1 // SPDX-License-Identifier: GPL-2.0 2 /* kernel/rwsem.c: R/W semaphores, public implementation 3 * 4 * Written by David Howells (dhowells@redhat.com). 5 * Derived from asm-i386/semaphore.h 6 * 7 * Writer lock-stealing by Alex Shi <alex.shi@intel.com> 8 * and Michel Lespinasse <walken@google.com> 9 * 10 * Optimistic spinning by Tim Chen <tim.c.chen@intel.com> 11 * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes. 12 * 13 * Rwsem count bit fields re-definition and rwsem rearchitecture by 14 * Waiman Long <longman@redhat.com> and 15 * Peter Zijlstra <peterz@infradead.org>. 16 */ 17 18 #include <linux/types.h> 19 #include <linux/kernel.h> 20 #include <linux/sched.h> 21 #include <linux/sched/rt.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/debug.h> 24 #include <linux/sched/wake_q.h> 25 #include <linux/sched/signal.h> 26 #include <linux/sched/clock.h> 27 #include <linux/export.h> 28 #include <linux/rwsem.h> 29 #include <linux/atomic.h> 30 #include <trace/events/lock.h> 31 32 #ifndef CONFIG_PREEMPT_RT 33 #include "lock_events.h" 34 35 /* 36 * The least significant 2 bits of the owner value has the following 37 * meanings when set. 38 * - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers 39 * - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock 40 * 41 * When the rwsem is reader-owned and a spinning writer has timed out, 42 * the nonspinnable bit will be set to disable optimistic spinning. 43 44 * When a writer acquires a rwsem, it puts its task_struct pointer 45 * into the owner field. It is cleared after an unlock. 46 * 47 * When a reader acquires a rwsem, it will also puts its task_struct 48 * pointer into the owner field with the RWSEM_READER_OWNED bit set. 49 * On unlock, the owner field will largely be left untouched. So 50 * for a free or reader-owned rwsem, the owner value may contain 51 * information about the last reader that acquires the rwsem. 52 * 53 * That information may be helpful in debugging cases where the system 54 * seems to hang on a reader owned rwsem especially if only one reader 55 * is involved. Ideally we would like to track all the readers that own 56 * a rwsem, but the overhead is simply too big. 57 * 58 * A fast path reader optimistic lock stealing is supported when the rwsem 59 * is previously owned by a writer and the following conditions are met: 60 * - rwsem is not currently writer owned 61 * - the handoff isn't set. 62 */ 63 #define RWSEM_READER_OWNED (1UL << 0) 64 #define RWSEM_NONSPINNABLE (1UL << 1) 65 #define RWSEM_OWNER_FLAGS_MASK (RWSEM_READER_OWNED | RWSEM_NONSPINNABLE) 66 67 #ifdef CONFIG_DEBUG_RWSEMS 68 # define DEBUG_RWSEMS_WARN_ON(c, sem) do { \ 69 if (!debug_locks_silent && \ 70 WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\ 71 #c, atomic_long_read(&(sem)->count), \ 72 (unsigned long) sem->magic, \ 73 atomic_long_read(&(sem)->owner), (long)current, \ 74 list_empty(&(sem)->wait_list) ? "" : "not ")) \ 75 debug_locks_off(); \ 76 } while (0) 77 #else 78 # define DEBUG_RWSEMS_WARN_ON(c, sem) 79 #endif 80 81 /* 82 * On 64-bit architectures, the bit definitions of the count are: 83 * 84 * Bit 0 - writer locked bit 85 * Bit 1 - waiters present bit 86 * Bit 2 - lock handoff bit 87 * Bits 3-7 - reserved 88 * Bits 8-62 - 55-bit reader count 89 * Bit 63 - read fail bit 90 * 91 * On 32-bit architectures, the bit definitions of the count are: 92 * 93 * Bit 0 - writer locked bit 94 * Bit 1 - waiters present bit 95 * Bit 2 - lock handoff bit 96 * Bits 3-7 - reserved 97 * Bits 8-30 - 23-bit reader count 98 * Bit 31 - read fail bit 99 * 100 * It is not likely that the most significant bit (read fail bit) will ever 101 * be set. This guard bit is still checked anyway in the down_read() fastpath 102 * just in case we need to use up more of the reader bits for other purpose 103 * in the future. 104 * 105 * atomic_long_fetch_add() is used to obtain reader lock, whereas 106 * atomic_long_cmpxchg() will be used to obtain writer lock. 107 * 108 * There are three places where the lock handoff bit may be set or cleared. 109 * 1) rwsem_mark_wake() for readers -- set, clear 110 * 2) rwsem_try_write_lock() for writers -- set, clear 111 * 3) rwsem_del_waiter() -- clear 112 * 113 * For all the above cases, wait_lock will be held. A writer must also 114 * be the first one in the wait_list to be eligible for setting the handoff 115 * bit. So concurrent setting/clearing of handoff bit is not possible. 116 */ 117 #define RWSEM_WRITER_LOCKED (1UL << 0) 118 #define RWSEM_FLAG_WAITERS (1UL << 1) 119 #define RWSEM_FLAG_HANDOFF (1UL << 2) 120 #define RWSEM_FLAG_READFAIL (1UL << (BITS_PER_LONG - 1)) 121 122 #define RWSEM_READER_SHIFT 8 123 #define RWSEM_READER_BIAS (1UL << RWSEM_READER_SHIFT) 124 #define RWSEM_READER_MASK (~(RWSEM_READER_BIAS - 1)) 125 #define RWSEM_WRITER_MASK RWSEM_WRITER_LOCKED 126 #define RWSEM_LOCK_MASK (RWSEM_WRITER_MASK|RWSEM_READER_MASK) 127 #define RWSEM_READ_FAILED_MASK (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\ 128 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL) 129 130 /* 131 * All writes to owner are protected by WRITE_ONCE() to make sure that 132 * store tearing can't happen as optimistic spinners may read and use 133 * the owner value concurrently without lock. Read from owner, however, 134 * may not need READ_ONCE() as long as the pointer value is only used 135 * for comparison and isn't being dereferenced. 136 * 137 * Both rwsem_{set,clear}_owner() functions should be in the same 138 * preempt disable section as the atomic op that changes sem->count. 139 */ 140 static inline void rwsem_set_owner(struct rw_semaphore *sem) 141 { 142 lockdep_assert_preemption_disabled(); 143 atomic_long_set(&sem->owner, (long)current); 144 } 145 146 static inline void rwsem_clear_owner(struct rw_semaphore *sem) 147 { 148 lockdep_assert_preemption_disabled(); 149 atomic_long_set(&sem->owner, 0); 150 } 151 152 /* 153 * Test the flags in the owner field. 154 */ 155 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags) 156 { 157 return atomic_long_read(&sem->owner) & flags; 158 } 159 160 /* 161 * The task_struct pointer of the last owning reader will be left in 162 * the owner field. 163 * 164 * Note that the owner value just indicates the task has owned the rwsem 165 * previously, it may not be the real owner or one of the real owners 166 * anymore when that field is examined, so take it with a grain of salt. 167 * 168 * The reader non-spinnable bit is preserved. 