1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * RT-Mutexes: simple blocking mutual exclusion locks with PI support 4 * 5 * started by Ingo Molnar and Thomas Gleixner. 6 * 7 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 8 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com> 9 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt 10 * Copyright (C) 2006 Esben Nielsen 11 * Adaptive Spinlocks: 12 * Copyright (C) 2008 Novell, Inc., Gregory Haskins, Sven Dietrich, 13 * and Peter Morreale, 14 * Adaptive Spinlocks simplification: 15 * Copyright (C) 2008 Red Hat, Inc., Steven Rostedt <srostedt@redhat.com> 16 * 17 * See Documentation/locking/rt-mutex-design.rst for details. 18 */ 19 #include <linux/sched.h> 20 #include <linux/sched/debug.h> 21 #include <linux/sched/deadline.h> 22 #include <linux/sched/signal.h> 23 #include <linux/sched/rt.h> 24 #include <linux/sched/wake_q.h> 25 #include <linux/ww_mutex.h> 26 27 #include <trace/events/lock.h> 28 29 #include "rtmutex_common.h" 30 31 #ifndef WW_RT 32 # define build_ww_mutex() (false) 33 # define ww_container_of(rtm) NULL 34 35 static inline int __ww_mutex_add_waiter(struct rt_mutex_waiter *waiter, 36 struct rt_mutex *lock, 37 struct ww_acquire_ctx *ww_ctx) 38 { 39 return 0; 40 } 41 42 static inline void __ww_mutex_check_waiters(struct rt_mutex *lock, 43 struct ww_acquire_ctx *ww_ctx) 44 { 45 } 46 47 static inline void ww_mutex_lock_acquired(struct ww_mutex *lock, 48 struct ww_acquire_ctx *ww_ctx) 49 { 50 } 51 52 static inline int __ww_mutex_check_kill(struct rt_mutex *lock, 53 struct rt_mutex_waiter *waiter, 54 struct ww_acquire_ctx *ww_ctx) 55 { 56 return 0; 57 } 58 59 #else 60 # define build_ww_mutex() (true) 61 # define ww_container_of(rtm) container_of(rtm, struct ww_mutex, base) 62 # include "ww_mutex.h" 63 #endif 64 65 /* 66 * lock->owner state tracking: 67 * 68 * lock->owner holds the task_struct pointer of the owner. Bit 0 69 * is used to keep track of the "lock has waiters" state. 70 * 71 * owner bit0 72 * NULL 0 lock is free (fast acquire possible) 73 * NULL 1 lock is free and has waiters and the top waiter 74 * is going to take the lock* 75 * taskpointer 0 lock is held (fast release possible) 76 * taskpointer 1 lock is held and has waiters** 77 * 78 * The fast atomic compare exchange based acquire and release is only 79 * possible when bit 0 of lock->owner is 0. 80 * 81 * (*) It also can be a transitional state when grabbing the lock 82 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock, 83 * we need to set the bit0 before looking at the lock, and the owner may be 84 * NULL in this small time, hence this can be a transitional state. 85 * 86 * (**) There is a small time when bit 0 is set but there are no 87 * waiters. This can happen when grabbing the lock in the slow path. 88 * To prevent a cmpxchg of the owner releasing the lock, we need to 89 * set this bit before looking at the lock. 90 */ 91 92 static __always_inline void 93 rt_mutex_set_owner(struct rt_mutex_base *lock, struct task_struct *owner) 94 { 95 unsigned long val = (unsigned long)owner; 96 97 if (rt_mutex_has_waiters(lock)) 98 val |= RT_MUTEX_HAS_WAITERS; 99 100 WRITE_ONCE(lock->owner, (struct task_struct *)val); 101 } 102 103 static __always_inline void clear_rt_mutex_waiters(struct rt_mutex_base *lock) 104 { 105 lock->owner = (struct task_struct *) 106 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS); 107 } 108 109 static __always_inline void fixup_rt_mutex_waiters(struct rt_mutex_base *lock) 110 { 111 unsigned long owner, *p = (unsigned long *) &lock->owner; 112 113 if (rt_mutex_has_waiters(lock)) 114 return; 115 116 /* 117 * The rbtree has no waiters enqueued, now make sure that the 118 * lock->owner still has the waiters bit set, otherwise the 119 * following can happen: 120 * 121 * CPU 0 CPU 1 CPU2 122 * l->owner=T1 123 * rt_mutex_lock(l) 124 * lock(l->lock) 125 * l->owner = T1 | HAS_WAITERS; 126 * enqueue(T2) 127 * boost() 128 * unlock(l->lock) 129 * block() 130 * 131 * rt_mutex_lock(l) 132 * lock(l->lock) 133 * l->owner = T1 | HAS_WAITERS; 134 * enqueue(T3) 135 * boost() 136 * unlock(l->lock) 137 * block() 138 * signal(->T2) signal(->T3) 139 * lock(l->lock) 140 * dequeue(T2) 141 * deboost() 142 * unlock(l->lock) 143 * lock(l->lock) 144 * dequeue(T3) 145 * ==> wait list is empty 146 * deboost() 147 * unlock(l->lock) 148 * lock(l->lock) 149 * fixup_rt_mutex_waiters() 150 * if (wait_list_empty(l) { 151 * l->owner = owner 152 * owner = l->owner & ~HAS_WAITERS; 153 * ==> l->owner = T1 154 * } 155 * lock(l->lock) 156 * rt_mutex_unlock(l) fixup_rt_mutex_waiters() 157 * if (wait_list_empty(l) { 158 * owner = l->owner & ~HAS_WAITERS; 159 * cmpxchg(l->owner, T1, NULL) 160 * ===> Success (l->owner = NULL) 161 * 162 * l->owner = owner 163 * ==> l->owner = T1 164 * } 165 * 166 * With the check for the waiter bit in place T3 on CPU2 will not 167 * overwrite. All tasks fiddling with the waiters bit are 168 * serialized by l->lock, so nothing else can modify the waiters 169 * bit. If the bit is set then nothing can change l->owner either 170 * so the simple RMW is safe. The cmpxchg() will simply fail if it 171 * happens in the middle of the RMW because the waiters bit is 172 * still set. 173 */ 174 owner = READ_ONCE(*p); 175 if (owner & RT_MUTEX_HAS_WAITERS) 176 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS); 177 } 178 179 /* 180 * We can speed up the acquire/release, if there's no debugging state to be 181 * set up. 182 */ 183 #ifndef CONFIG_DEBUG_RT_MUTEXES 184 static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock, 185 struct task_struct *old, 186 struct task_struct *new) 187 { 188 return try_cmpxchg_acquire(&lock->owner, &old, new); 189 } 190 191 static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock, 192 struct task_struct *old, 193 struct task_struct *new) 194 { 195 return try_cmpxchg_release(&lock->owner, &old, new); 196 } 197 198 /* 199 * Callers must hold the ->wait_lock -- which is the whole purpose as we force 200 * all future threads that attempt to [Rmw] the lock to the slowpath. As such 201 * relaxed semantics suffice. 