1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * rtmutex API 4 */ 5 #include <linux/spinlock.h> 6 #include <linux/export.h> 7 8 #define RT_MUTEX_BUILD_MUTEX 9 #include "rtmutex.c" 10 11 /* 12 * Max number of times we'll walk the boosting chain: 13 */ 14 int max_lock_depth = 1024; 15 16 /* 17 * Debug aware fast / slowpath lock,trylock,unlock 18 * 19 * The atomic acquire/release ops are compiled away, when either the 20 * architecture does not support cmpxchg or when debugging is enabled. 21 */ 22 static __always_inline int __rt_mutex_lock_common(struct rt_mutex *lock, 23 unsigned int state, 24 unsigned int subclass) 25 { 26 int ret; 27 28 might_sleep(); 29 mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_); 30 ret = __rt_mutex_lock(&lock->rtmutex, state); 31 if (ret) 32 mutex_release(&lock->dep_map, _RET_IP_); 33 return ret; 34 } 35 36 void rt_mutex_base_init(struct rt_mutex_base *rtb) 37 { 38 __rt_mutex_base_init(rtb); 39 } 40 EXPORT_SYMBOL(rt_mutex_base_init); 41 42 #ifdef CONFIG_DEBUG_LOCK_ALLOC 43 /** 44 * rt_mutex_lock_nested - lock a rt_mutex 45 * 46 * @lock: the rt_mutex to be locked 47 * @subclass: the lockdep subclass 48 */ 49 void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass) 50 { 51 __rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass); 52 } 53 EXPORT_SYMBOL_GPL(rt_mutex_lock_nested); 54 55 #else /* !CONFIG_DEBUG_LOCK_ALLOC */ 56 57 /** 58 * rt_mutex_lock - lock a rt_mutex 59 * 60 * @lock: the rt_mutex to be locked 61 */ 62 void __sched rt_mutex_lock(struct rt_mutex *lock) 63 { 64 __rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0); 65 } 66 EXPORT_SYMBOL_GPL(rt_mutex_lock); 67 #endif 68 69 /** 70 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible 71 * 72 * @lock: the rt_mutex to be locked 73 * 74 * Returns: 75 * 0 on success 76 * -EINTR when interrupted by a signal 77 */ 78 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock) 79 { 80 return __rt_mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0); 81 } 82 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible); 83 84 /** 85 * rt_mutex_trylock - try to lock a rt_mutex 86 * 87 * @lock: the rt_mutex to be locked 88 * 89 * This function can only be called in thread context. It's safe to call it 90 * from atomic regions, but not from hard or soft interrupt context. 91 * 92 * Returns: 93 * 1 on success 94 * 0 on contention 95 */ 96 int __sched rt_mutex_trylock(struct rt_mutex *lock) 97 { 98 int ret; 99 100 if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task())) 101 return 0; 102 103 ret = __rt_mutex_trylock(&lock->rtmutex); 104 if (ret) 105 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); 106 107 return ret; 108 } 109 EXPORT_SYMBOL_GPL(rt_mutex_trylock); 110 111 /** 112 * rt_mutex_unlock - unlock a rt_mutex 113 * 114 * @lock: the rt_mutex to be unlocked 115 */ 116 void __sched rt_mutex_unlock(struct rt_mutex *lock) 117 { 118 mutex_release(&lock->dep_map, _RET_IP_); 119 __rt_mutex_unlock(&lock->rtmutex); 120 } 121 EXPORT_SYMBOL_GPL(rt_mutex_unlock); 122 123 /* 124 * Futex variants, must not use fastpath. 125 */ 126 int __sched rt_mutex_futex_trylock(struct rt_mutex_base *lock) 127 { 128 return rt_mutex_slowtrylock(lock); 129 } 130 131 int __sched __rt_mutex_futex_trylock(struct rt_mutex_base *lock) 132 { 133 return __rt_mutex_slowtrylock(lock); 134 } 135 136 /** 137 * __rt_mutex_futex_unlock - Futex variant, that since futex variants 138 * do not use the fast-path, can be simple and will not need to retry. 