1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * RT-Mutexes: simple blocking mutual exclusion locks with PI support 4 * 5 * started by Ingo Molnar and Thomas Gleixner. 6 * 7 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 8 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com> 9 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt 10 * Copyright (C) 2006 Esben Nielsen 11 * 12 * See Documentation/locking/rt-mutex-design.rst for details. 13 */ 14 #include <linux/spinlock.h> 15 #include <linux/export.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/rt.h> 18 #include <linux/sched/deadline.h> 19 #include <linux/sched/wake_q.h> 20 #include <linux/sched/debug.h> 21 #include <linux/timer.h> 22 23 #include "rtmutex_common.h" 24 25 /* 26 * lock->owner state tracking: 27 * 28 * lock->owner holds the task_struct pointer of the owner. Bit 0 29 * is used to keep track of the "lock has waiters" state. 30 * 31 * owner bit0 32 * NULL 0 lock is free (fast acquire possible) 33 * NULL 1 lock is free and has waiters and the top waiter 34 * is going to take the lock* 35 * taskpointer 0 lock is held (fast release possible) 36 * taskpointer 1 lock is held and has waiters** 37 * 38 * The fast atomic compare exchange based acquire and release is only 39 * possible when bit 0 of lock->owner is 0. 40 * 41 * (*) It also can be a transitional state when grabbing the lock 42 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock, 43 * we need to set the bit0 before looking at the lock, and the owner may be 44 * NULL in this small time, hence this can be a transitional state. 45 * 46 * (**) There is a small time when bit 0 is set but there are no 47 * waiters. This can happen when grabbing the lock in the slow path. 48 * To prevent a cmpxchg of the owner releasing the lock, we need to 49 * set this bit before looking at the lock. 50 */ 51 52 static void 53 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner) 54 { 55 unsigned long val = (unsigned long)owner; 56 57 if (rt_mutex_has_waiters(lock)) 58 val |= RT_MUTEX_HAS_WAITERS; 59 60 WRITE_ONCE(lock->owner, (struct task_struct *)val); 61 } 62 63 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock) 64 { 65 lock->owner = (struct task_struct *) 66 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS); 67 } 68 69 static void fixup_rt_mutex_waiters(struct rt_mutex *lock) 70 { 71 unsigned long owner, *p = (unsigned long *) &lock->owner; 72 73 if (rt_mutex_has_waiters(lock)) 74 return; 75 76 /* 77 * The rbtree has no waiters enqueued, now make sure that the 78 * lock->owner still has the waiters bit set, otherwise the 79 * following can happen: 80 * 81 * CPU 0 CPU 1 CPU2 82 * l->owner=T1 83 * rt_mutex_lock(l) 84 * lock(l->lock) 85 * l->owner = T1 | HAS_WAITERS; 86 * enqueue(T2) 87 * boost() 88 * unlock(l->lock) 89 * block() 90 * 91 * rt_mutex_lock(l) 92 * lock(l->lock) 93 * l->owner = T1 | HAS_WAITERS; 94 * enqueue(T3) 95 * boost() 96 * unlock(l->lock) 97 * block() 98 * signal(->T2) signal(->T3) 99 * lock(l->lock) 100 * dequeue(T2) 101 * deboost() 102 * unlock(l->lock) 103 * lock(l->lock) 104 * dequeue(T3) 105 * ==> wait list is empty 106 * deboost() 107 * unlock(l->lock) 108 * lock(l->lock) 109 * fixup_rt_mutex_waiters() 110 * if (wait_list_empty(l) { 111 * l->owner = owner 112 * owner = l->owner & ~HAS_WAITERS; 113 * ==> l->owner = T1 114 * } 115 * lock(l->lock) 116 * rt_mutex_unlock(l) fixup_rt_mutex_waiters() 117 * if (wait_list_empty(l) { 118 * owner = l->owner & ~HAS_WAITERS; 119 * cmpxchg(l->owner, T1, NULL) 120 * ===> Success (l->owner = NULL) 121 * 122 * l->owner = owner 123 * ==> l->owner = T1 124 * } 125 * 126 * With the check for the waiter bit in place T3 on CPU2 will not 127 * overwrite. All tasks fiddling with the waiters bit are 128 * serialized by l->lock, so nothing else can modify the waiters 129 * bit. If the bit is set then nothing can change l->owner either 130 * so the simple RMW is safe. The cmpxchg() will simply