169 */ 170 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem, 171 struct task_struct *owner) 172 { 173 unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED | 174 (atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE); 175 176 atomic_long_set(&sem->owner, val); 177 } 178 179 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem) 180 { 181 __rwsem_set_reader_owned(sem, current); 182 } 183 184 /* 185 * Return true if the rwsem is owned by a reader. 186 */ 187 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem) 188 { 189 #ifdef CONFIG_DEBUG_RWSEMS 190 /* 191 * Check the count to see if it is write-locked. 192 */ 193 long count = atomic_long_read(&sem->count); 194 195 if (count & RWSEM_WRITER_MASK) 196 return false; 197 #endif 198 return rwsem_test_oflags(sem, RWSEM_READER_OWNED); 199 } 200 201 #ifdef CONFIG_DEBUG_RWSEMS 202 /* 203 * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there 204 * is a task pointer in owner of a reader-owned rwsem, it will be the 205 * real owner or one of the real owners. The only exception is when the 206 * unlock is done by up_read_non_owner(). 207 */ 208 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) 209 { 210 unsigned long val = atomic_long_read(&sem->owner); 211 212 while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) { 213 if (atomic_long_try_cmpxchg(&sem->owner, &val, 214 val & RWSEM_OWNER_FLAGS_MASK)) 215 return; 216 } 217 } 218 #else 219 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) 220 { 221 } 222 #endif 223 224 /* 225 * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag 226 * remains set. Otherwise, the operation will be aborted. 227 */ 228 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem) 229 { 230 unsigned long owner = atomic_long_read(&sem->owner); 231 232 do { 233 if (!(owner & RWSEM_READER_OWNED)) 234 break; 235 if (owner & RWSEM_NONSPINNABLE) 236 break; 237 } while (!atomic_long_try_cmpxchg(&sem->owner, &owner, 238 owner | RWSEM_NONSPINNABLE)); 239 } 240 241 static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp) 242 { 243 *cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count); 244 245 if (WARN_ON_ONCE(*cntp < 0)) 246 rwsem_set_nonspinnable(sem); 247 248 if (!(*cntp & RWSEM_READ_FAILED_MASK)) { 249 rwsem_set_reader_owned(sem); 250 return true; 251 } 252 253 return false; 254 } 255 256 static inline bool rwsem_write_trylock(struct rw_semaphore *sem) 257 { 258 long tmp = RWSEM_UNLOCKED_VALUE; 259 260 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) { 261 rwsem_set_owner(sem); 262 return true; 263 } 264 265 return false; 266 } 267 268 /* 269 * Return just the real task structure pointer of the owner 270 */ 271 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem) 272 { 273 return (struct task_struct *) 274 (atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK); 275 } 276 277 /* 278 * Return the real task structure pointer of the owner and the embedded 279 * flags in the owner. pflags must be non-NULL. 280 */ 281 static inline struct task_struct * 282 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags) 283 { 284 unsigned long owner = atomic_long_read(&sem->owner); 285 286 *pflags = owner & RWSEM_OWNER_FLAGS_MASK; 287 return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK); 288 } 289 290 /* 291 * Guide to the rw_semaphore's count field. 292 * 293 * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned 294 * by a writer. 295 * 296 * The lock is owned by readers when 297 * (1) the RWSEM_WRITER_LOCKED isn't set in count, 298 * (2) some of the reader bits are set in count, and 299 * (3) the owner field has RWSEM_READ_OWNED bit set. 300 * 301 * Having some reader bits set is not enough to guarantee a readers owned 302 * lock as the readers may be in the process of backing out from the count 303 * and a writer has just released the lock. So another writer may steal 304 * the lock immediately after that. 305 */ 306 307 /* 308 * Initialize an rwsem: 309 */ 310 void __init_rwsem(struct rw_semaphore *sem, const char *name, 311 struct lock_class_key *key) 312 { 313 #ifdef CONFIG_DEBUG_LOCK_ALLOC 314 /* 315 * Make sure we are not reinitializing a held semaphore: 316 */ 317 debug_check_no_locks_freed((void *)sem, sizeof(*sem)); 318 lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP); 319 #endif 320 #ifdef CONFIG_DEBUG_RWSEMS 321 sem->magic = sem; 322 #endif 323 atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE); 324 raw_spin_lock_init(&sem->wait_lock); 325 INIT_LIST_HEAD(&sem->wait_list); 326 atomic_long_set(&sem->owner, 0L); 327 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER 328 osq_lock_init(&sem->osq); 329 #endif 330 } 331 EXPORT_SYMBOL(__init_rwsem); 332 333 enum rwsem_waiter_type { 334 RWSEM_WAITING_FOR_WRITE, 335 RWSEM_WAITING_FOR_READ 336 }; 337 338 struct rwsem_waiter { 339 struct list_head list; 340 struct task_struct *task; 341 enum rwsem_waiter_type type; 342 unsigned long timeout; 343 bool handoff_set; 344 }; 345 #define rwsem_first_waiter(sem) \ 346 list_first_entry(&sem->wait_list, struct rwsem_waiter, list) 347 348 enum rwsem_wake_type { 349 RWSEM_WAKE_ANY, /* Wake whatever's at head of wait list */ 350 RWSEM_WAKE_READERS, /* Wake readers only */ 351 RWSEM_WAKE_READ_OWNED /* Waker thread holds the read lock */ 352 }; 353 354 /* 355 * The typical HZ value is either 250 or 1000. So set the minimum waiting 356 * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait 357 * queue before initiating the handoff protocol. 358 */ 359 #define RWSEM_WAIT_TIMEOUT DIV_ROUND_UP(HZ, 250) 360 361 /* 362 * Magic number to batch-wakeup waiting readers, even when writers are 363 * also present in the queue. This both limits the amount of work the 364 * waking thread must do and also prevents any potential counter overflow, 365 * however unlikely. 366 */ 367 #define MAX_READERS_WAKEUP 0x100 368 369 static inline void 370 rwsem_add_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter) 371 { 372 lockdep_assert_held(&sem->wait_lock); 373 list_add_tail(&waiter->list, &sem->wait_list); 374 /* caller will set RWSEM_FLAG_WAITERS */ 375 } 376 377 /* 378 * Remove a waiter from the wait_list and clear flags. 