139 * 140 * @lock: The rt_mutex to be unlocked 141 * @wqh: The wake queue head from which to get the next lock waiter 142 */ 143 bool __sched __rt_mutex_futex_unlock(struct rt_mutex_base *lock, 144 struct rt_wake_q_head *wqh) 145 { 146 lockdep_assert_held(&lock->wait_lock); 147 148 debug_rt_mutex_unlock(lock); 149 150 if (!rt_mutex_has_waiters(lock)) { 151 lock->owner = NULL; 152 return false; /* done */ 153 } 154 155 /* 156 * We've already deboosted, mark_wakeup_next_waiter() will 157 * retain preempt_disabled when we drop the wait_lock, to 158 * avoid inversion prior to the wakeup. preempt_disable() 159 * therein pairs with rt_mutex_postunlock(). 160 */ 161 mark_wakeup_next_waiter(wqh, lock); 162 163 return true; /* call postunlock() */ 164 } 165 166 void __sched rt_mutex_futex_unlock(struct rt_mutex_base *lock) 167 { 168 DEFINE_RT_WAKE_Q(wqh); 169 unsigned long flags; 170 bool postunlock; 171 172 raw_spin_lock_irqsave(&lock->wait_lock, flags); 173 postunlock = __rt_mutex_futex_unlock(lock, &wqh); 174 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 175 176 if (postunlock) 177 rt_mutex_postunlock(&wqh); 178 } 179 180 /** 181 * __rt_mutex_init - initialize the rt_mutex 182 * 183 * @lock: The rt_mutex to be initialized 184 * @name: The lock name used for debugging 185 * @key: The lock class key used for debugging 186 * 187 * Initialize the rt_mutex to unlocked state. 188 * 189 * Initializing of a locked rt_mutex is not allowed 190 */ 191 void __sched __rt_mutex_init(struct rt_mutex *lock, const char *name, 192 struct lock_class_key *key) 193 { 194 debug_check_no_locks_freed((void *)lock, sizeof(*lock)); 195 __rt_mutex_base_init(&lock->rtmutex); 196 lockdep_init_map_wait(&lock->dep_map, name, key, 0, LD_WAIT_SLEEP); 197 } 198 EXPORT_SYMBOL_GPL(__rt_mutex_init); 199 200 /** 201 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a 202 * proxy owner 203 * 204 * @lock: the rt_mutex to be locked 205 * @proxy_owner:the task to set as owner 206 * 207 * No locking. Caller has to do serializing itself 208 * 209 * Special API call for PI-futex support. This initializes the rtmutex and 210 * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not 211 * possible at this point because the pi_state which contains the rtmutex 212 * is not yet visible to other tasks. 213 */ 214 void __sched rt_mutex_init_proxy_locked(struct rt_mutex_base *lock, 215 struct task_struct *proxy_owner) 216 { 217 static struct lock_class_key pi_futex_key; 218 219 __rt_mutex_base_init(lock); 220 /* 221 * On PREEMPT_RT the futex hashbucket spinlock becomes 'sleeping' 222 * and rtmutex based. That causes a lockdep false positive, because 223 * some of the futex functions invoke spin_unlock(&hb->lock) with 224 * the wait_lock of the rtmutex associated to the pi_futex held. 225 * spin_unlock() in turn takes wait_lock of the rtmutex on which 226 * the spinlock is based, which makes lockdep notice a lock 227 * recursion. Give the futex/rtmutex wait_lock a separate key. 228 */ 229 lockdep_set_class(&lock->wait_lock, &pi_futex_key); 230 rt_mutex_set_owner(lock, proxy_owner); 231 } 232 233 /** 234 * rt_mutex_proxy_unlock - release a lock on behalf of owner 235 * 236 * @lock: the rt_mutex to be locked 237 * 238 * No locking. Caller has to do serializing itself 239 * 240 * Special API call for PI-futex support. This just cleans up the rtmutex 241 * (debugging) state. Concurrent operations on this rt_mutex are not 242 * possible because it belongs to the pi_state which is about to be freed 243 * and it is not longer visible to other tasks. 