202 */ 203 static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock) 204 { 205 unsigned long owner, *p = (unsigned long *) &lock->owner; 206 207 do { 208 owner = *p; 209 } while (cmpxchg_relaxed(p, owner, 210 owner | RT_MUTEX_HAS_WAITERS) != owner); 211 } 212 213 /* 214 * Safe fastpath aware unlock: 215 * 1) Clear the waiters bit 216 * 2) Drop lock->wait_lock 217 * 3) Try to unlock the lock with cmpxchg 218 */ 219 static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock, 220 unsigned long flags) 221 __releases(lock->wait_lock) 222 { 223 struct task_struct *owner = rt_mutex_owner(lock); 224 225 clear_rt_mutex_waiters(lock); 226 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 227 /* 228 * If a new waiter comes in between the unlock and the cmpxchg 229 * we have two situations: 230 * 231 * unlock(wait_lock); 232 * lock(wait_lock); 233 * cmpxchg(p, owner, 0) == owner 234 * mark_rt_mutex_waiters(lock); 235 * acquire(lock); 236 * or: 237 * 238 * unlock(wait_lock); 239 * lock(wait_lock); 240 * mark_rt_mutex_waiters(lock); 241 * 242 * cmpxchg(p, owner, 0) != owner 243 * enqueue_waiter(); 244 * unlock(wait_lock); 245 * lock(wait_lock); 246 * wake waiter(); 247 * unlock(wait_lock); 248 * lock(wait_lock); 249 * acquire(lock); 250 */ 251 return rt_mutex_cmpxchg_release(lock, owner, NULL); 252 } 253 254 #else 255 static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock, 256 struct task_struct *old, 257 struct task_struct *new) 258 { 259 return false; 260 261 } 262 263 static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock, 264 struct task_struct *old, 265 struct task_struct *new) 266 { 267 return false; 268 } 269 270 static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock) 271 { 272 lock->owner = (struct task_struct *) 273 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS); 274 } 275 276 /* 277 * Simple slow path only version: lock->owner is protected by lock->wait_lock. 278 */ 279 static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock, 280 unsigned long flags) 281 __releases(lock->wait_lock) 282 { 283 lock->owner = NULL; 284 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 285 return true; 286 } 287 #endif 288 289 static __always_inline int __waiter_prio(struct task_struct *task) 290 { 291 int prio = task->prio; 292 293 if (!rt_prio(prio)) 294 return DEFAULT_PRIO; 295 296 return prio; 297 } 298 299 static __always_inline void 300 waiter_update_prio(struct rt_mutex_waiter *waiter, struct task_struct *task) 301 { 302 waiter->prio = __waiter_prio(task); 303 waiter->deadline = task->dl.deadline; 304 } 305 306 /* 307 * Only use with rt_mutex_waiter_{less,equal}() 308 */ 309 #define task_to_waiter(p) \ 310 &(struct rt_mutex_waiter){ .prio = __waiter_prio(p), .deadline = (p)->dl.deadline } 311 312 static __always_inline int rt_mutex_waiter_less(struct rt_mutex_waiter *left, 313 struct rt_mutex_waiter *right) 314 { 315 if (left->prio < right->prio) 316 return 1; 317 318 /* 319 * If both waiters have dl_prio(), we check the deadlines of the 320 * associated tasks. 321 * If left waiter has a dl_prio(), and we didn't return 1 above, 322 * then right waiter has a dl_prio() too. 323 */ 324 if (dl_prio(left->prio)) 325 return dl_time_before(left->deadline, right->deadline); 326 327 return 0; 328 } 329 330 static __always_inline int rt_mutex_waiter_equal(struct rt_mutex_waiter *left, 331 struct rt_mutex_waiter *right) 332 { 333 if (left->prio != right->prio) 334 return 0; 335 336 /* 337 * If both waiters have dl_prio(), we check the deadlines of the 338 * associated tasks. 339 * If left waiter has a dl_prio(), and we didn't return 0 above, 340 * then right waiter has a dl_prio() too. 341 */ 342 if (dl_prio(left->prio)) 343 return left->deadline == right->deadline; 344 345 return 1; 346 } 347 348 static inline bool rt_mutex_steal(struct rt_mutex_waiter *waiter, 349 struct rt_mutex_waiter *top_waiter) 350 { 351 if (rt_mutex_waiter_less(waiter, top_waiter)) 352 return true; 353 354 #ifdef RT_MUTEX_BUILD_SPINLOCKS 355 /* 356 * Note that RT tasks are excluded from same priority (lateral) 357 * steals to prevent the introduction of an unbounded latency. 358 */ 359 if (rt_prio(waiter->prio) || dl_prio(waiter->prio)) 360 return false; 361 362 return rt_mutex_waiter_equal(waiter, top_waiter); 363 #else 364 return false; 365 #endif 366 } 367 368 #define __node_2_waiter(node) \ 369 rb_entry((node), struct rt_mutex_waiter, tree_entry) 370 371 static __always_inline bool __waiter_less(struct rb_node *a, const struct rb_node *b) 372 { 373 struct rt_mutex_waiter *aw = __node_2_waiter(a); 374 struct rt_mutex_waiter *bw = __node_2_waiter(b); 375 376 if (rt_mutex_waiter_less(aw, bw)) 377 return 1; 378 379 if (!build_ww_mutex()) 380 return 0; 381 382 if (rt_mutex_waiter_less(bw, aw)) 383 return 0; 384 385 /* NOTE: relies on waiter->ww_ctx being set before insertion */ 386 if (aw->ww_ctx) { 387 if (!bw->ww_ctx) 388 return 1; 389 390 return (signed long)(aw->ww_ctx->stamp - 391 bw->ww_ctx->stamp) < 0; 392 } 393 394 return 0; 395 } 396 397 static __always_inline void 398 rt_mutex_enqueue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter) 399 { 400 rb_add_cached(&waiter->tree_entry, &lock->waiters, __waiter_less); 401 } 402 403 static __always_inline void 404 rt_mutex_dequeue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter) 405 { 406 if (RB_EMPTY_NODE(&waiter->tree_entry)) 407 return; 408 409 rb_erase_cached(&waiter->tree_entry, &lock->waiters); 410 RB_CLEAR_NODE(&waiter->tree_entry); 411 } 412 413 #define __node_2_pi_waiter(node) \ 414 rb_entry((node), struct rt_mutex_waiter, pi_tree_entry) 415 416 static __always_inline bool 417 __pi_waiter_less(struct rb_node *a, const struct rb_node *b) 418 { 419 return rt_mutex_waiter_less(__node_2_pi_waiter(a), __node_2_pi_waiter(b)); 420 } 421 422 static __always_inline void 423 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter) 424 { 425 rb_add_cached(&waiter->pi_tree_entry, &task->pi_waiters, __pi_waiter_less); 426 } 427 428 static __always_inline void 429 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter) 430 { 431 if (RB_EMPTY_NODE(&waiter->pi_tree_entry)) 432 return; 433 434 rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters); 435 RB_CLEAR_NODE(&waiter->pi_tree_entry); 436 } 437 438 static __always_inline void rt_mutex_adjust_prio(struct task_struct *p) 439 { 440 struct task_struct *pi_task = NULL; 441 442 lockdep_assert_held(&p->pi_lock); 443 444 if (task_has_pi_waiters(p)) 445 pi_task = task_top_pi_waiter(p)->task; 446 447 rt_mutex_setprio(p, pi_task); 448 } 449 450 /* RT mutex specific wake_q wrappers */ 451 static __always_inline void rt_mutex_wake_q_add_task(struct rt_wake_q_head *wqh, 452 struct task_struct *task, 453 unsigned int wake_state) 454 { 455 if (IS_ENABLED(CONFIG_PREEMPT_RT) && wake_state == TASK_RTLOCK_WAIT) { 456 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) 