem;
1022 	DEFINE_WAKE_Q(wake_q);
1023 
1024 	/* do optimistic spinning and steal lock if possible */
1025 	if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) {
1026 		/* rwsem_optimistic_spin() implies ACQUIRE on success */
1027 		return sem;
1028 	}
1029 
1030 	/*
1031 	 * Optimistic spinning failed, proceed to the slowpath
1032 	 * and block until we can acquire the sem.
1033 	 */
1034 	waiter.task = current;
1035 	waiter.type = RWSEM_WAITING_FOR_WRITE;
1036 	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1037 
1038 	raw_spin_lock_irq(&sem->wait_lock);
1039 
1040 	/* account for this before adding a new element to the list */
1041 	wstate = list_empty(&sem->wait_list) ? WRITER_FIRST : WRITER_NOT_FIRST;
1042 
1043 	list_add_tail(&waiter.list, &sem->wait_list);
1044 
1045 	/* we're now waiting on the lock */
1046 	if (wstate == WRITER_NOT_FIRST) {
1047 		count = atomic_long_read(&sem->count);
1048 
1049 		/*
1050 		 * If there were already threads queued before us and:
1051 		 *  1) there are no active locks, wake the front
1052 		 *     queued process(es) as the handoff bit might be set.
1053 		 *  2) there are no active writers and some readers, the lock
1054 		 *     must be read owned; so we try to wake any read lock
1055 		 *     waiters that were queued ahead of us.
1056 		 */
1057 		if (count & RWSEM_WRITER_MASK)
1058 			goto wait;
1059 
1060 		rwsem_mark_wake(sem, (count & RWSEM_READER_MASK)
1061 					? RWSEM_WAKE_READERS
1062 					: RWSEM_WAKE_ANY, &wake_q);
1063 
1064 		if (!wake_q_empty(&wake_q)) {
1065 			/*
1066 			 * We want to minimize wait_lock hold time especially
1067 			 * when a large number of readers are to be woken up.
1068 			 */
1069 			raw_spin_unlock_irq(&sem->wait_lock);
1070 			wake_up_q(&wake_q);
1071 			wake_q_init(&wake_q);	/* Used again, reinit */
1072 			raw_spin_lock_irq(&sem->wait_lock);
1073 		}
1074 	} else {
1075 		atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count);
1076 	}
1077 
1078 wait:
1079 	/* wait until we successfully acquire the lock */
1080 	set_current_state(state);
1081 	for (;;) {
1082 		if (rwsem_try_write_lock(sem, wstate)) {
1083 			/* rwsem_try_write_lock() implies ACQUIRE on success */
1084 			break;
1085 		}
1086 
1087 		raw_spin_unlock_irq(&sem->wait_lock);
1088 
1089 		/*
1090 		 * After setting the handoff bit and failing to acquire
1091 		 * the lock, attempt to spin on owner to accelerate lock
1092 		 * transfer. If the previous owner is a on-cpu writer and it
1093 		 * has just released the lock, OWNER_NULL will be returned.
1094 		 * In this case, we attempt to acquire the lock again
1095 		 * without sleeping.
1096 		 */
1097 		if (wstate == WRITER_HANDOFF &&
1098 		    rwsem_spin_on_owner(sem) == OWNER_NULL)
1099 			goto trylock_again;
1100 
1101 		/* Block until there are no active lockers. */
1102 		for (;;) {
1103 			if (signal_pending_state(state, current))
1104 				goto out_nolock;
1105 
1106 			schedule();
1107 			lockevent_inc(rwsem_sleep_writer);
1108 			set_current_state(state);
1109 			/*
1110 			 * If HANDOFF bit is set, unconditionally do
1111 			 * a trylock.
1112 			 */
1113 			if (wstate == WRITER_HANDOFF)
1114 				break;
1115 
1116 			if ((wstate == WRITER_NOT_FIRST) &&
1117 			    (rwsem_first_waiter(sem) == &waiter))
1118 				wstate = WRITER_FIRST;
1119 
1120 			count = atomic_long_read(&sem->count);
1121 			if (!(count & RWSEM_LOCK_MASK))
1122 				break;
1123 
1124 			/*
1125 			 * The setting of the handoff bit is deferred
1126 			 * until rwsem_try_write_lock() is called.