379 * 380 * Both rwsem_mark_wake() and rwsem_try_write_lock() contain a full 'copy' of 381 * this function. Modify with care. 382 * 383 * Return: true if wait_list isn't empty and false otherwise 384 */ 385 static inline bool 386 rwsem_del_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter) 387 { 388 lockdep_assert_held(&sem->wait_lock); 389 list_del(&waiter->list); 390 if (likely(!list_empty(&sem->wait_list))) 391 return true; 392 393 atomic_long_andnot(RWSEM_FLAG_HANDOFF | RWSEM_FLAG_WAITERS, &sem->count); 394 return false; 395 } 396 397 /* 398 * handle the lock release when processes blocked on it that can now run 399 * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must 400 * have been set. 401 * - there must be someone on the queue 402 * - the wait_lock must be held by the caller 403 * - tasks are marked for wakeup, the caller must later invoke wake_up_q() 404 * to actually wakeup the blocked task(s) and drop the reference count, 405 * preferably when the wait_lock is released 406 * - woken process blocks are discarded from the list after having task zeroed 407 * - writers are only marked woken if downgrading is false 408 * 409 * Implies rwsem_del_waiter() for all woken readers. 410 */ 411 static void rwsem_mark_wake(struct rw_semaphore *sem, 412 enum rwsem_wake_type wake_type, 413 struct wake_q_head *wake_q) 414 { 415 struct rwsem_waiter *waiter, *tmp; 416 long oldcount, woken = 0, adjustment = 0; 417 struct list_head wlist; 418 419 lockdep_assert_held(&sem->wait_lock); 420 421 /* 422 * Take a peek at the queue head waiter such that we can determine 423 * the wakeup(s) to perform. 424 */ 425 waiter = rwsem_first_waiter(sem); 426 427 if (waiter->type == RWSEM_WAITING_FOR_WRITE) { 428 if (wake_type == RWSEM_WAKE_ANY) { 429 /* 430 * Mark writer at the front of the queue for wakeup. 431 * Until the task is actually later awoken later by 432 * the caller, other writers are able to steal it. 433 * Readers, on the other hand, will block as they 434 * will notice the queued writer. 435 */ 436 wake_q_add(wake_q, waiter->task); 437 lockevent_inc(rwsem_wake_writer); 438 } 439 440 return; 441 } 442 443 /* 444 * No reader wakeup if there are too many of them already. 445 */ 446 if (unlikely(atomic_long_read(&sem->count) < 0)) 447 return; 448 449 /* 450 * Writers might steal the lock before we grant it to the next reader. 451 * We prefer to do the first reader grant before counting readers 452 * so we can bail out early if a writer stole the lock. 453 */ 454 if (wake_type != RWSEM_WAKE_READ_OWNED) { 455 struct task_struct *owner; 456 457 adjustment = RWSEM_READER_BIAS; 458 oldcount = atomic_long_fetch_add(adjustment, &sem->count); 459 if (unlikely(oldcount & RWSEM_WRITER_MASK)) { 460 /* 461 * When we've been waiting "too" long (for writers 462 * to give up the lock), request a HANDOFF to 463 * force the issue. 464 */ 465 if (time_after(jiffies, waiter->timeout)) { 466 if (!(oldcount & RWSEM_FLAG_HANDOFF)) { 467 adjustment -= RWSEM_FLAG_HANDOFF; 468 lockevent_inc(rwsem_rlock_handoff); 469 } 470 waiter->handoff_set = true; 471 } 472 473 atomic_long_add(-adjustment, &sem->count); 474 return; 475 } 476 /* 477 * Set it to reader-owned to give spinners an early 478 * indication that readers now have the lock. 479 * The reader nonspinnable bit seen at slowpath entry of 480 * the reader is copied over. 481 */ 482 owner = waiter->task; 483 __rwsem_set_reader_owned(sem, owner); 484 } 485 486 /* 487 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the 488 * queue. We know that the woken will be at least 1 as we accounted 489 * for above. Note we increment the 'active part' of the count by the 490 * number of readers before waking any processes up. 491 * 492 * This is an adaptation of the phase-fair R/W locks where at the 493 * reader phase (first waiter is a reader), all readers are eligible 494 * to acquire the lock at the same time irrespective of their order 495 * in the queue. The writers acquire the lock according to their 496 * order in the queue. 497 * 498 * We have to do wakeup in 2 passes to prevent the possibility that 499 * the reader count may be decremented before it is incremented. It 500 * is because the to-be-woken waiter may not have slept yet. So it 501 * may see waiter->task got cleared, finish its critical section and 502 * do an unlock before the reader count increment. 503 * 504 * 1) Collect the read-waiters in a separate list, count them and 505 * fully increment the reader count in rwsem. 506 * 2) For each waiters in the new list, clear waiter->task and 507 * put them into wake_q to be woken up later. 508 */ 509 INIT_LIST_HEAD(&wlist); 510 list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) { 511 if (waiter->type == RWSEM_WAITING_FOR_WRITE) 512 continue; 513 514 woken++; 515 list_move_tail(&waiter->list, &wlist); 516 517 /* 518 * Limit # of readers that can be woken up per wakeup call. 519 */ 520 if (unlikely(woken >= MAX_READERS_WAKEUP)) 521 break; 522 } 523 524 adjustment = woken * RWSEM_READER_BIAS - adjustment; 525 lockevent_cond_inc(rwsem_wake_reader, woken); 526 527 oldcount = atomic_long_read(&sem->count); 528 if (list_empty(&sem->wait_list)) { 529 /* 530 * Combined with list_move_tail() above, this implies 531 * rwsem_del_waiter(). 532 */ 533 adjustment -= RWSEM_FLAG_WAITERS; 534 if (oldcount & RWSEM_FLAG_HANDOFF) 535 adjustment -= RWSEM_FLAG_HANDOFF; 536 } else if (woken) { 537 /* 538 * When we've woken a reader, we no longer need to force 539 * writers to give up the lock and we can clear HANDOFF. 540 */ 541 if (oldcount & RWSEM_FLAG_HANDOFF) 542 adjustment -= RWSEM_FLAG_HANDOFF; 543 } 544 545 if (adjustment) 546 atomic_long_add(adjustment, &sem->count); 547 548 /* 2nd pass */ 549 list_for_each_entry_safe(waiter, tmp, &wlist, list) { 550 struct task_struct *tsk; 551 552 tsk = waiter->task; 553 get_task_struct(tsk); 554 555 /* 556 * Ensure calling get_task_struct() before setting the reader 557 * waiter to nil such that rwsem_down_read_slowpath() cannot 558 * race with do_exit() by always holding a reference count 559 * to the task to wakeup. 560 */ 561 smp_store_release(&waiter->task, NULL); 562 /* 563 * Ensure issuing the wakeup (either by us or someone else) 564 * after setting the reader waiter to nil. 565 */ 566 wake_q_add_safe(wake_q, tsk); 567 } 568 } 569 570 /* 571 * Remove a waiter and try to wake up other waiters in the wait queue 572 * This function is called from the out_nolock path of both the reader and 573 * writer slowpaths with wait_lock held. It releases the wait_lock and 574 * optionally wake up waiters before it returns. 