457 WARN_ON_ONCE(wqh->rtlock_task); 458 get_task_struct(task); 459 wqh->rtlock_task = task; 460 } else { 461 wake_q_add(&wqh->head, task); 462 } 463 } 464 465 static __always_inline void rt_mutex_wake_q_add(struct rt_wake_q_head *wqh, 466 struct rt_mutex_waiter *w) 467 { 468 rt_mutex_wake_q_add_task(wqh, w->task, w->wake_state); 469 } 470 471 static __always_inline void rt_mutex_wake_up_q(struct rt_wake_q_head *wqh) 472 { 473 if (IS_ENABLED(CONFIG_PREEMPT_RT) && wqh->rtlock_task) { 474 wake_up_state(wqh->rtlock_task, TASK_RTLOCK_WAIT); 475 put_task_struct(wqh->rtlock_task); 476 wqh->rtlock_task = NULL; 477 } 478 479 if (!wake_q_empty(&wqh->head)) 480 wake_up_q(&wqh->head); 481 482 /* Pairs with preempt_disable() in mark_wakeup_next_waiter() */ 483 preempt_enable(); 484 } 485 486 /* 487 * Deadlock detection is conditional: 488 * 489 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted 490 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK. 491 * 492 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always 493 * conducted independent of the detect argument. 494 * 495 * If the waiter argument is NULL this indicates the deboost path and 496 * deadlock detection is disabled independent of the detect argument 497 * and the config settings. 498 */ 499 static __always_inline bool 500 rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter, 501 enum rtmutex_chainwalk chwalk) 502 { 503 if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES)) 504 return waiter != NULL; 505 return chwalk == RT_MUTEX_FULL_CHAINWALK; 506 } 507 508 static __always_inline struct rt_mutex_base *task_blocked_on_lock(struct task_struct *p) 509 { 510 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL; 511 } 512 513 /* 514 * Adjust the priority chain. Also used for deadlock detection. 515 * Decreases task's usage by one - may thus free the task. 516 * 517 * @task: the task owning the mutex (owner) for which a chain walk is 518 * probably needed 519 * @chwalk: do we have to carry out deadlock detection? 520 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck 521 * things for a task that has just got its priority adjusted, and 522 * is waiting on a mutex) 523 * @next_lock: the mutex on which the owner of @orig_lock was blocked before 524 * we dropped its pi_lock. Is never dereferenced, only used for 525 * comparison to detect lock chain changes. 526 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated 527 * its priority to the mutex owner (can be NULL in the case 528 * depicted above or if the top waiter is gone away and we are 529 * actually deboosting the owner) 530 * @top_task: the current top waiter 531 * 532 * Returns 0 or -EDEADLK. 533 * 534 * Chain walk basics and protection scope 535 * 536 * [R] refcount on task 537 * [P] task->pi_lock held 538 * [L] rtmutex->wait_lock held 539 * 540 * Step Description Protected by 541 * function arguments: 542 * @task [R] 543 * @orig_lock if != NULL @top_task is blocked on it 544 * @next_lock Unprotected. Cannot be 545 * dereferenced. Only used for 546 * comparison. 547 * @orig_waiter if != NULL @top_task is blocked on it 548 * @top_task current, or in case of proxy 549 * locking protected by calling 550 * code 551 * again: 552 * loop_sanity_check(); 553 * retry: 554 * [1] lock(task->pi_lock); [R] acquire [P] 555 * [2] waiter = task->pi_blocked_on; [P] 556 * [3] check_exit_conditions_1(); [P] 557 * [4] lock = waiter->lock; [P] 558 * [5] if (!try_lock(lock->wait_lock)) { [P] try to acquire [L] 559 * unlock(task->pi_lock); release [P] 560 * goto retry; 561 * } 562 * [6] check_exit_conditions_2(); [P] + [L] 563 * [7] requeue_lock_waiter(lock, waiter); [P] + [L] 564 * [8] unlock(task->pi_lock); release [P] 565 * put_task_struct(task); release [R] 566 * [9] check_exit_conditions_3(); [L] 567 * [10] task = owner(lock); [L] 568 * get_task_struct(task); [L] acquire [R] 569 * lock(task->pi_lock); [L] acquire [P] 570 * [11] requeue_pi_waiter(tsk, waiters(lock));[P] + [L] 571 * [12] check_exit_conditions_4(); [P] + [L] 572 * [13] unlock(task->pi_lock); release [P] 573 * unlock(lock->wait_lock); release [L] 574 * goto again; 575 */ 576 static int __sched rt_mutex_adjust_prio_chain(struct task_struct *task, 577 enum rtmutex_chainwalk chwalk, 578 struct rt_mutex_base *orig_lock, 579 struct rt_mutex_base *next_lock, 580 struct rt_mutex_waiter *orig_waiter, 581 struct task_struct *top_task) 582 { 583 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter; 584 struct rt_mutex_waiter *prerequeue_top_waiter; 585 int ret = 0, depth = 0; 586 struct rt_mutex_base *lock; 587 bool detect_deadlock; 588 bool requeue = true; 589 590 detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk); 591 592 /* 593 * The (de)boosting is a step by step approach with a lot of 594 * pitfalls. We want this to be preemptible and we want hold a 595 * maximum of two locks per step. So we have to check 596 * carefully whether things change under us. 597 */ 598 again: 599 /* 600 * We limit the lock chain length for each invocation. 601 */ 602 if (++depth > max_lock_depth) { 603 static int prev_max; 604 605 /* 606 * Print this only once. If the admin changes the limit, 607 * print a new message when reaching the limit again. 608 */ 609 if (prev_max != max_lock_depth) { 610 prev_max = max_lock_depth; 611 printk(KERN_WARNING "Maximum lock depth %d reached " 612 "task: %s (%d)\n", max_lock_depth, 613 top_task->comm, task_pid_nr(top_task)); 614 } 615 put_task_struct(task); 616 617 return -EDEADLK; 618 } 619 620 /* 621 * We are fully preemptible here and only hold the refcount on 622 * @task. So everything can have changed under us since the 623 * caller or our own code below (goto retry/again) dropped all 624 * locks. 625 */ 626 retry: 627 /* 628 * [1] Task cannot go away as we did a get_task() before ! 629 */ 630 raw_spin_lock_irq(&task->pi_lock); 631 632 /* 633 * [2] Get the waiter on which @task is blocked on. 634 */ 635 waiter = task->pi_blocked_on; 636 637 /* 638 * [3] check_exit_conditions_1() protected by task->pi_lock. 639 */ 640 641 /* 642 * Check whether the end of the boosting chain has been 643 * reached or the state of the chain has changed while we 644 * dropped the locks. 645 */ 646 if (!waiter) 647 goto out_unlock_pi; 648 649 /* 650 * Check the orig_waiter state. After we dropped the locks, 651 * the previous owner of the lock might have released the lock. 652 */ 653 if (orig_waiter && !rt_mutex_owner(orig_lock)) 654 goto out_unlock_pi; 655 656 /* 657 * We dropped all locks after taking a refcount on @task, so 658 * the task might have moved on in the lock chain or even left 659 * the chain completely and blocks now on an unrelated lock or 660 * on @orig_lock. 661 * 662 * We stored the lock on which @task was blocked in @next_lock, 663 * so we can detect the chain change. 