fail if it 131 * happens in the middle of the RMW because the waiters bit is 132 * still set. 133 */ 134 owner = READ_ONCE(*p); 135 if (owner & RT_MUTEX_HAS_WAITERS) 136 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS); 137 } 138 139 /* 140 * We can speed up the acquire/release, if there's no debugging state to be 141 * set up. 142 */ 143 #ifndef CONFIG_DEBUG_RT_MUTEXES 144 # define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c) 145 # define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c) 146 147 /* 148 * Callers must hold the ->wait_lock -- which is the whole purpose as we force 149 * all future threads that attempt to [Rmw] the lock to the slowpath. As such 150 * relaxed semantics suffice. 151 */ 152 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock) 153 { 154 unsigned long owner, *p = (unsigned long *) &lock->owner; 155 156 do { 157 owner = *p; 158 } while (cmpxchg_relaxed(p, owner, 159 owner | RT_MUTEX_HAS_WAITERS) != owner); 160 } 161 162 /* 163 * Safe fastpath aware unlock: 164 * 1) Clear the waiters bit 165 * 2) Drop lock->wait_lock 166 * 3) Try to unlock the lock with cmpxchg 167 */ 168 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock, 169 unsigned long flags) 170 __releases(lock->wait_lock) 171 { 172 struct task_struct *owner = rt_mutex_owner(lock); 173 174 clear_rt_mutex_waiters(lock); 175 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 176 /* 177 * If a new waiter comes in between the unlock and the cmpxchg 178 * we have two situations: 179 * 180 * unlock(wait_lock); 181 * lock(wait_lock); 182 * cmpxchg(p, owner, 0) == owner 183 * mark_rt_mutex_waiters(lock); 184 * acquire(lock); 185 * or: 186 * 187 * unlock(wait_lock); 188 * lock(wait_lock); 189 * mark_rt_mutex_waiters(lock); 190 * 191 * cmpxchg(p, owner, 0) != owner 192 * enqueue_waiter(); 193 * unlock(wait_lock); 194 * lock(wait_lock); 195 * wake waiter(); 196 * unlock(wait_lock); 197 * lock(wait_lock); 198 * acquire(lock); 199 */ 200 return rt_mutex_cmpxchg_release(lock, owner, NULL); 201 } 202 203 #else 204 # define rt_mutex_cmpxchg_acquire(l,c,n) (0) 205 # define rt_mutex_cmpxchg_release(l,c,n) (0) 206 207 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock) 208 { 209 lock->owner = (struct task_struct *) 210 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS); 211 } 212 213 /* 214 * Simple slow path only version: lock->owner is protected by lock->wait_lock. 215 */ 216 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock, 217 unsigned long flags) 218 __releases(lock->wait_lock) 219 { 220 lock->owner = NULL; 221 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 222 return true; 223 } 224 #endif 225 226 /* 227 * Only use with rt_mutex_waiter_{less,equal}() 228 */ 229 #define task_to_waiter(p) \ 230 &(struct rt_mutex_waiter){ .prio = (p)->prio, .deadline = (p)->dl.deadline } 231 232 static inline int 233 rt_mutex_waiter_less(struct rt_mutex_waiter *left, 234 struct rt_mutex_waiter *right) 235 { 236 if (left->prio < right->prio) 237 return 1; 238 239 /* 240 * If both waiters have dl_prio(), we check the deadlines of the 241 * associated tasks. 242 * If left waiter has a dl_prio(), and we didn't return 1 above, 243 * then right waiter has a dl_prio() too. 244 */ 245 if (dl_prio(left->prio)) 246 return dl_time_before(left->deadline, right->deadline); 247 248 return 0; 249 } 250 251 static inline int 252 rt_mutex_waiter_equal(struct rt_mutex_waiter *left, 253 struct rt_mutex_waiter *right) 254 { 255 if (left->prio != right->prio) 256 return 0; 257 258 /* 259 * If both waiters have dl_prio(), we check the deadlines of the 260 * associated tasks. 