575 */ 576 static inline void 577 rwsem_del_wake_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter, 578 struct wake_q_head *wake_q) 579 __releases(&sem->wait_lock) 580 { 581 bool first = rwsem_first_waiter(sem) == waiter; 582 583 wake_q_init(wake_q); 584 585 /* 586 * If the wait_list isn't empty and the waiter to be deleted is 587 * the first waiter, we wake up the remaining waiters as they may 588 * be eligible to acquire or spin on the lock. 589 */ 590 if (rwsem_del_waiter(sem, waiter) && first) 591 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, wake_q); 592 raw_spin_unlock_irq(&sem->wait_lock); 593 if (!wake_q_empty(wake_q)) 594 wake_up_q(wake_q); 595 } 596 597 /* 598 * This function must be called with the sem->wait_lock held to prevent 599 * race conditions between checking the rwsem wait list and setting the 600 * sem->count accordingly. 601 * 602 * Implies rwsem_del_waiter() on success. 603 */ 604 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem, 605 struct rwsem_waiter *waiter) 606 { 607 struct rwsem_waiter *first = rwsem_first_waiter(sem); 608 long count, new; 609 610 lockdep_assert_held(&sem->wait_lock); 611 612 count = atomic_long_read(&sem->count); 613 do { 614 bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF); 615 616 if (has_handoff) { 617 /* 618 * Honor handoff bit and yield only when the first 619 * waiter is the one that set it. Otherwisee, we 620 * still try to acquire the rwsem. 621 */ 622 if (first->handoff_set && (waiter != first)) 623 return false; 624 } 625 626 new = count; 627 628 if (count & RWSEM_LOCK_MASK) { 629 /* 630 * A waiter (first or not) can set the handoff bit 631 * if it is an RT task or wait in the wait queue 632 * for too long. 633 */ 634 if (has_handoff || (!rt_task(waiter->task) && 635 !time_after(jiffies, waiter->timeout))) 636 return false; 637 638 new |= RWSEM_FLAG_HANDOFF; 639 } else { 640 new |= RWSEM_WRITER_LOCKED; 641 new &= ~RWSEM_FLAG_HANDOFF; 642 643 if (list_is_singular(&sem->wait_list)) 644 new &= ~RWSEM_FLAG_WAITERS; 645 } 646 } while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new)); 647 648 /* 649 * We have either acquired the lock with handoff bit cleared or set 650 * the handoff bit. Only the first waiter can have its handoff_set 651 * set here to enable optimistic spinning in slowpath loop. 652 */ 653 if (new & RWSEM_FLAG_HANDOFF) { 654 first->handoff_set = true; 655 lockevent_inc(rwsem_wlock_handoff); 656 return false; 657 } 658 659 /* 660 * Have rwsem_try_write_lock() fully imply rwsem_del_waiter() on 661 * success. 662 */ 663 list_del(&waiter->list); 664 rwsem_set_owner(sem); 665 return true; 666 } 667 668 /* 669 * The rwsem_spin_on_owner() function returns the following 4 values 670 * depending on the lock owner state. 671 * OWNER_NULL : owner is currently NULL 672 * OWNER_WRITER: when owner changes and is a writer 673 * OWNER_READER: when owner changes and the new owner may be a reader. 674 * OWNER_NONSPINNABLE: 675 * when optimistic spinning has to stop because either the 676 * owner stops running, is unknown, or its timeslice has 677 * been used up. 678 */ 679 enum owner_state { 680 OWNER_NULL = 1 << 0, 681 OWNER_WRITER = 1 << 1, 682 OWNER_READER = 1 << 2, 683 OWNER_NONSPINNABLE = 1 << 3, 684 }; 685 686 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER 687 /* 688 * Try to acquire write lock before the writer has been put on wait queue. 689 */ 690 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem) 691 { 692 long count = atomic_long_read(&sem->count); 693 694 while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) { 695 if (atomic_long_try_cmpxchg_acquire(&sem->count, &count, 696 count | RWSEM_WRITER_LOCKED)) { 697 rwsem_set_owner(sem); 698 lockevent_inc(rwsem_opt_lock); 699 return true; 700 } 701 } 702 return false; 703 } 704 705 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem) 706 { 707 struct task_struct *owner; 708 unsigned long flags; 709 bool ret = true; 710 711 if (need_resched()) { 712 lockevent_inc(rwsem_opt_fail); 713 return false; 714 } 715 716 /* 717 * Disable preemption is equal to the RCU read-side crital section, 718 * thus the task_strcut structure won't go away. 719 */ 720 owner = rwsem_owner_flags(sem, &flags); 721 /* 722 * Don't check the read-owner as the entry may be stale. 723 */ 724 if ((flags & RWSEM_NONSPINNABLE) || 725 (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner))) 726 ret = false; 727 728 lockevent_cond_inc(rwsem_opt_fail, !ret); 729 return ret; 730 } 731 732 #define OWNER_SPINNABLE (OWNER_NULL | OWNER_WRITER | OWNER_READER) 733 734 static inline enum owner_state 735 rwsem_owner_state(struct task_struct *owner, unsigned long flags) 736 { 737 if (flags & RWSEM_NONSPINNABLE) 738 return OWNER_NONSPINNABLE; 739 740 if (flags & RWSEM_READER_OWNED) 741 return OWNER_READER; 742 743 return owner ? OWNER_WRITER : OWNER_NULL; 744 } 745 746 static noinline enum owner_state 747 rwsem_spin_on_owner(struct rw_semaphore *sem) 748 { 749 struct task_struct *new, *owner; 750 unsigned long flags, new_flags; 751 enum owner_state state; 752 753 lockdep_assert_preemption_disabled(); 754 755 owner = rwsem_owner_flags(sem, &flags); 756 state = rwsem_owner_state(owner, flags); 757 if (state != OWNER_WRITER) 758 return state; 759 760 for (;;) { 761 /* 762 * When a waiting writer set the handoff flag, it may spin 763 * on the owner as well. Once that writer acquires the lock, 764 * we can spin on it. So we don't need to quit even when the 765 * handoff bit is set. 766 */ 767 new = rwsem_owner_flags(sem, &new_flags); 768 if ((new != owner) || (new_flags != flags)) { 769 state = rwsem_owner_state(new, new_flags); 770 break; 771 } 772 773 /* 774 * Ensure we emit the owner->on_cpu, dereference _after_ 775 * checking sem->owner still matches owner, if that fails, 776 * owner might point to free()d memory, if it still matches, 777 * our spinning context already disabled preemption which is 778 * equal to RCU read-side crital section ensures the memory 779 * stays valid. 780 */ 781 barrier(); 782 783 if (need_resched() || !owner_on_cpu(owner)) { 784 state = OWNER_NONSPINNABLE; 785 break; 786 } 787 788 cpu_relax(); 789 } 790 791 return state; 792 } 793 794 /* 795 * Calculate reader-owned rwsem spinning threshold for writer 796 * 797 * The more readers own the rwsem, the longer it will take for them to 798 * wind down and free the rwsem. So the empirical formula used to 799 * determine the actual spinning time limit here is: 800 * 801 * Spinning threshold = (10 + nr_readers/2)us 802 * 803 * The limit is capped to a maximum of 25us (30 readers). This is just 804 * a heuristic and is subjected to change in the future. 