664 */ 665 if (next_lock != waiter->lock) 666 goto out_unlock_pi; 667 668 /* 669 * There could be 'spurious' loops in the lock graph due to ww_mutex, 670 * consider: 671 * 672 * P1: A, ww_A, ww_B 673 * P2: ww_B, ww_A 674 * P3: A 675 * 676 * P3 should not return -EDEADLK because it gets trapped in the cycle 677 * created by P1 and P2 (which will resolve -- and runs into 678 * max_lock_depth above). Therefore disable detect_deadlock such that 679 * the below termination condition can trigger once all relevant tasks 680 * are boosted. 681 * 682 * Even when we start with ww_mutex we can disable deadlock detection, 683 * since we would supress a ww_mutex induced deadlock at [6] anyway. 684 * Supressing it here however is not sufficient since we might still 685 * hit [6] due to adjustment driven iteration. 686 * 687 * NOTE: if someone were to create a deadlock between 2 ww_classes we'd 688 * utterly fail to report it; lockdep should. 689 */ 690 if (IS_ENABLED(CONFIG_PREEMPT_RT) && waiter->ww_ctx && detect_deadlock) 691 detect_deadlock = false; 692 693 /* 694 * Drop out, when the task has no waiters. Note, 695 * top_waiter can be NULL, when we are in the deboosting 696 * mode! 697 */ 698 if (top_waiter) { 699 if (!task_has_pi_waiters(task)) 700 goto out_unlock_pi; 701 /* 702 * If deadlock detection is off, we stop here if we 703 * are not the top pi waiter of the task. If deadlock 704 * detection is enabled we continue, but stop the 705 * requeueing in the chain walk. 706 */ 707 if (top_waiter != task_top_pi_waiter(task)) { 708 if (!detect_deadlock) 709 goto out_unlock_pi; 710 else 711 requeue = false; 712 } 713 } 714 715 /* 716 * If the waiter priority is the same as the task priority 717 * then there is no further priority adjustment necessary. If 718 * deadlock detection is off, we stop the chain walk. If its 719 * enabled we continue, but stop the requeueing in the chain 720 * walk. 721 */ 722 if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) { 723 if (!detect_deadlock) 724 goto out_unlock_pi; 725 else 726 requeue = false; 727 } 728 729 /* 730 * [4] Get the next lock 731 */ 732 lock = waiter->lock; 733 /* 734 * [5] We need to trylock here as we are holding task->pi_lock, 735 * which is the reverse lock order versus the other rtmutex 736 * operations. 737 */ 738 if (!raw_spin_trylock(&lock->wait_lock)) { 739 raw_spin_unlock_irq(&task->pi_lock); 740 cpu_relax(); 741 goto retry; 742 } 743 744 /* 745 * [6] check_exit_conditions_2() protected by task->pi_lock and 746 * lock->wait_lock. 747 * 748 * Deadlock detection. If the lock is the same as the original 749 * lock which caused us to walk the lock chain or if the 750 * current lock is owned by the task which initiated the chain 751 * walk, we detected a deadlock. 752 */ 753 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) { 754 ret = -EDEADLK; 755 756 /* 757 * When the deadlock is due to ww_mutex; also see above. Don't 758 * report the deadlock and instead let the ww_mutex wound/die 759 * logic pick which of the contending threads gets -EDEADLK. 760 * 761 * NOTE: assumes the cycle only contains a single ww_class; any 762 * other configuration and we fail to report; also, see 763 * lockdep. 764 */ 765 if (IS_ENABLED(CONFIG_PREEMPT_RT) && orig_waiter && orig_waiter->ww_ctx) 766 ret = 0; 767 768 raw_spin_unlock(&lock->wait_lock); 769 goto out_unlock_pi; 770 } 771 772 /* 773 * If we just follow the lock chain for deadlock detection, no 774 * need to do all the requeue operations. To avoid a truckload 775 * of conditionals around the various places below, just do the 776 * minimum chain walk checks. 777 */ 778 if (!requeue) { 779 /* 780 * No requeue[7] here. Just release @task [8] 781 */ 782 raw_spin_unlock(&task->pi_lock); 783 put_task_struct(task); 784 785 /* 786 * [9] check_exit_conditions_3 protected by lock->wait_lock. 787 * If there is no owner of the lock, end of chain. 788 */ 789 if (!rt_mutex_owner(lock)) { 790 raw_spin_unlock_irq(&lock->wait_lock); 791 return 0; 792 } 793 794 /* [10] Grab the next task, i.e. owner of @lock */ 795 task = get_task_struct(rt_mutex_owner(lock)); 796 raw_spin_lock(&task->pi_lock); 797 798 /* 799 * No requeue [11] here. We just do deadlock detection. 800 * 801 * [12] Store whether owner is blocked 802 * itself. Decision is made after dropping the locks 803 */ 804 next_lock = task_blocked_on_lock(task); 805 /* 806 * Get the top waiter for the next iteration 807 */ 808 top_waiter = rt_mutex_top_waiter(lock); 809 810 /* [13] Drop locks */ 811 raw_spin_unlock(&task->pi_lock); 812 raw_spin_unlock_irq(&lock->wait_lock); 813 814 /* If owner is not blocked, end of chain. */ 815 if (!next_lock) 816 goto out_put_task; 817 goto again; 818 } 819 820 /* 821 * Store the current top waiter before doing the requeue 822 * operation on @lock. We need it for the boost/deboost 823 * decision below. 824 */ 825 prerequeue_top_waiter = rt_mutex_top_waiter(lock); 826 827 /* [7] Requeue the waiter in the lock waiter tree. */ 828 rt_mutex_dequeue(lock, waiter); 829 830 /* 831 * Update the waiter prio fields now that we're dequeued. 832 * 833 * These values can have changed through either: 834 * 835 * sys_sched_set_scheduler() / sys_sched_setattr() 836 * 837 * or 838 * 839 * DL CBS enforcement advancing the effective deadline. 840 * 841 * Even though pi_waiters also uses these fields, and that tree is only 842 * updated in [11], we can do this here, since we hold [L], which 843 * serializes all pi_waiters access and rb_erase() does not care about 844 * the values of the node being removed. 845 */ 846 waiter_update_prio(waiter, task); 847 848 rt_mutex_enqueue(lock, waiter); 849 850 /* [8] Release the task */ 851 raw_spin_unlock(&task->pi_lock); 852 put_task_struct(task); 853 854 /* 855 * [9] check_exit_conditions_3 protected by lock->wait_lock. 856 * 857 * We must abort the chain walk if there is no lock owner even 858 * in the dead lock detection case, as we have nothing to 859 * follow here. This is the end of the chain we are walking. 