1127 			 */
1128 			if ((wstate == WRITER_FIRST) && (rt_task(current) ||
1129 			    time_after(jiffies, waiter.timeout))) {
1130 				wstate = WRITER_HANDOFF;
1131 				lockevent_inc(rwsem_wlock_handoff);
1132 				break;
1133 			}
1134 		}
1135 trylock_again:
1136 		raw_spin_lock_irq(&sem->wait_lock);
1137 	}
1138 	__set_current_state(TASK_RUNNING);
1139 	list_del(&waiter.list);
1140 	raw_spin_unlock_irq(&sem->wait_lock);
1141 	lockevent_inc(rwsem_wlock);
1142 
1143 	return ret;
1144 
1145 out_nolock:
1146 	__set_current_state(TASK_RUNNING);
1147 	raw_spin_lock_irq(&sem->wait_lock);
1148 	list_del(&waiter.list);
1149 
1150 	if (unlikely(wstate == WRITER_HANDOFF))
1151 		atomic_long_add(-RWSEM_FLAG_HANDOFF,  &sem->count);
1152 
1153 	if (list_empty(&sem->wait_list))
1154 		atomic_long_andnot(RWSEM_FLAG_WAITERS, &sem->count);
1155 	else
1156 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1157 	raw_spin_unlock_irq(&sem->wait_lock);
1158 	wake_up_q(&wake_q);
1159 	lockevent_inc(rwsem_wlock_fail);
1160 
1161 	return ERR_PTR(-EINTR);
1162 }
1163 
1164 /*
1165  * handle waking up a waiter on the semaphore
1166  * - up_read/up_write has decremented the active part of count if we come here
1167  */
1168 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem, long count)
1169 {
1170 	unsigned long flags;
1171 	DEFINE_WAKE_Q(wake_q);
1172 
1173 	raw_spin_lock_irqsave(&sem->wait_lock, flags);
1174 
1175 	if (!list_empty(&sem->wait_list))
1176 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1177 
1178 	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1179 	wake_up_q(&wake_q);
1180 
1181 	return sem;
1182 }
1183 
1184 /*
1185  * downgrade a write lock into a read lock
1186  * - caller incremented waiting part of count and discovered it still negative
1187  * - just wake up any readers at the front of the queue
1188  */
1189 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
1190 {
1191 	unsigned long flags;
1192 	DEFINE_WAKE_Q(wake_q);
1193 
1194 	raw_spin_lock_irqsave(&sem->wait_lock, flags);
1195 
1196 	if (!list_empty(&sem->wait_list))
1197 		rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
1198 
1199 	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1200 	wake_up_q(&wake_q);
1201 
1202 	return sem;
1203 }
1204 
1205 /*
1206  * lock for reading
1207  */
1208 static inline int __down_read_common(struct rw_semaphore *sem, int state)
1209 {
1210 	long count;
1211 
1212 	if (!rwsem_read_trylock(sem, &count)) {
1213 		if (IS_ERR(rwsem_down_read_slowpath(sem, count, state)))
1214 			return -EINTR;
1215 		DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1216 	}
1217 	return 0;
1218 }
1219 
1220 static inline void __down_read(struct rw_semaphore *sem)
1221 {
1222 	__down_read_common(sem, TASK_UNINTERRUPTIBLE);
1223 }
1224 
1225 static inline int __down_read_interruptible(struct rw_semaphore *sem)
1226 {
1227 	return __down_read_common(sem, TASK_INTERRUPTIBLE);
1228 }
1229 
1230 static inline int __down_read_killable(struct rw_semaphore *sem)
1231 {
1232 	return __down_read_common(sem, TASK_KILLABLE);
1233 }
1234 
1235 static inline int __down_read_trylock(struct rw_semaphore *sem)
1236 {
1237 	long tmp;
1238 
1239 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1240 
1241 	/*
1242 	 * Optimize for the case when the rwsem is not locked at all.