805 */ 806 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem) 807 { 808 long count = atomic_long_read(&sem->count); 809 int readers = count >> RWSEM_READER_SHIFT; 810 u64 delta; 811 812 if (readers > 30) 813 readers = 30; 814 delta = (20 + readers) * NSEC_PER_USEC / 2; 815 816 return sched_clock() + delta; 817 } 818 819 static bool rwsem_optimistic_spin(struct rw_semaphore *sem) 820 { 821 bool taken = false; 822 int prev_owner_state = OWNER_NULL; 823 int loop = 0; 824 u64 rspin_threshold = 0; 825 826 /* sem->wait_lock should not be held when doing optimistic spinning */ 827 if (!osq_lock(&sem->osq)) 828 goto done; 829 830 /* 831 * Optimistically spin on the owner field and attempt to acquire the 832 * lock whenever the owner changes. Spinning will be stopped when: 833 * 1) the owning writer isn't running; or 834 * 2) readers own the lock and spinning time has exceeded limit. 835 */ 836 for (;;) { 837 enum owner_state owner_state; 838 839 owner_state = rwsem_spin_on_owner(sem); 840 if (!(owner_state & OWNER_SPINNABLE)) 841 break; 842 843 /* 844 * Try to acquire the lock 845 */ 846 taken = rwsem_try_write_lock_unqueued(sem); 847 848 if (taken) 849 break; 850 851 /* 852 * Time-based reader-owned rwsem optimistic spinning 853 */ 854 if (owner_state == OWNER_READER) { 855 /* 856 * Re-initialize rspin_threshold every time when 857 * the owner state changes from non-reader to reader. 858 * This allows a writer to steal the lock in between 859 * 2 reader phases and have the threshold reset at 860 * the beginning of the 2nd reader phase. 861 */ 862 if (prev_owner_state != OWNER_READER) { 863 if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)) 864 break; 865 rspin_threshold = rwsem_rspin_threshold(sem); 866 loop = 0; 867 } 868 869 /* 870 * Check time threshold once every 16 iterations to 871 * avoid calling sched_clock() too frequently so 872 * as to reduce the average latency between the times 873 * when the lock becomes free and when the spinner 874 * is ready to do a trylock. 875 */ 876 else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) { 877 rwsem_set_nonspinnable(sem); 878 lockevent_inc(rwsem_opt_nospin); 879 break; 880 } 881 } 882 883 /* 884 * An RT task cannot do optimistic spinning if it cannot 885 * be sure the lock holder is running or live-lock may 886 * happen if the current task and the lock holder happen 887 * to run in the same CPU. However, aborting optimistic 888 * spinning while a NULL owner is detected may miss some 889 * opportunity where spinning can continue without causing 890 * problem. 891 * 892 * There are 2 possible cases where an RT task may be able 893 * to continue spinning. 894 * 895 * 1) The lock owner is in the process of releasing the 896 * lock, sem->owner is cleared but the lock has not 897 * been released yet. 898 * 2) The lock was free and owner cleared, but another 899 * task just comes in and acquire the lock before 900 * we try to get it. The new owner may be a spinnable 901 * writer. 902 * 903 * To take advantage of two scenarios listed above, the RT 904 * task is made to retry one more time to see if it can 905 * acquire the lock or continue spinning on the new owning 906 * writer. Of course, if the time lag is long enough or the 907 * new owner is not a writer or spinnable, the RT task will 908 * quit spinning. 909 * 910 * If the owner is a writer, the need_resched() check is 911 * done inside rwsem_spin_on_owner(). If the owner is not 912 * a writer, need_resched() check needs to be done here. 913 */ 914 if (owner_state != OWNER_WRITER) { 915 if (need_resched()) 916 break; 917 if (rt_task(current) && 918 (prev_owner_state != OWNER_WRITER)) 919 break; 920 } 921 prev_owner_state = owner_state; 922 923 /* 924 * The cpu_relax() call is a compiler barrier which forces 925 * everything in this loop to be re-loaded. We don't need 926 * memory barriers as we'll eventually observe the right 927 * values at the cost of a few extra spins. 928 */ 929 cpu_relax(); 930 } 931 osq_unlock(&sem->osq); 932 done: 933 lockevent_cond_inc(rwsem_opt_fail, !taken); 934 return taken; 935 } 936 937 /* 938 * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should 939 * only be called when the reader count reaches 0. 940 */ 941 static inline void clear_nonspinnable(struct rw_semaphore *sem) 942 { 943 if (unlikely(rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))) 944 atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner); 945 } 946 947 #else 948 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem) 949 { 950 return false; 951 } 952 953 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem) 954 { 955 return false; 956 } 957 958 static inline void clear_nonspinnable(struct rw_semaphore *sem) { } 959 960 static inline enum owner_state 961 rwsem_spin_on_owner(struct rw_semaphore *sem) 962 { 963 return OWNER_NONSPINNABLE; 964 } 965 #endif 966 967 /* 968 * Prepare to wake up waiter(s) in the wait queue by putting them into the 969 * given wake_q if the rwsem lock owner isn't a writer. If rwsem is likely 970 * reader-owned, wake up read lock waiters in queue front or wake up any 971 * front waiter otherwise. 972 973 * This is being called from both reader and writer slow paths. 974 */ 975 static inline void rwsem_cond_wake_waiter(struct rw_semaphore *sem, long count, 976 struct wake_q_head *wake_q) 977 { 978 enum rwsem_wake_type wake_type; 979 980 if (count & RWSEM_WRITER_MASK) 981 return; 982 983 if (count & RWSEM_READER_MASK) { 984 wake_type = RWSEM_WAKE_READERS; 985 } else { 986 wake_type = RWSEM_WAKE_ANY; 987 clear_nonspinnable(sem); 988 } 989 rwsem_mark_wake(sem, wake_type, wake_q); 990 } 991 992 /* 993 * Wait for the read lock to be granted 994 */ 995 static struct rw_semaphore __sched * 996 rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state) 997 { 998 long adjustment = -RWSEM_READER_BIAS; 999 long rcnt = (count >> RWSEM_READER_SHIFT); 1000 struct rwsem_waiter waiter; 1001 DEFINE_WAKE_Q(wake_q); 1002 1003 /* 1004 * To prevent a constant stream of readers from starving a sleeping 1005 * waiter, don't attempt optimistic lock stealing if the lock is 1006 * currently owned by readers. 1007 */ 1008 if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) && 1009 (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED)) 1010 goto queue; 1011 1012 /* 1013 * Reader optimistic lock stealing. 1014 */ 1015 if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) { 1016 rwsem_set_reader_owned(sem); 1017 lockevent_inc(rwsem_rlock_steal); 1018 1019 /* 1020 * Wake up other readers in the wait queue if it is 1021 * the first reader. 