860 */ 861 if (!rt_mutex_owner(lock)) { 862 /* 863 * If the requeue [7] above changed the top waiter, 864 * then we need to wake the new top waiter up to try 865 * to get the lock. 866 */ 867 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock)) 868 wake_up_state(waiter->task, waiter->wake_state); 869 raw_spin_unlock_irq(&lock->wait_lock); 870 return 0; 871 } 872 873 /* [10] Grab the next task, i.e. the owner of @lock */ 874 task = get_task_struct(rt_mutex_owner(lock)); 875 raw_spin_lock(&task->pi_lock); 876 877 /* [11] requeue the pi waiters if necessary */ 878 if (waiter == rt_mutex_top_waiter(lock)) { 879 /* 880 * The waiter became the new top (highest priority) 881 * waiter on the lock. Replace the previous top waiter 882 * in the owner tasks pi waiters tree with this waiter 883 * and adjust the priority of the owner. 884 */ 885 rt_mutex_dequeue_pi(task, prerequeue_top_waiter); 886 rt_mutex_enqueue_pi(task, waiter); 887 rt_mutex_adjust_prio(task); 888 889 } else if (prerequeue_top_waiter == waiter) { 890 /* 891 * The waiter was the top waiter on the lock, but is 892 * no longer the top priority waiter. Replace waiter in 893 * the owner tasks pi waiters tree with the new top 894 * (highest priority) waiter and adjust the priority 895 * of the owner. 896 * The new top waiter is stored in @waiter so that 897 * @waiter == @top_waiter evaluates to true below and 898 * we continue to deboost the rest of the chain. 899 */ 900 rt_mutex_dequeue_pi(task, waiter); 901 waiter = rt_mutex_top_waiter(lock); 902 rt_mutex_enqueue_pi(task, waiter); 903 rt_mutex_adjust_prio(task); 904 } else { 905 /* 906 * Nothing changed. No need to do any priority 907 * adjustment. 908 */ 909 } 910 911 /* 912 * [12] check_exit_conditions_4() protected by task->pi_lock 913 * and lock->wait_lock. The actual decisions are made after we 914 * dropped the locks. 915 * 916 * Check whether the task which owns the current lock is pi 917 * blocked itself. If yes we store a pointer to the lock for 918 * the lock chain change detection above. After we dropped 919 * task->pi_lock next_lock cannot be dereferenced anymore. 920 */ 921 next_lock = task_blocked_on_lock(task); 922 /* 923 * Store the top waiter of @lock for the end of chain walk 924 * decision below. 925 */ 926 top_waiter = rt_mutex_top_waiter(lock); 927 928 /* [13] Drop the locks */ 929 raw_spin_unlock(&task->pi_lock); 930 raw_spin_unlock_irq(&lock->wait_lock); 931 932 /* 933 * Make the actual exit decisions [12], based on the stored 934 * values. 935 * 936 * We reached the end of the lock chain. Stop right here. No 937 * point to go back just to figure that out. 938 */ 939 if (!next_lock) 940 goto out_put_task; 941 942 /* 943 * If the current waiter is not the top waiter on the lock, 944 * then we can stop the chain walk here if we are not in full 945 * deadlock detection mode. 946 */ 947 if (!detect_deadlock && waiter != top_waiter) 948 goto out_put_task; 949 950 goto again; 951 952 out_unlock_pi: 953 raw_spin_unlock_irq(&task->pi_lock); 954 out_put_task: 955 put_task_struct(task); 956 957 return ret; 958 } 959 960 /* 961 * Try to take an rt-mutex 962 * 963 * Must be called with lock->wait_lock held and interrupts disabled 964 * 965 * @lock: The lock to be acquired. 966 * @task: The task which wants to acquire the lock 967 * @waiter: The waiter that is queued to the lock's wait tree if the 968 * callsite called task_blocked_on_lock(), otherwise NULL 969 */ 970 static int __sched 971 try_to_take_rt_mutex(struct rt_mutex_base *lock, struct task_struct *task, 972 struct rt_mutex_waiter *waiter) 973 { 974 lockdep_assert_held(&lock->wait_lock); 975 976 /* 977 * Before testing whether we can acquire @lock, we set the 978 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all 979 * other tasks which try to modify @lock into the slow path 980 * and they serialize on @lock->wait_lock. 981 * 982 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state 983 * as explained at the top of this file if and only if: 984 * 985 * - There is a lock owner. The caller must fixup the 986 * transient state if it does a trylock or leaves the lock 987 * function due to a signal or timeout. 988 * 989 * - @task acquires the lock and there are no other 990 * waiters. This is undone in rt_mutex_set_owner(@task) at 991 * the end of this function. 992 */ 993 mark_rt_mutex_waiters(lock); 994 995 /* 996 * If @lock has an owner, give up. 997 */ 998 if (rt_mutex_owner(lock)) 999 return 0; 1000 1001 /* 1002 * If @waiter != NULL, @task has already enqueued the waiter 1003 * into @lock waiter tree. If @waiter == NULL then this is a 1004 * trylock attempt. 1005 */ 1006 if (waiter) { 1007 struct rt_mutex_waiter *top_waiter = rt_mutex_top_waiter(lock); 1008 1009 /* 1010 * If waiter is the highest priority waiter of @lock, 1011 * or allowed to steal it, take it over. 1012 */ 1013 if (waiter == top_waiter || rt_mutex_steal(waiter, top_waiter)) { 1014 /* 1015 * We can acquire the lock. Remove the waiter from the 1016 * lock waiters tree. 1017 */ 1018 rt_mutex_dequeue(lock, waiter); 1019 } else { 1020 return 0; 1021 } 1022 } else { 1023 /* 1024 * If the lock has waiters already we check whether @task is 1025 * eligible to take over the lock. 1026 * 1027 * If there are no other waiters, @task can acquire 1028 * the lock. @task->pi_blocked_on is NULL, so it does 1029 * not need to be dequeued. 1030 */ 1031 if (rt_mutex_has_waiters(lock)) { 1032 /* Check whether the trylock can steal it. */ 1033 if (!rt_mutex_steal(task_to_waiter(task), 1034 rt_mutex_top_waiter(lock))) 1035 return 0; 1036 1037 /* 1038 * The current top waiter stays enqueued. We 1039 * don't have to change anything in the lock 1040 * waiters order. 1041 */ 1042 } else { 1043 /* 1044 * No waiters. Take the lock without the 1045 * pi_lock dance.@task->pi_blocked_on is NULL 1046 * and we have no waiters to enqueue in @task 1047 * pi waiters tree. 1048 */ 1049 goto takeit; 1050 } 1051 } 1052 1053 /* 1054 * Clear @task->pi_blocked_on. Requires protection by 1055 * @task->pi_lock. Redundant operation for the @waiter == NULL 1056 * case, but conditionals are more expensive than a redundant 1057 * store. 