261 * If left waiter has a dl_prio(), and we didn't return 0 above, 262 * then right waiter has a dl_prio() too. 263 */ 264 if (dl_prio(left->prio)) 265 return left->deadline == right->deadline; 266 267 return 1; 268 } 269 270 static void 271 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter) 272 { 273 struct rb_node **link = &lock->waiters.rb_root.rb_node; 274 struct rb_node *parent = NULL; 275 struct rt_mutex_waiter *entry; 276 bool leftmost = true; 277 278 while (*link) { 279 parent = *link; 280 entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry); 281 if (rt_mutex_waiter_less(waiter, entry)) { 282 link = &parent->rb_left; 283 } else { 284 link = &parent->rb_right; 285 leftmost = false; 286 } 287 } 288 289 rb_link_node(&waiter->tree_entry, parent, link); 290 rb_insert_color_cached(&waiter->tree_entry, &lock->waiters, leftmost); 291 } 292 293 static void 294 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter) 295 { 296 if (RB_EMPTY_NODE(&waiter->tree_entry)) 297 return; 298 299 rb_erase_cached(&waiter->tree_entry, &lock->waiters); 300 RB_CLEAR_NODE(&waiter->tree_entry); 301 } 302 303 static void 304 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter) 305 { 306 struct rb_node **link = &task->pi_waiters.rb_root.rb_node; 307 struct rb_node *parent = NULL; 308 struct rt_mutex_waiter *entry; 309 bool leftmost = true; 310 311 while (*link) { 312 parent = *link; 313 entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry); 314 if (rt_mutex_waiter_less(waiter, entry)) { 315 link = &parent->rb_left; 316 } else { 317 link = &parent->rb_right; 318 leftmost = false; 319 } 320 } 321 322 rb_link_node(&waiter->pi_tree_entry, parent, link); 323 rb_insert_color_cached(&waiter->pi_tree_entry, &task->pi_waiters, leftmost); 324 } 325 326 static void 327 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter) 328 { 329 if (RB_EMPTY_NODE(&waiter->pi_tree_entry)) 330 return; 331 332 rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters); 333 RB_CLEAR_NODE(&waiter->pi_tree_entry); 334 } 335 336 static void rt_mutex_adjust_prio(struct task_struct *p) 337 { 338 struct task_struct *pi_task = NULL; 339 340 lockdep_assert_held(&p->pi_lock); 341 342 if (task_has_pi_waiters(p)) 343 pi_task = task_top_pi_waiter(p)->task; 344 345 rt_mutex_setprio(p, pi_task); 346 } 347 348 /* 349 * Deadlock detection is conditional: 350 * 351 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted 352 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK. 353 * 354 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always 355 * conducted independent of the detect argument. 356 * 357 * If the waiter argument is NULL this indicates the deboost path and 358 * deadlock detection is disabled independent of the detect argument 359 * and the config settings. 360 */ 361 static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter, 362 enum rtmutex_chainwalk chwalk) 363 { 364 /* 365 * This is just a wrapper function for the following call, 366 * because debug_rt_mutex_detect_deadlock() smells like a magic 367 * debug feature and I wanted to keep the cond function in the 368 * main source file along with the comments instead of having 369 * two of the same in the headers. 370 */ 371 return debug_rt_mutex_detect_deadlock(waiter, chwalk); 372 } 373 374 /* 375 * Max number of times we'll walk the boosting chain: 376 */ 377 int max_lock_depth = 1024; 378 379 static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p) 380 { 381 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL; 382 } 383 384 /* 385 * Adjust the priority chain. Also used for deadlock detection. 386 * Decreases task's usage by one - may thus free the task. 387 * 388 * @task: the task owning the mutex (owner) for which a chain walk is 389 * probably needed 390 * @chwalk: do we have to carry out deadlock detection? 391 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck 392 * things for a task that has just got its priority adjusted, and 393 * is waiting on a mutex) 394 * @next_lock: the mutex on which the owner of @orig_lock was blocked before 395 * we dropped its pi_lock. Is never dereferenced, only used for 396 * comparison to detect lock chain changes. 