1022 */ 1023 if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) { 1024 raw_spin_lock_irq(&sem->wait_lock); 1025 if (!list_empty(&sem->wait_list)) 1026 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, 1027 &wake_q); 1028 raw_spin_unlock_irq(&sem->wait_lock); 1029 wake_up_q(&wake_q); 1030 } 1031 return sem; 1032 } 1033 1034 queue: 1035 waiter.task = current; 1036 waiter.type = RWSEM_WAITING_FOR_READ; 1037 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT; 1038 waiter.handoff_set = false; 1039 1040 raw_spin_lock_irq(&sem->wait_lock); 1041 if (list_empty(&sem->wait_list)) { 1042 /* 1043 * In case the wait queue is empty and the lock isn't owned 1044 * by a writer, this reader can exit the slowpath and return 1045 * immediately as its RWSEM_READER_BIAS has already been set 1046 * in the count. 1047 */ 1048 if (!(atomic_long_read(&sem->count) & RWSEM_WRITER_MASK)) { 1049 /* Provide lock ACQUIRE */ 1050 smp_acquire__after_ctrl_dep(); 1051 raw_spin_unlock_irq(&sem->wait_lock); 1052 rwsem_set_reader_owned(sem); 1053 lockevent_inc(rwsem_rlock_fast); 1054 return sem; 1055 } 1056 adjustment += RWSEM_FLAG_WAITERS; 1057 } 1058 rwsem_add_waiter(sem, &waiter); 1059 1060 /* we're now waiting on the lock, but no longer actively locking */ 1061 count = atomic_long_add_return(adjustment, &sem->count); 1062 1063 rwsem_cond_wake_waiter(sem, count, &wake_q); 1064 raw_spin_unlock_irq(&sem->wait_lock); 1065 1066 if (!wake_q_empty(&wake_q)) 1067 wake_up_q(&wake_q); 1068 1069 trace_contention_begin(sem, LCB_F_READ); 1070 1071 /* wait to be given the lock */ 1072 for (;;) { 1073 set_current_state(state); 1074 if (!smp_load_acquire(&waiter.task)) { 1075 /* Matches rwsem_mark_wake()'s smp_store_release(). */ 1076 break; 1077 } 1078 if (signal_pending_state(state, current)) { 1079 raw_spin_lock_irq(&sem->wait_lock); 1080 if (waiter.task) 1081 goto out_nolock; 1082 raw_spin_unlock_irq(&sem->wait_lock); 1083 /* Ordered by sem->wait_lock against rwsem_mark_wake(). */ 1084 break; 1085 } 1086 schedule_preempt_disabled(); 1087 lockevent_inc(rwsem_sleep_reader); 1088 } 1089 1090 __set_current_state(TASK_RUNNING); 1091 lockevent_inc(rwsem_rlock); 1092 trace_contention_end(sem, 0); 1093 return sem; 1094 1095 out_nolock: 1096 rwsem_del_wake_waiter(sem, &waiter, &wake_q); 1097 __set_current_state(TASK_RUNNING); 1098 lockevent_inc(rwsem_rlock_fail); 1099 trace_contention_end(sem, -EINTR); 1100 return ERR_PTR(-EINTR); 1101 } 1102 1103 /* 1104 * Wait until we successfully acquire the write lock 1105 */ 1106 static struct rw_semaphore __sched * 1107 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state) 1108 { 1109 struct rwsem_waiter waiter; 1110 DEFINE_WAKE_Q(wake_q); 1111 1112 /* do optimistic spinning and steal lock if possible */ 1113 if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) { 1114 /* rwsem_optimistic_spin() implies ACQUIRE on success */ 1115 return sem; 1116 } 1117 1118 /* 1119 * Optimistic spinning failed, proceed to the slowpath 1120 * and block until we can acquire the sem. 1121 */ 1122 waiter.task = current; 1123 waiter.type = RWSEM_WAITING_FOR_WRITE; 1124 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT; 1125 waiter.handoff_set = false; 1126 1127 raw_spin_lock_irq(&sem->wait_lock); 1128 rwsem_add_waiter(sem, &waiter); 1129 1130 /* we're now waiting on the lock */ 1131 if (rwsem_first_waiter(sem) != &waiter) { 1132 rwsem_cond_wake_waiter(sem, atomic_long_read(&sem->count), 1133 &wake_q); 1134 if (!wake_q_empty(&wake_q)) { 1135 /* 1136 * We want to minimize wait_lock hold time especially 1137 * when a large number of readers are to be woken up. 1138 */ 1139 raw_spin_unlock_irq(&sem->wait_lock); 1140 wake_up_q(&wake_q); 1141 raw_spin_lock_irq(&sem->wait_lock); 1142 } 1143 } else { 1144 atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count); 1145 } 1146 1147 /* wait until we successfully acquire the lock */ 1148 set_current_state(state); 1149 trace_contention_begin(sem, LCB_F_WRITE); 1150 1151 for (;;) { 1152 if (rwsem_try_write_lock(sem, &waiter)) { 1153 /* rwsem_try_write_lock() implies ACQUIRE on success */ 1154 break; 1155 } 1156 1157 raw_spin_unlock_irq(&sem->wait_lock); 1158 1159 if (signal_pending_state(state, current)) 1160 goto out_nolock; 1161 1162 /* 1163 * After setting the handoff bit and failing to acquire 1164 * the lock, attempt to spin on owner to accelerate lock 1165 * transfer. If the previous owner is a on-cpu writer and it 1166 * has just released the lock, OWNER_NULL will be returned. 1167 * In this case, we attempt to acquire the lock again 1168 * without sleeping. 1169 */ 1170 if (waiter.handoff_set) { 1171 enum owner_state owner_state; 1172 1173 owner_state = rwsem_spin_on_owner(sem); 1174 if (owner_state == OWNER_NULL) 1175 goto trylock_again; 1176 } 1177 1178 schedule_preempt_disabled(); 1179 lockevent_inc(rwsem_sleep_writer); 1180 set_current_state(state); 1181 trylock_again: 1182 raw_spin_lock_irq(&sem->wait_lock); 1183 } 1184 __set_current_state(TASK_RUNNING); 1185 raw_spin_unlock_irq(&sem->wait_lock); 1186 lockevent_inc(rwsem_wlock); 1187 trace_contention_end(sem, 0); 1188 return sem; 1189 1190 out_nolock: 1191 __set_current_state(TASK_RUNNING); 1192 raw_spin_lock_irq(&sem->wait_lock); 1193 rwsem_del_wake_waiter(sem, &waiter, &wake_q); 1194 lockevent_inc(rwsem_wlock_fail); 1195 trace_contention_end(sem, -EINTR); 1196 return ERR_PTR(-EINTR); 1197 } 1198 1199 /* 1200 * handle waking up a waiter on the semaphore 1201 * - up_read/up_write has decremented the active part of count if we come here 1202 */ 1203 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem) 1204 { 1205 unsigned long flags; 1206 DEFINE_WAKE_Q(wake_q); 1207 1208 raw_spin_lock_irqsave(&sem->wait_lock, flags); 1209 1210 if (!list_empty(&sem->wait_list)) 1211 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); 1212 1213 raw_spin_unlock_irqrestore(&sem->wait_lock, flags); 1214 wake_up_q(&wake_q); 1215 1216 return sem; 1217 } 1218 1219 /* 1220 * downgrade a write lock into a read lock 1221 * - caller incremented waiting part of count and discovered it still negative 1222 * - just wake up any readers at the front of the queue 1223 */ 1224 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem) 1225 { 1226 unsigned long flags; 1227 DEFINE_WAKE_Q(wake_q); 1228 1229 raw_spin_lock_irqsave(&sem->wait_lock, flags); 1230 1231 if (!list_empty(&sem->wait_list)) 1232 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q); 1233 