1058 */ 1059 raw_spin_lock(&task->pi_lock); 1060 task->pi_blocked_on = NULL; 1061 /* 1062 * Finish the lock acquisition. @task is the new owner. If 1063 * other waiters exist we have to insert the highest priority 1064 * waiter into @task->pi_waiters tree. 1065 */ 1066 if (rt_mutex_has_waiters(lock)) 1067 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock)); 1068 raw_spin_unlock(&task->pi_lock); 1069 1070 takeit: 1071 /* 1072 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there 1073 * are still waiters or clears it. 1074 */ 1075 rt_mutex_set_owner(lock, task); 1076 1077 return 1; 1078 } 1079 1080 /* 1081 * Task blocks on lock. 1082 * 1083 * Prepare waiter and propagate pi chain 1084 * 1085 * This must be called with lock->wait_lock held and interrupts disabled 1086 */ 1087 static int __sched task_blocks_on_rt_mutex(struct rt_mutex_base *lock, 1088 struct rt_mutex_waiter *waiter, 1089 struct task_struct *task, 1090 struct ww_acquire_ctx *ww_ctx, 1091 enum rtmutex_chainwalk chwalk) 1092 { 1093 struct task_struct *owner = rt_mutex_owner(lock); 1094 struct rt_mutex_waiter *top_waiter = waiter; 1095 struct rt_mutex_base *next_lock; 1096 int chain_walk = 0, res; 1097 1098 lockdep_assert_held(&lock->wait_lock); 1099 1100 /* 1101 * Early deadlock detection. We really don't want the task to 1102 * enqueue on itself just to untangle the mess later. It's not 1103 * only an optimization. We drop the locks, so another waiter 1104 * can come in before the chain walk detects the deadlock. So 1105 * the other will detect the deadlock and return -EDEADLOCK, 1106 * which is wrong, as the other waiter is not in a deadlock 1107 * situation. 1108 * 1109 * Except for ww_mutex, in that case the chain walk must already deal 1110 * with spurious cycles, see the comments at [3] and [6]. 1111 */ 1112 if (owner == task && !(build_ww_mutex() && ww_ctx)) 1113 return -EDEADLK; 1114 1115 raw_spin_lock(&task->pi_lock); 1116 waiter->task = task; 1117 waiter->lock = lock; 1118 waiter_update_prio(waiter, task); 1119 1120 /* Get the top priority waiter on the lock */ 1121 if (rt_mutex_has_waiters(lock)) 1122 top_waiter = rt_mutex_top_waiter(lock); 1123 rt_mutex_enqueue(lock, waiter); 1124 1125 task->pi_blocked_on = waiter; 1126 1127 raw_spin_unlock(&task->pi_lock); 1128 1129 if (build_ww_mutex() && ww_ctx) { 1130 struct rt_mutex *rtm; 1131 1132 /* Check whether the waiter should back out immediately */ 1133 rtm = container_of(lock, struct rt_mutex, rtmutex); 1134 res = __ww_mutex_add_waiter(waiter, rtm, ww_ctx); 1135 if (res) { 1136 raw_spin_lock(&task->pi_lock); 1137 rt_mutex_dequeue(lock, waiter); 1138 task->pi_blocked_on = NULL; 1139 raw_spin_unlock(&task->pi_lock); 1140 return res; 1141 } 1142 } 1143 1144 if (!owner) 1145 return 0; 1146 1147 raw_spin_lock(&owner->pi_lock); 1148 if (waiter == rt_mutex_top_waiter(lock)) { 1149 rt_mutex_dequeue_pi(owner, top_waiter); 1150 rt_mutex_enqueue_pi(owner, waiter); 1151 1152 rt_mutex_adjust_prio(owner); 1153 if (owner->pi_blocked_on) 1154 chain_walk = 1; 1155 } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) { 1156 chain_walk = 1; 1157 } 1158 1159 /* Store the lock on which owner is blocked or NULL */ 1160 next_lock = task_blocked_on_lock(owner); 1161 1162 raw_spin_unlock(&owner->pi_lock); 1163 /* 1164 * Even if full deadlock detection is on, if the owner is not 1165 * blocked itself, we can avoid finding this out in the chain 1166 * walk. 1167 */ 1168 if (!chain_walk || !next_lock) 1169 return 0; 1170 1171 /* 1172 * The owner can't disappear while holding a lock, 1173 * so the owner struct is protected by wait_lock. 1174 * Gets dropped in rt_mutex_adjust_prio_chain()! 1175 */ 1176 get_task_struct(owner); 1177 1178 raw_spin_unlock_irq(&lock->wait_lock); 1179 1180 res = rt_mutex_adjust_prio_chain(owner, chwalk, lock, 1181 next_lock, waiter, task); 1182 1183 raw_spin_lock_irq(&lock->wait_lock); 1184 1185 return res; 1186 } 1187 1188 /* 1189 * Remove the top waiter from the current tasks pi waiter tree and 1190 * queue it up. 1191 * 1192 * Called with lock->wait_lock held and interrupts disabled. 1193 */ 1194 static void __sched mark_wakeup_next_waiter(struct rt_wake_q_head *wqh, 1195 struct rt_mutex_base *lock) 1196 { 1197 struct rt_mutex_waiter *waiter; 1198 1199 raw_spin_lock(¤t->pi_lock); 1200 1201 waiter = rt_mutex_top_waiter(lock); 1202 1203 /* 1204 * Remove it from current->pi_waiters and deboost. 1205 * 1206 * We must in fact deboost here in order to ensure we call 1207 * rt_mutex_setprio() to update p->pi_top_task before the 1208 * task unblocks. 1209 */ 1210 rt_mutex_dequeue_pi(current, waiter); 1211 rt_mutex_adjust_prio(current); 1212 1213 /* 1214 * As we are waking up the top waiter, and the waiter stays 1215 * queued on the lock until it gets the lock, this lock 1216 * obviously has waiters. Just set the bit here and this has 1217 * the added benefit of forcing all new tasks into the 1218 * slow path making sure no task of lower priority than 1219 * the top waiter can steal this lock. 1220 */ 1221 lock->owner = (void *) RT_MUTEX_HAS_WAITERS; 1222 1223 /* 1224 * We deboosted before waking the top waiter task such that we don't 1225 * run two tasks with the 'same' priority (and ensure the 1226 * p->pi_top_task pointer points to a blocked task). This however can 1227 * lead to priority inversion if we would get preempted after the 1228 * deboost but before waking our donor task, hence the preempt_disable() 1229 * before unlock. 1230 * 1231 * Pairs with preempt_enable() in rt_mutex_wake_up_q(); 1232 */ 1233 preempt_disable(); 1234 rt_mutex_wake_q_add(wqh, waiter); 1235 raw_spin_unlock(¤t->pi_lock); 1236 } 1237 1238 static int __sched __rt_mutex_slowtrylock(struct rt_mutex_base *lock) 1239 { 1240 int ret = try_to_take_rt_mutex(lock, current, NULL); 1241 1242 /* 1243 * try_to_take_rt_mutex() sets the lock waiters bit 1244 * unconditionally. Clean this up. 1245 */ 1246 fixup_rt_mutex_waiters(lock); 1247 1248 return ret; 1249 } 1250 1251 /* 1252 * Slow path try-lock function: 1253 */ 1254 static int __sched rt_mutex_slowtrylock(struct rt_mutex_base *lock) 1255 { 1256 unsigned long flags; 1257 int ret; 1258 1259 /* 1260 * If the lock already has an owner we fail to get the lock. 1261 * This can be done without taking the @lock->wait_lock as 1262 * it is only being read, and this is a trylock anyway. 1263 */ 1264 if (rt_mutex_owner(lock)) 1265 return 0; 1266 1267 /* 1268 * The mutex has currently no owner. Lock the wait lock and try to 1269 * acquire the lock. We use irqsave here to support early boot calls. 1270 */ 1271 raw_spin_lock_irqsave(&lock->wait_lock, flags); 1272 1273 ret = __rt_mutex_slowtrylock(lock); 1274 1275 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 1276 1277 return ret; 1278 } 1279 1280 static __always_inline int __rt_mutex_trylock(struct rt_mutex_base *lock) 1281 { 1282 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) 1283 return 1; 1284 1285 return rt_mutex_slowtrylock(lock); 1286 } 1287 1288 /* 1289 * Slow path to release a rt-mutex. 