1243 	 */
1244 	tmp = RWSEM_UNLOCKED_VALUE;
1245 	do {
1246 		if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1247 					tmp + RWSEM_READER_BIAS)) {
1248 			rwsem_set_reader_owned(sem);
1249 			return 1;
1250 		}
1251 	} while (!(tmp & RWSEM_READ_FAILED_MASK));
1252 	return 0;
1253 }
1254 
1255 /*
1256  * lock for writing
1257  */
1258 static inline int __down_write_common(struct rw_semaphore *sem, int state)
1259 {
1260 	if (unlikely(!rwsem_write_trylock(sem))) {
1261 		if (IS_ERR(rwsem_down_write_slowpath(sem, state)))
1262 			return -EINTR;
1263 	}
1264 
1265 	return 0;
1266 }
1267 
1268 static inline void __down_write(struct rw_semaphore *sem)
1269 {
1270 	__down_write_common(sem, TASK_UNINTERRUPTIBLE);
1271 }
1272 
1273 static inline int __down_write_killable(struct rw_semaphore *sem)
1274 {
1275 	return __down_write_common(sem, TASK_KILLABLE);
1276 }
1277 
1278 static inline int __down_write_trylock(struct rw_semaphore *sem)
1279 {
1280 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1281 	return rwsem_write_trylock(sem);
1282 }
1283 
1284 /*
1285  * unlock after reading
1286  */
1287 static inline void __up_read(struct rw_semaphore *sem)
1288 {
1289 	long tmp;
1290 
1291 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1292 	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1293 
1294 	rwsem_clear_reader_owned(sem);
1295 	tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count);
1296 	DEBUG_RWSEMS_WARN_ON(tmp < 0, sem);
1297 	if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) ==
1298 		      RWSEM_FLAG_WAITERS)) {
1299 		clear_nonspinnable(sem);
1300 		rwsem_wake(sem, tmp);
1301 	}
1302 }
1303 
1304 /*
1305  * unlock after writing
1306  */
1307 static inline void __up_write(struct rw_semaphore *sem)
1308 {
1309 	long tmp;
1310 
1311 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1312 	/*
1313 	 * sem->owner may differ from current if the ownership is transferred
1314 	 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
1315 	 */
1316 	DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) &&
1317 			    !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem);
1318 
1319 	rwsem_clear_owner(sem);
1320 	tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count);
1321 	if (unlikely(tmp & RWSEM_FLAG_WAITERS))
1322 		rwsem_wake(sem, tmp);
1323 }
1324 
1325 /*
1326  * downgrade write lock to read lock
1327  */
1328 static inline void __downgrade_write(struct rw_semaphore *sem)
1329 {
1330 	long tmp;
1331 
1332 	/*
1333 	 * When downgrading from exclusive to shared ownership,
1334 	 * anything inside the write-locked region cannot leak
1335 	 * into the read side. In contrast, anything in the
1336 	 * read-locked region is ok to be re-ordered into the
1337 	 * write side. As such, rely on RELEASE semantics.
1338 	 */
1339 	DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem);
1340 	tmp = atomic_long_fetch_add_release(
1341 		-RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count);
1342 	rwsem_set_reader_owned(sem);
1343 	if (tmp & RWSEM_FLAG_WAITERS)
1344 		rwsem_downgrade_wake(sem);
1345 }
1346 
1347 /*
1348  * lock for reading
1349  */
1350 void __sched down_read(struct rw_semaphore *sem)
1351 {
1352 	might_sleep();
1353 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1354 
1355 	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1356 }
1357 EXPORT_SYMBOL(down_read);
1358 
1359 int __sched down_read_interruptible(struct rw_semaphore *sem)
1360 {
1361 	might_sleep();
1362 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1363 
1364 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) {
1365 		rwsem_release(&sem->dep_map, _RET_IP_);
1366 		return -EINTR;
1367 	}
1368 
1369 	return 0;
1370 }
1371 EXPORT_SYMBOL(down_read_interruptible);
1372 
1373 int __sched down_read_killable(struct rw_semaphore *sem)
1374 {
1375 	might_sleep();
1376 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1377 
1378 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1379 		rwsem_release(&sem->dep_map, _RET_IP_);
1380 		return -EINTR;
1381 	}
1382 
1383 	return 0;
1384 }
1385 EXPORT_SYMBOL(down_read_killable);
1386 
1387 /*