1234 raw_spin_unlock_irqrestore(&sem->wait_lock, flags); 1235 wake_up_q(&wake_q); 1236 1237 return sem; 1238 } 1239 1240 /* 1241 * lock for reading 1242 */ 1243 static inline int __down_read_common(struct rw_semaphore *sem, int state) 1244 { 1245 int ret = 0; 1246 long count; 1247 1248 preempt_disable(); 1249 if (!rwsem_read_trylock(sem, &count)) { 1250 if (IS_ERR(rwsem_down_read_slowpath(sem, count, state))) { 1251 ret = -EINTR; 1252 goto out; 1253 } 1254 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1255 } 1256 out: 1257 preempt_enable(); 1258 return ret; 1259 } 1260 1261 static inline void __down_read(struct rw_semaphore *sem) 1262 { 1263 __down_read_common(sem, TASK_UNINTERRUPTIBLE); 1264 } 1265 1266 static inline int __down_read_interruptible(struct rw_semaphore *sem) 1267 { 1268 return __down_read_common(sem, TASK_INTERRUPTIBLE); 1269 } 1270 1271 static inline int __down_read_killable(struct rw_semaphore *sem) 1272 { 1273 return __down_read_common(sem, TASK_KILLABLE); 1274 } 1275 1276 static inline int __down_read_trylock(struct rw_semaphore *sem) 1277 { 1278 int ret = 0; 1279 long tmp; 1280 1281 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1282 1283 preempt_disable(); 1284 tmp = atomic_long_read(&sem->count); 1285 while (!(tmp & RWSEM_READ_FAILED_MASK)) { 1286 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, 1287 tmp + RWSEM_READER_BIAS)) { 1288 rwsem_set_reader_owned(sem); 1289 ret = 1; 1290 break; 1291 } 1292 } 1293 preempt_enable(); 1294 return ret; 1295 } 1296 1297 /* 1298 * lock for writing 1299 */ 1300 static inline int __down_write_common(struct rw_semaphore *sem, int state) 1301 { 1302 int ret = 0; 1303 1304 preempt_disable(); 1305 if (unlikely(!rwsem_write_trylock(sem))) { 1306 if (IS_ERR(rwsem_down_write_slowpath(sem, state))) 1307 ret = -EINTR; 1308 } 1309 preempt_enable(); 1310 return ret; 1311 } 1312 1313 static inline void __down_write(struct rw_semaphore *sem) 1314 { 1315 __down_write_common(sem, TASK_UNINTERRUPTIBLE); 1316 } 1317 1318 static inline int __down_write_killable(struct rw_semaphore *sem) 1319 { 1320 return __down_write_common(sem, TASK_KILLABLE); 1321 } 1322 1323 static inline int __down_write_trylock(struct rw_semaphore *sem) 1324 { 1325 int ret; 1326 1327 preempt_disable(); 1328 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1329 ret = rwsem_write_trylock(sem); 1330 preempt_enable(); 1331 1332 return ret; 1333 } 1334 1335 /* 1336 * unlock after reading 1337 */ 1338 static inline void __up_read(struct rw_semaphore *sem) 1339 { 1340 long tmp; 1341 1342 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1343 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1344 1345 preempt_disable(); 1346 rwsem_clear_reader_owned(sem); 1347 tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count); 1348 DEBUG_RWSEMS_WARN_ON(tmp < 0, sem); 1349 if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) == 1350 RWSEM_FLAG_WAITERS)) { 1351 clear_nonspinnable(sem); 1352 rwsem_wake(sem); 1353 } 1354 preempt_enable(); 1355 } 1356 1357 /* 1358 * unlock after writing 1359 */ 1360 static inline void __up_write(struct rw_semaphore *sem) 1361 { 1362 long tmp; 1363 1364 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1365 /* 1366 * sem->owner may differ from current if the ownership is transferred 1367 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits. 1368 */ 1369 DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) && 1370 !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem); 1371 1372 preempt_disable(); 1373 rwsem_clear_owner(sem); 1374 tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count); 1375 if (unlikely(tmp & RWSEM_FLAG_WAITERS)) 1376 rwsem_wake(sem); 1377 preempt_enable(); 1378 } 1379 1380 /* 1381 * downgrade write lock to read lock 1382 */ 1383 static inline void __downgrade_write(struct rw_semaphore *sem) 1384 { 1385 long tmp; 1386 1387 /* 1388 * When downgrading from exclusive to shared ownership, 1389 * anything inside the write-locked region cannot leak 1390 * into the read side. In contrast, anything in the 1391 * read-locked region is ok to be re-ordered into the 1392 * write side. As such, rely on RELEASE semantics. 1393 */ 1394 DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem); 1395 preempt_disable(); 1396 tmp = atomic_long_fetch_add_release( 1397 -RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count); 1398 rwsem_set_reader_owned(sem); 1399 if (tmp & RWSEM_FLAG_WAITERS) 1400 rwsem_downgrade_wake(sem); 1401 preempt_enable(); 1402 } 1403 1404 #else /* !CONFIG_PREEMPT_RT */ 1405 1406 #define RT_MUTEX_BUILD_MUTEX 1407 #include "rtmutex.c" 1408 1409 #define rwbase_set_and_save_current_state(state) \ 1410 set_current_state(state) 1411 1412 #define rwbase_restore_current_state() \ 1413 __set_current_state(TASK_RUNNING) 1414 1415 #define rwbase_rtmutex_lock_state(rtm, state) \ 1416 __rt_mutex_lock(rtm, state) 1417 1418 #define rwbase_rtmutex_slowlock_locked(rtm, state) \ 1419 __rt_mutex_slowlock_locked(rtm, NULL, state) 1420 1421 #define rwbase_rtmutex_unlock(rtm) \ 1422 __rt_mutex_unlock(rtm) 1423 1424 #define rwbase_rtmutex_trylock(rtm) \ 1425 __rt_mutex_trylock(rtm) 1426 1427 #define rwbase_signal_pending_state(state, current) \ 1428 signal_pending_state(state, current) 1429 1430 #define rwbase_schedule() \ 1431 schedule() 1432 1433 #include "rwbase_rt.c" 1434 1435 void __init_rwsem(struct rw_semaphore *sem, const char *name, 1436 struct lock_class_key *key) 1437 { 1438 init_rwbase_rt(&(sem)->rwbase); 1439 1440 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1441 debug_check_no_locks_freed((void *)sem, sizeof(*sem)); 1442 lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP); 1443 #endif 1444 } 1445 EXPORT_SYMBOL(__init_rwsem); 1446 1447 static inline void __down_read(struct rw_semaphore *sem) 1448 { 1449 rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE); 1450 } 1451 1452 static inline int __down_read_interruptible(struct rw_semaphore *sem) 1453 { 1454 return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE); 1455 } 1456 1457 static inline int __down_read_killable(struct rw_semaphore *sem) 1458 { 1459 return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE); 1460 } 1461 1462 static inline int __down_read_trylock(struct rw_semaphore *sem) 1463 { 1464 return rwbase_read_trylock(&sem->rwbase); 1465 } 1466 1467 static inline void __up_read(struct rw_semaphore *sem) 1468 { 1469 rwbase_read_unlock(&sem->rwbase, TASK_NORMAL); 1470 } 1471 1472 static