1290 */ 1291 static void __sched rt_mutex_slowunlock(struct rt_mutex_base *lock) 1292 { 1293 DEFINE_RT_WAKE_Q(wqh); 1294 unsigned long flags; 1295 1296 /* irqsave required to support early boot calls */ 1297 raw_spin_lock_irqsave(&lock->wait_lock, flags); 1298 1299 debug_rt_mutex_unlock(lock); 1300 1301 /* 1302 * We must be careful here if the fast path is enabled. If we 1303 * have no waiters queued we cannot set owner to NULL here 1304 * because of: 1305 * 1306 * foo->lock->owner = NULL; 1307 * rtmutex_lock(foo->lock); <- fast path 1308 * free = atomic_dec_and_test(foo->refcnt); 1309 * rtmutex_unlock(foo->lock); <- fast path 1310 * if (free) 1311 * kfree(foo); 1312 * raw_spin_unlock(foo->lock->wait_lock); 1313 * 1314 * So for the fastpath enabled kernel: 1315 * 1316 * Nothing can set the waiters bit as long as we hold 1317 * lock->wait_lock. So we do the following sequence: 1318 * 1319 * owner = rt_mutex_owner(lock); 1320 * clear_rt_mutex_waiters(lock); 1321 * raw_spin_unlock(&lock->wait_lock); 1322 * if (cmpxchg(&lock->owner, owner, 0) == owner) 1323 * return; 1324 * goto retry; 1325 * 1326 * The fastpath disabled variant is simple as all access to 1327 * lock->owner is serialized by lock->wait_lock: 1328 * 1329 * lock->owner = NULL; 1330 * raw_spin_unlock(&lock->wait_lock); 1331 */ 1332 while (!rt_mutex_has_waiters(lock)) { 1333 /* Drops lock->wait_lock ! */ 1334 if (unlock_rt_mutex_safe(lock, flags) == true) 1335 return; 1336 /* Relock the rtmutex and try again */ 1337 raw_spin_lock_irqsave(&lock->wait_lock, flags); 1338 } 1339 1340 /* 1341 * The wakeup next waiter path does not suffer from the above 1342 * race. See the comments there. 1343 * 1344 * Queue the next waiter for wakeup once we release the wait_lock. 1345 */ 1346 mark_wakeup_next_waiter(&wqh, lock); 1347 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 1348 1349 rt_mutex_wake_up_q(&wqh); 1350 } 1351 1352 static __always_inline void __rt_mutex_unlock(struct rt_mutex_base *lock) 1353 { 1354 if (likely(rt_mutex_cmpxchg_release(lock, current, NULL))) 1355 return; 1356 1357 rt_mutex_slowunlock(lock); 1358 } 1359 1360 #ifdef CONFIG_SMP 1361 static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock, 1362 struct rt_mutex_waiter *waiter, 1363 struct task_struct *owner) 1364 { 1365 bool res = true; 1366 1367 rcu_read_lock(); 1368 for (;;) { 1369 /* If owner changed, trylock again. */ 1370 if (owner != rt_mutex_owner(lock)) 1371 break; 1372 /* 1373 * Ensure that @owner is dereferenced after checking that 1374 * the lock owner still matches @owner. If that fails, 1375 * @owner might point to freed memory. If it still matches, 1376 * the rcu_read_lock() ensures the memory stays valid. 1377 */ 1378 barrier(); 1379 /* 1380 * Stop spinning when: 1381 * - the lock owner has been scheduled out 1382 * - current is not longer the top waiter 1383 * - current is requested to reschedule (redundant 1384 * for CONFIG_PREEMPT_RCU=y) 1385 * - the VCPU on which owner runs is preempted 1386 */ 1387 if (!owner_on_cpu(owner) || need_resched() || 1388 !rt_mutex_waiter_is_top_waiter(lock, waiter)) { 1389 res = false; 1390 break; 1391 } 1392 cpu_relax(); 1393 } 1394 rcu_read_unlock(); 1395 return res; 1396 } 1397 #else 1398 static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock, 1399 struct rt_mutex_waiter *waiter, 1400 struct task_struct *owner) 1401 { 1402 return false; 1403 } 1404 #endif 1405 1406 #ifdef RT_MUTEX_BUILD_MUTEX 1407 /* 1408 * Functions required for: 1409 * - rtmutex, futex on all kernels 1410 * - mutex and rwsem substitutions on RT kernels 1411 */ 1412 1413 /* 1414 * Remove a waiter from a lock and give up 1415 * 1416 * Must be called with lock->wait_lock held and interrupts disabled. It must 1417 * have just failed to try_to_take_rt_mutex(). 1418 */ 1419 static void __sched remove_waiter(struct rt_mutex_base *lock, 1420 struct rt_mutex_waiter *waiter) 1421 { 1422 bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock)); 1423 struct task_struct *owner = rt_mutex_owner(lock); 1424 struct rt_mutex_base *next_lock; 1425 1426 lockdep_assert_held(&lock->wait_lock); 1427 1428 raw_spin_lock(¤t->pi_lock); 1429 rt_mutex_dequeue(lock, waiter); 1430 current->pi_blocked_on = NULL; 1431 raw_spin_unlock(¤t->pi_lock); 1432 1433 /* 1434 * Only update priority if the waiter was the highest priority 1435 * waiter of the lock and there is an owner to update. 1436 */ 1437 if (!owner || !is_top_waiter) 1438 return; 1439 1440 raw_spin_lock(&owner->pi_lock); 1441 1442 rt_mutex_dequeue_pi(owner, waiter); 1443 1444 if (rt_mutex_has_waiters(lock)) 1445 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock)); 1446 1447 rt_mutex_adjust_prio(owner); 1448 1449 /* Store the lock on which owner is blocked or NULL */ 1450 next_lock = task_blocked_on_lock(owner); 1451 1452 raw_spin_unlock(&owner->pi_lock); 1453 1454 /* 1455 * Don't walk the chain, if the owner task is not blocked 1456 * itself. 1457 */ 1458 if (!next_lock) 1459 return; 1460 1461 /* gets dropped in rt_mutex_adjust_prio_chain()! */ 1462 get_task_struct(owner); 1463 1464 raw_spin_unlock_irq(&lock->wait_lock); 1465 1466 rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock, 1467 next_lock, NULL, current); 1468 1469 raw_spin_lock_irq(&lock->wait_lock); 1470 } 1471 1472 /** 1473 * rt_mutex_slowlock_block() - Perform the wait-wake-try-to-take loop 1474 * @lock: the rt_mutex to take 1475 * @ww_ctx: WW mutex context pointer 1476 * @state: the state the task should block in (TASK_INTERRUPTIBLE 1477 * or TASK_UNINTERRUPTIBLE) 1478 * @timeout: the pre-initialized and started timer, or NULL for none 1479 * @waiter: the pre-initialized rt_mutex_waiter 1480 * 1481 * Must be called with lock->wait_lock held and interrupts disabled 1482 */ 1483 static int __sched rt_mutex_slowlock_block(struct rt_mutex_base *lock, 1484 struct ww_acquire_ctx *ww_ctx, 1485 unsigned int state, 1486 struct hrtimer_sleeper *timeout, 1487 struct rt_mutex_waiter *waiter) 1488 { 1489 struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex); 1490 struct task_struct *owner; 1491 int ret = 0; 1492 1493 for (;;) { 1494 /* Try to acquire the lock: */ 1495 if (try_to_take_rt_mutex(lock, current, waiter)) 1496 break; 1497 1498 if (timeout && !timeout->task) { 1499 ret = -ETIMEDOUT; 1500 break; 1501 } 1502 if (signal_pending_state(state, current)) { 1503 ret = -EINTR; 1504 break; 1505 } 1506 1507 if (build_ww_mutex() && ww_ctx) { 1508 ret = __ww_mutex_check_kill(rtm, waiter, ww_ctx); 1509 if (ret) 1510 break; 1511 } 1512 1513 if (waiter == rt_mutex_top_waiter(lock)) 