244 */ 245 void __sched rt_mutex_proxy_unlock(struct rt_mutex_base *lock) 246 { 247 debug_rt_mutex_proxy_unlock(lock); 248 rt_mutex_set_owner(lock, NULL); 249 } 250 251 /** 252 * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task 253 * @lock: the rt_mutex to take 254 * @waiter: the pre-initialized rt_mutex_waiter 255 * @task: the task to prepare 256 * 257 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock 258 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that. 259 * 260 * NOTE: does _NOT_ remove the @waiter on failure; must either call 261 * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this. 262 * 263 * Returns: 264 * 0 - task blocked on lock 265 * 1 - acquired the lock for task, caller should wake it up 266 * <0 - error 267 * 268 * Special API call for PI-futex support. 269 */ 270 int __sched __rt_mutex_start_proxy_lock(struct rt_mutex_base *lock, 271 struct rt_mutex_waiter *waiter, 272 struct task_struct *task) 273 { 274 int ret; 275 276 lockdep_assert_held(&lock->wait_lock); 277 278 if (try_to_take_rt_mutex(lock, task, NULL)) 279 return 1; 280 281 /* We enforce deadlock detection for futexes */ 282 ret = task_blocks_on_rt_mutex(lock, waiter, task, NULL, 283 RT_MUTEX_FULL_CHAINWALK); 284 285 if (ret && !rt_mutex_owner(lock)) { 286 /* 287 * Reset the return value. We might have 288 * returned with -EDEADLK and the owner 289 * released the lock while we were walking the 290 * pi chain. Let the waiter sort it out. 291 */ 292 ret = 0; 293 } 294 295 return ret; 296 } 297 298 /** 299 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task 300 * @lock: the rt_mutex to take 301 * @waiter: the pre-initialized rt_mutex_waiter 302 * @task: the task to prepare 303 * 304 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock 305 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that. 306 * 307 * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter 308 * on failure. 309 * 310 * Returns: 311 * 0 - task blocked on lock 312 * 1 - acquired the lock for task, caller should wake it up 313 * <0 - error 314 * 315 * Special API call for PI-futex support. 316 */ 317 int __sched rt_mutex_start_proxy_lock(struct rt_mutex_base *lock, 318 struct rt_mutex_waiter *waiter, 319 struct task_struct *task) 320 { 321 int ret; 322 323 raw_spin_lock_irq(&lock->wait_lock); 324 ret = __rt_mutex_start_proxy_lock(lock, waiter, task); 325 if (unlikely(ret)) 326 remove_waiter(lock, waiter); 327 raw_spin_unlock_irq(&lock->wait_lock); 328 329 return ret; 330 } 331 332 /** 333 * rt_mutex_wait_proxy_lock() - Wait for lock acquisition 334 * @lock: the rt_mutex we were woken on 335 * @to: the timeout, null if none. hrtimer should already have 336 * been started. 337 * @waiter: the pre-initialized rt_mutex_waiter 338 * 339 * Wait for the lock acquisition started on our behalf by 340 * rt_mutex_start_proxy_lock(). Upon failure, the caller must call 341 * rt_mutex_cleanup_proxy_lock(). 