inline void __sched __down_write(struct rw_semaphore *sem) 1473 { 1474 rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE); 1475 } 1476 1477 static inline int __sched __down_write_killable(struct rw_semaphore *sem) 1478 { 1479 return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE); 1480 } 1481 1482 static inline int __down_write_trylock(struct rw_semaphore *sem) 1483 { 1484 return rwbase_write_trylock(&sem->rwbase); 1485 } 1486 1487 static inline void __up_write(struct rw_semaphore *sem) 1488 { 1489 rwbase_write_unlock(&sem->rwbase); 1490 } 1491 1492 static inline void __downgrade_write(struct rw_semaphore *sem) 1493 { 1494 rwbase_write_downgrade(&sem->rwbase); 1495 } 1496 1497 /* Debug stubs for the common API */ 1498 #define DEBUG_RWSEMS_WARN_ON(c, sem) 1499 1500 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem, 1501 struct task_struct *owner) 1502 { 1503 } 1504 1505 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem) 1506 { 1507 int count = atomic_read(&sem->rwbase.readers); 1508 1509 return count < 0 && count != READER_BIAS; 1510 } 1511 1512 #endif /* CONFIG_PREEMPT_RT */ 1513 1514 /* 1515 * lock for reading 1516 */ 1517 void __sched down_read(struct rw_semaphore *sem) 1518 { 1519 might_sleep(); 1520 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1521 1522 LOCK_CONTENDED(sem, __down_read_trylock, __down_read); 1523 } 1524 EXPORT_SYMBOL(down_read); 1525 1526 int __sched down_read_interruptible(struct rw_semaphore *sem) 1527 { 1528 might_sleep(); 1529 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1530 1531 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) { 1532 rwsem_release(&sem->dep_map, _RET_IP_); 1533 return -EINTR; 1534 } 1535 1536 return 0; 1537 } 1538 EXPORT_SYMBOL(down_read_interruptible); 1539 1540 int __sched down_read_killable(struct rw_semaphore *sem) 1541 { 1542 might_sleep(); 1543 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1544 1545 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) { 1546 rwsem_release(&sem->dep_map, _RET_IP_); 1547 return -EINTR; 1548 } 1549 1550 return 0; 1551 } 1552 EXPORT_SYMBOL(down_read_killable); 1553 1554 /* 1555 * trylock for reading -- returns 1 if successful, 0 if contention 1556 */ 1557 int down_read_trylock(struct rw_semaphore *sem) 1558 { 1559 int ret = __down_read_trylock(sem); 1560 1561 if (ret == 1) 1562 rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_); 1563 return ret; 1564 } 1565 EXPORT_SYMBOL(down_read_trylock); 1566 1567 /* 1568 * lock for writing 1569 */ 1570 void __sched down_write(struct rw_semaphore *sem) 1571 { 1572 might_sleep(); 1573 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); 1574 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1575 } 1576 EXPORT_SYMBOL(down_write); 1577 1578 /* 1579 * lock for writing 1580 */ 1581 int __sched down_write_killable(struct rw_semaphore *sem) 1582 { 1583 might_sleep(); 1584 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); 1585 1586 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, 1587 __down_write_killable)) { 1588 rwsem_release(&sem->dep_map, _RET_IP_); 1589 return -EINTR; 1590 } 1591 1592 return 0; 1593 } 1594 EXPORT_SYMBOL(down_write_killable); 1595 1596 /* 1597 * trylock for writing -- returns 1 if successful, 0 if contention 1598 */ 1599 int down_write_trylock(struct rw_semaphore *sem) 1600 { 1601 int ret = __down_write_trylock(sem); 1602 1603 if (ret == 1) 1604 rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_); 1605 1606 return ret; 1607 } 1608 EXPORT_SYMBOL(down_write_trylock); 1609 1610 /* 1611 * release a read lock 1612 */ 1613 void up_read(struct rw_semaphore *sem) 1614 { 1615 rwsem_release(&sem->dep_map, _RET_IP_); 1616 __up_read(sem); 1617 } 1618 EXPORT_SYMBOL(up_read); 1619 1620 /* 1621 * release a write lock 1622 */ 1623 void up_write(struct rw_semaphore *sem) 1624 { 1625 rwsem_release(&sem->dep_map, _RET_IP_); 1626 __up_write(sem); 1627 } 1628 EXPORT_SYMBOL(up_write); 1629 1630 /* 1631 * downgrade write lock to read lock 1632 */ 1633 void downgrade_write(struct rw_semaphore *sem) 1634 { 1635 lock_downgrade(&sem->dep_map, _RET_IP_); 1636 __downgrade_write(sem); 1637 } 1638 EXPORT_SYMBOL(downgrade_write); 1639 1640 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1641 1642 void down_read_nested(struct rw_semaphore *sem, int subclass) 1643 { 1644 might_sleep(); 1645 rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_); 1646 LOCK_CONTENDED(sem, __down_read_trylock, __down_read); 1647 } 1648 EXPORT_SYMBOL(down_read_nested); 1649 1650 int down_read_killable_nested(struct rw_semaphore *sem, int subclass) 1651 { 1652 might_sleep(); 1653 rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_); 1654 1655 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) { 1656 rwsem_release(&sem->dep_map, _RET_IP_); 1657 return -EINTR; 1658 } 1659 1660 return 0; 1661 } 1662 EXPORT_SYMBOL(down_read_killable_nested); 1663 1664 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest) 1665 { 1666 might_sleep(); 1667 rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_); 1668 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1669 } 1670 EXPORT_SYMBOL(_down_write_nest_lock); 1671 1672 void down_read_non_owner(struct rw_semaphore *sem) 1673 { 1674 might_sleep(); 1675 __down_read(sem); 1676 /* 1677 * The owner value for a reader-owned lock is mostly for debugging 1678 * purpose only and is not critical to the correct functioning of 1679 * rwsem. So it is perfectly fine to set it in a preempt-enabled 1680 * context here. 1681 */ 1682 __rwsem_set_reader_owned(sem, NULL); 1683 } 1684 EXPORT_SYMBOL(down_read_non_owner); 1685 1686 void down_write_nested(struct rw_semaphore *sem, int subclass) 1687 { 1688 might_sleep(); 1689 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); 1690 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1691 } 1692 EXPORT_SYMBOL(down_write_nested); 1693 1694 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass) 1695 { 1696 might_sleep(); 1697 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); 1698 1699 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, 1700 __down_write_killable)) { 1701 rwsem_release(&sem->dep_map, _RET_IP_); 1702 return -EINTR; 1703 } 1704 1705 return 0; 1706 } 1707 EXPORT_SYMBOL(down_write_killable_nested); 1708 1709 void up_read_non_owner(struct rw_semaphore *sem) 1710 { 1711 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1712 __up_read(sem); 1713 } 1714 EXPORT_SYMBOL(up_read_non_owner); 1715 1716 #endif 1717