1388  * trylock for reading -- returns 1 if successful, 0 if contention
1389  */
1390 int down_read_trylock(struct rw_semaphore *sem)
1391 {
1392 	int ret = __down_read_trylock(sem);
1393 
1394 	if (ret == 1)
1395 		rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_);
1396 	return ret;
1397 }
1398 EXPORT_SYMBOL(down_read_trylock);
1399 
1400 /*
1401  * lock for writing
1402  */
1403 void __sched down_write(struct rw_semaphore *sem)
1404 {
1405 	might_sleep();
1406 	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1407 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1408 }
1409 EXPORT_SYMBOL(down_write);
1410 
1411 /*
1412  * lock for writing
1413  */
1414 int __sched down_write_killable(struct rw_semaphore *sem)
1415 {
1416 	might_sleep();
1417 	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1418 
1419 	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1420 				  __down_write_killable)) {
1421 		rwsem_release(&sem->dep_map, _RET_IP_);
1422 		return -EINTR;
1423 	}
1424 
1425 	return 0;
1426 }
1427 EXPORT_SYMBOL(down_write_killable);
1428 
1429 /*
1430  * trylock for writing -- returns 1 if successful, 0 if contention
1431  */
1432 int down_write_trylock(struct rw_semaphore *sem)
1433 {
1434 	int ret = __down_write_trylock(sem);
1435 
1436 	if (ret == 1)
1437 		rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_);
1438 
1439 	return ret;
1440 }
1441 EXPORT_SYMBOL(down_write_trylock);
1442 
1443 /*
1444  * release a read lock
1445  */
1446 void up_read(struct rw_semaphore *sem)
1447 {
1448 	rwsem_release(&sem->dep_map, _RET_IP_);
1449 	__up_read(sem);
1450 }
1451 EXPORT_SYMBOL(up_read);
1452 
1453 /*
1454  * release a write lock
1455  */
1456 void up_write(struct rw_semaphore *sem)
1457 {
1458 	rwsem_release(&sem->dep_map, _RET_IP_);
1459 	__up_write(sem);
1460 }
1461 EXPORT_SYMBOL(up_write);
1462 
1463 /*
1464  * downgrade write lock to read lock
1465  */
1466 void downgrade_write(struct rw_semaphore *sem)
1467 {
1468 	lock_downgrade(&sem->dep_map, _RET_IP_);
1469 	__downgrade_write(sem);
1470 }
1471 EXPORT_SYMBOL(downgrade_write);
1472 
1473 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1474 
1475 void down_read_nested(struct rw_semaphore *sem, int subclass)
1476 {
1477 	might_sleep();
1478 	rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1479 	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1480 }
1481 EXPORT_SYMBOL(down_read_nested);
1482 
1483 int down_read_killable_nested(struct rw_semaphore *sem, int subclass)
1484 {
1485 	might_sleep();
1486 	rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1487 
1488 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1489 		rwsem_release(&sem->dep_map, _RET_IP_);
1490 		return -EINTR;
1491 	}
1492 
1493 	return 0;
1494 }
1495 EXPORT_SYMBOL(down_read_killable_nested);
1496 
1497 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest)
1498 {
1499 	might_sleep();
1500 	rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_);
1501 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1502 }
1503 EXPORT_SYMBOL(_down_write_nest_lock);
1504 
1505 void down_read_non_owner(struct rw_semaphore *sem)
1506 {
1507 	might_sleep();
1508 	__down_read(sem);
1509 	__rwsem_set_reader_owned(sem, NULL);
1510 }
1511 EXPORT_SYMBOL(down_read_non_owner);
1512 
1513 void down_write_nested(struct rw_semaphore *sem, int subclass)
1514 {
1515 	might_sleep();
1516 	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1517 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1518 }
1519 EXPORT_SYMBOL(down_write_nested);
1520 
1521 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass)
1522 {
1523 	might_sleep();
1524 	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1525 
1526 	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1527 				  __down_write_killable)) {
1528 		rwsem_release(&sem->dep_map, _RET_IP_);
1529 		return -EINTR;
1530 	}
1531 
1532 	return 0;
1533 }
1534 EXPORT_SYMBOL(down_write_killable_nested);
1535 
1536 void up_read_non_owner(struct rw_semaphore *sem)
1537 {
1538 	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1539 	__up_read(sem);
1540 }
1541 EXPORT_SYMBOL(up_read_non_owner);
1542 
1543 #endif
1544