342 * 343 * Returns: 344 * 0 - success 345 * <0 - error, one of -EINTR, -ETIMEDOUT 346 * 347 * Special API call for PI-futex support 348 */ 349 int __sched rt_mutex_wait_proxy_lock(struct rt_mutex_base *lock, 350 struct hrtimer_sleeper *to, 351 struct rt_mutex_waiter *waiter) 352 { 353 int ret; 354 355 raw_spin_lock_irq(&lock->wait_lock); 356 /* sleep on the mutex */ 357 set_current_state(TASK_INTERRUPTIBLE); 358 ret = rt_mutex_slowlock_block(lock, NULL, TASK_INTERRUPTIBLE, to, waiter); 359 /* 360 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might 361 * have to fix that up. 362 */ 363 fixup_rt_mutex_waiters(lock); 364 raw_spin_unlock_irq(&lock->wait_lock); 365 366 return ret; 367 } 368 369 /** 370 * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition 371 * @lock: the rt_mutex we were woken on 372 * @waiter: the pre-initialized rt_mutex_waiter 373 * 374 * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or 375 * rt_mutex_wait_proxy_lock(). 376 * 377 * Unless we acquired the lock; we're still enqueued on the wait-list and can 378 * in fact still be granted ownership until we're removed. Therefore we can 379 * find we are in fact the owner and must disregard the 380 * rt_mutex_wait_proxy_lock() failure. 381 * 382 * Returns: 383 * true - did the cleanup, we done. 384 * false - we acquired the lock after rt_mutex_wait_proxy_lock() returned, 385 * caller should disregards its return value. 386 * 387 * Special API call for PI-futex support 388 */ 389 bool __sched rt_mutex_cleanup_proxy_lock(struct rt_mutex_base *lock, 390 struct rt_mutex_waiter *waiter) 391 { 392 bool cleanup = false; 393 394 raw_spin_lock_irq(&lock->wait_lock); 395 /* 396 * Do an unconditional try-lock, this deals with the lock stealing 397 * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter() 398 * sets a NULL owner. 399 * 400 * We're not interested in the return value, because the subsequent 401 * test on rt_mutex_owner() will infer that. If the trylock succeeded, 402 * we will own the lock and it will have removed the waiter. If we 403 * failed the trylock, we're still not owner and we need to remove 404 * ourselves. 405 */ 406 try_to_take_rt_mutex(lock, current, waiter); 407 /* 408 * Unless we're the owner; we're still enqueued on the wait_list. 409 * So check if we became owner, if not, take us off the wait_list. 410 */ 411 if (rt_mutex_owner(lock) != current) { 412 remove_waiter(lock, waiter); 413 cleanup = true; 414 } 415 /* 416 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might 417 * have to fix that up. 418 */ 419 fixup_rt_mutex_waiters(lock); 420 421 raw_spin_unlock_irq(&lock->wait_lock); 422 423 return cleanup; 424 } 425 426 /* 427 * Recheck the pi chain, in case we got a priority setting 428 * 429 * Called from sched_setscheduler 430 */ 431 void __sched rt_mutex_adjust_pi(struct task_struct *task) 432 { 433 struct rt_mutex_waiter *waiter; 434 struct rt_mutex_base *next_lock; 435 unsigned long flags; 436 437 raw_spin_lock_irqsave(&task->pi_lock, flags); 438 439 waiter = task->pi_blocked_on; 440 if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) { 441 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 442 return; 443 } 444 next_lock = waiter->lock; 445 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 446 447 /* gets dropped in rt_mutex_adjust_prio_chain()! */ 448 get_task_struct(task); 449 450 rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL, 451 next_lock, NULL, task); 452 } 453 454 /* 455 * Performs the wakeup of the top-waiter and re-enables preemption. 