1514 owner = rt_mutex_owner(lock); 1515 else 1516 owner = NULL; 1517 raw_spin_unlock_irq(&lock->wait_lock); 1518 1519 if (!owner || !rtmutex_spin_on_owner(lock, waiter, owner)) 1520 schedule(); 1521 1522 raw_spin_lock_irq(&lock->wait_lock); 1523 set_current_state(state); 1524 } 1525 1526 __set_current_state(TASK_RUNNING); 1527 return ret; 1528 } 1529 1530 static void __sched rt_mutex_handle_deadlock(int res, int detect_deadlock, 1531 struct rt_mutex_waiter *w) 1532 { 1533 /* 1534 * If the result is not -EDEADLOCK or the caller requested 1535 * deadlock detection, nothing to do here. 1536 */ 1537 if (res != -EDEADLOCK || detect_deadlock) 1538 return; 1539 1540 if (build_ww_mutex() && w->ww_ctx) 1541 return; 1542 1543 /* 1544 * Yell loudly and stop the task right here. 1545 */ 1546 WARN(1, "rtmutex deadlock detected\n"); 1547 while (1) { 1548 set_current_state(TASK_INTERRUPTIBLE); 1549 schedule(); 1550 } 1551 } 1552 1553 /** 1554 * __rt_mutex_slowlock - Locking slowpath invoked with lock::wait_lock held 1555 * @lock: The rtmutex to block lock 1556 * @ww_ctx: WW mutex context pointer 1557 * @state: The task state for sleeping 1558 * @chwalk: Indicator whether full or partial chainwalk is requested 1559 * @waiter: Initializer waiter for blocking 1560 */ 1561 static int __sched __rt_mutex_slowlock(struct rt_mutex_base *lock, 1562 struct ww_acquire_ctx *ww_ctx, 1563 unsigned int state, 1564 enum rtmutex_chainwalk chwalk, 1565 struct rt_mutex_waiter *waiter) 1566 { 1567 struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex); 1568 struct ww_mutex *ww = ww_container_of(rtm); 1569 int ret; 1570 1571 lockdep_assert_held(&lock->wait_lock); 1572 1573 /* Try to acquire the lock again: */ 1574 if (try_to_take_rt_mutex(lock, current, NULL)) { 1575 if (build_ww_mutex() && ww_ctx) { 1576 __ww_mutex_check_waiters(rtm, ww_ctx); 1577 ww_mutex_lock_acquired(ww, ww_ctx); 1578 } 1579 return 0; 1580 } 1581 1582 set_current_state(state); 1583 1584 trace_contention_begin(lock, LCB_F_RT); 1585 1586 ret = task_blocks_on_rt_mutex(lock, waiter, current, ww_ctx, chwalk); 1587 if (likely(!ret)) 1588 ret = rt_mutex_slowlock_block(lock, ww_ctx, state, NULL, waiter); 1589 1590 if (likely(!ret)) { 1591 /* acquired the lock */ 1592 if (build_ww_mutex() && ww_ctx) { 1593 if (!ww_ctx->is_wait_die) 1594 __ww_mutex_check_waiters(rtm, ww_ctx); 1595 ww_mutex_lock_acquired(ww, ww_ctx); 1596 } 1597 } else { 1598 __set_current_state(TASK_RUNNING); 1599 remove_waiter(lock, waiter); 1600 rt_mutex_handle_deadlock(ret, chwalk, waiter); 1601 } 1602 1603 /* 1604 * try_to_take_rt_mutex() sets the waiter bit 1605 * unconditionally. We might have to fix that up. 1606 */ 1607 fixup_rt_mutex_waiters(lock); 1608 1609 trace_contention_end(lock, ret); 1610 1611 return ret; 1612 } 1613 1614 static inline int __rt_mutex_slowlock_locked(struct rt_mutex_base *lock, 1615 struct ww_acquire_ctx *ww_ctx, 1616 unsigned int state) 1617 { 1618 struct rt_mutex_waiter waiter; 1619 int ret; 1620 1621 rt_mutex_init_waiter(&waiter); 1622 waiter.ww_ctx = ww_ctx; 1623 1624 ret = __rt_mutex_slowlock(lock, ww_ctx, state, RT_MUTEX_MIN_CHAINWALK, 1625 &waiter); 1626 1627 debug_rt_mutex_free_waiter(&waiter); 1628 return ret; 1629 } 1630 1631 /* 1632 * rt_mutex_slowlock - Locking slowpath invoked when fast path fails 1633 * @lock: The rtmutex to block lock 1634 * @ww_ctx: WW mutex context pointer 1635 * @state: The task state for sleeping 1636 */ 1637 static int __sched rt_mutex_slowlock(struct rt_mutex_base *lock, 1638 struct ww_acquire_ctx *ww_ctx, 1639 unsigned int state) 1640 { 1641 unsigned long flags; 1642 int ret; 1643 1644 /* 1645 * Technically we could use raw_spin_[un]lock_irq() here, but this can 1646 * be called in early boot if the cmpxchg() fast path is disabled 1647 * (debug, no architecture support). In this case we will acquire the 1648 * rtmutex with lock->wait_lock held. But we cannot unconditionally 1649 * enable interrupts in that early boot case. So we need to use the 1650 * irqsave/restore variants. 1651 */ 1652 raw_spin_lock_irqsave(&lock->wait_lock, flags); 1653 ret = __rt_mutex_slowlock_locked(lock, ww_ctx, state); 1654 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 1655 1656 return ret; 1657 } 1658 1659 static __always_inline int __rt_mutex_lock(struct rt_mutex_base *lock, 1660 unsigned int state) 1661 { 1662 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) 1663 return 0; 1664 1665 return rt_mutex_slowlock(lock, NULL, state); 1666 } 1667 #endif /* RT_MUTEX_BUILD_MUTEX */ 1668 1669 #ifdef RT_MUTEX_BUILD_SPINLOCKS 1670 /* 1671 * Functions required for spin/rw_lock substitution on RT kernels 1672 */ 1673 1674 /** 1675 * rtlock_slowlock_locked - Slow path lock acquisition for RT locks 1676 * @lock: The underlying RT mutex 1677 */ 1678 static void __sched rtlock_slowlock_locked(struct rt_mutex_base *lock) 1679 { 1680 struct rt_mutex_waiter waiter; 1681 struct task_struct *owner; 1682 1683 lockdep_assert_held(&lock->wait_lock); 1684 1685 if (try_to_take_rt_mutex(lock, current, NULL)) 1686 return; 1687 1688 rt_mutex_init_rtlock_waiter(&waiter); 1689 1690 /* Save current state and set state to TASK_RTLOCK_WAIT */ 1691 current_save_and_set_rtlock_wait_state(); 1692 1693 trace_contention_begin(lock, LCB_F_RT); 1694 1695 task_blocks_on_rt_mutex(lock, &waiter, current, NULL, RT_MUTEX_MIN_CHAINWALK); 1696 1697 for (;;) { 1698 /* Try to acquire the lock again */ 1699 if (try_to_take_rt_mutex(lock, current, &waiter)) 1700 break; 1701 1702 if (&waiter == rt_mutex_top_waiter(lock)) 1703 owner = rt_mutex_owner(lock); 1704 else 1705 owner = NULL; 1706 raw_spin_unlock_irq(&lock->wait_lock); 1707 1708 if (!owner || !rtmutex_spin_on_owner(lock, &waiter, owner)) 1709 schedule_rtlock(); 1710 1711 raw_spin_lock_irq(&lock->wait_lock); 1712 set_current_state(TASK_RTLOCK_WAIT); 1713 } 1714 1715 /* Restore the task state */ 1716 current_restore_rtlock_saved_state(); 1717 1718 /* 1719 * try_to_take_rt_mutex() sets the waiter bit unconditionally. 1720 * We might have to fix that up: 1721 */ 1722 fixup_rt_mutex_waiters(lock); 1723 debug_rt_mutex_free_waiter(&waiter); 1724 1725 trace_contention_end(lock, 0); 1726 } 1727 1728 static __always_inline void __sched rtlock_slowlock(struct rt_mutex_base *lock) 1729 { 1730 unsigned long flags; 1731 1732 raw_spin_lock_irqsave(&lock->wait_lock, flags); 1733 rtlock_slowlock_locked(lock); 1734 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 1735 } 1736 1737 #endif /* RT_MUTEX_BUILD_SPINLOCKS */ 1738