456 */ 457 void __sched rt_mutex_postunlock(struct rt_wake_q_head *wqh) 458 { 459 rt_mutex_wake_up_q(wqh); 460 } 461 462 #ifdef CONFIG_DEBUG_RT_MUTEXES 463 void rt_mutex_debug_task_free(struct task_struct *task) 464 { 465 DEBUG_LOCKS_WARN_ON(!RB_EMPTY_ROOT(&task->pi_waiters.rb_root)); 466 DEBUG_LOCKS_WARN_ON(task->pi_blocked_on); 467 } 468 #endif 469 470 #ifdef CONFIG_PREEMPT_RT 471 /* Mutexes */ 472 void __mutex_rt_init(struct mutex *mutex, const char *name, 473 struct lock_class_key *key) 474 { 475 debug_check_no_locks_freed((void *)mutex, sizeof(*mutex)); 476 lockdep_init_map_wait(&mutex->dep_map, name, key, 0, LD_WAIT_SLEEP); 477 } 478 EXPORT_SYMBOL(__mutex_rt_init); 479 480 static __always_inline int __mutex_lock_common(struct mutex *lock, 481 unsigned int state, 482 unsigned int subclass, 483 struct lockdep_map *nest_lock, 484 unsigned long ip) 485 { 486 int ret; 487 488 might_sleep(); 489 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip); 490 ret = __rt_mutex_lock(&lock->rtmutex, state); 491 if (ret) 492 mutex_release(&lock->dep_map, ip); 493 else 494 lock_acquired(&lock->dep_map, ip); 495 return ret; 496 } 497 498 #ifdef CONFIG_DEBUG_LOCK_ALLOC 499 void __sched mutex_lock_nested(struct mutex *lock, unsigned int subclass) 500 { 501 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_); 502 } 503 EXPORT_SYMBOL_GPL(mutex_lock_nested); 504 505 void __sched _mutex_lock_nest_lock(struct mutex *lock, 506 struct lockdep_map *nest_lock) 507 { 508 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, nest_lock, _RET_IP_); 509 } 510 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock); 511 512 int __sched mutex_lock_interruptible_nested(struct mutex *lock, 513 unsigned int subclass) 514 { 515 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_); 516 } 517 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); 518 519 int __sched mutex_lock_killable_nested(struct mutex *lock, 520 unsigned int subclass) 521 { 522 return __mutex_lock_common(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_); 523 } 524 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested); 525 526 void __sched mutex_lock_io_nested(struct mutex *lock, unsigned int subclass) 527 { 528 int token; 529 530 might_sleep(); 531 532 token = io_schedule_prepare(); 533 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_); 534 io_schedule_finish(token); 535 } 536 EXPORT_SYMBOL_GPL(mutex_lock_io_nested); 537 538 #else /* CONFIG_DEBUG_LOCK_ALLOC */ 539 540 void __sched mutex_lock(struct mutex *lock) 541 { 542 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_); 543 } 544 EXPORT_SYMBOL(mutex_lock); 545 546 int __sched mutex_lock_interruptible(struct mutex *lock) 547 { 548 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_); 549 } 550 EXPORT_SYMBOL(mutex_lock_interruptible); 551 552 int __sched mutex_lock_killable(struct mutex *lock) 553 { 554 return __mutex_lock_common(lock, TASK_KILLABLE, 0, NULL, _RET_IP_); 555 } 556 EXPORT_SYMBOL(mutex_lock_killable); 557 558 void __sched mutex_lock_io(struct mutex *lock) 559 { 560 int token = io_schedule_prepare(); 561 562 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_); 563 io_schedule_finish(token); 564 } 565 EXPORT_SYMBOL(mutex_lock_io); 566 #endif /* !CONFIG_DEBUG_LOCK_ALLOC */ 567 568 int __sched mutex_trylock(struct mutex *lock) 569 { 570 int ret; 571 572 if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task())) 573 return 0; 574 575 ret = __rt_mutex_trylock(&lock->rtmutex); 576 if (ret) 577 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); 578 579 return ret; 580 } 581 EXPORT_SYMBOL(mutex_trylock); 582 583 void __sched mutex_unlock(struct mutex *lock) 584 { 585 mutex_release(&lock->dep_map, _RET_IP_); 586 __rt_mutex_unlock(&lock->rtmutex); 587 } 588 EXPORT_SYMBOL(mutex_unlock); 589 590 #endif /* CONFIG_PREEMPT_RT */ 591