397 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated 398 * its priority to the mutex owner (can be NULL in the case 399 * depicted above or if the top waiter is gone away and we are 400 * actually deboosting the owner) 401 * @top_task: the current top waiter 402 * 403 * Returns 0 or -EDEADLK. 404 * 405 * Chain walk basics and protection scope 406 * 407 * [R] refcount on task 408 * [P] task->pi_lock held 409 * [L] rtmutex->wait_lock held 410 * 411 * Step Description Protected by 412 * function arguments: 413 * @task [R] 414 * @orig_lock if != NULL @top_task is blocked on it 415 * @next_lock Unprotected. Cannot be 416 * dereferenced. Only used for 417 * comparison. 418 * @orig_waiter if != NULL @top_task is blocked on it 419 * @top_task current, or in case of proxy 420 * locking protected by calling 421 * code 422 * again: 423 * loop_sanity_check(); 424 * retry: 425 * [1] lock(task->pi_lock); [R] acquire [P] 426 * [2] waiter = task->pi_blocked_on; [P] 427 * [3] check_exit_conditions_1(); [P] 428 * [4] lock = waiter->lock; [P] 429 * [5] if (!try_lock(lock->wait_lock)) { [P] try to acquire [L] 430 * unlock(task->pi_lock); release [P] 431 * goto retry; 432 * } 433 * [6] check_exit_conditions_2(); [P] + [L] 434 * [7] requeue_lock_waiter(lock, waiter); [P] + [L] 435 * [8] unlock(task->pi_lock); release [P] 436 * put_task_struct(task); release [R] 437 * [9] check_exit_conditions_3(); [L] 438 * [10] task = owner(lock); [L] 439 * get_task_struct(task); [L] acquire [R] 440 * lock(task->pi_lock); [L] acquire [P] 441 * [11] requeue_pi_waiter(tsk, waiters(lock));[P] + [L] 442 * [12] check_exit_conditions_4(); [P] + [L] 443 * [13] unlock(task->pi_lock); release [P] 444 * unlock(lock->wait_lock); release [L] 445 * goto again; 446 */ 447 static int rt_mutex_adjust_prio_chain(struct task_struct *task, 448 enum rtmutex_chainwalk chwalk, 449 struct rt_mutex *orig_lock, 450 struct rt_mutex *next_lock, 451 struct rt_mutex_waiter *orig_waiter, 452 struct task_struct *top_task) 453 { 454 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter; 455 struct rt_mutex_waiter *prerequeue_top_waiter; 456 int ret = 0, depth = 0; 457 struct rt_mutex *lock; 458 bool detect_deadlock; 459 bool requeue = true; 460 461 detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk); 462 463 /* 464 * The (de)boosting is a step by step approach with a lot of 465 * pitfalls. We want this to be preemptible and we want hold a 466 * maximum of two locks per step. So we have to check 467 * carefully whether things change under us. 468 */ 469 again: 470 /* 471 * We limit the lock chain length for each invocation. 472 */ 473 if (++depth > max_lock_depth) { 474 static int prev_max; 475 476 /* 477 * Print this only once. If the admin changes the limit, 478 * print a new message when reaching the limit again. 479 */ 480 if (prev_max != max_lock_depth) { 481 prev_max = max_lock_depth; 482 printk(KERN_WARNING "Maximum lock depth %d reached " 483 "task: %s (%d)\n", max_lock_depth, 484 top_task->comm, task_pid_nr(top_task)); 485 } 486 put_task_struct(task); 487 488 return -EDEADLK; 489 } 490 491 /* 492 * We are fully preemptible here and only hold the refcount on 493 * @task. So everything can have changed under us since the 494 * caller or our own code below (goto retry/again) dropped all 495 * locks. 496 */ 497 retry: 498 /* 499 * [1] Task cannot go away as we did a get_task() before ! 500 */ 501 raw_spin_lock_irq(&task->pi_lock); 502 503 /* 504 * [2] Get the waiter on which @task is blocked on. 505 */ 506 waiter = task->pi_blocked_on; 507 508 /* 509 * [3] check_exit_conditions_1() protected by task->pi_lock. 510 */ 511 512 /* 513 * Check whether the end of the boosting chain has been 514 * reached or the state of the chain has changed while we 515 * dropped the locks. 516 */ 517 if (!waiter) 518 goto out_unlock_pi; 519 520 /* 521 * Check the orig_waiter state. After we dropped the locks, 522 * the previous owner of the lock might have released the lock. 523 */ 524 if (orig_waiter && !rt_mutex_owner(orig_lock)) 525 goto out_unlock_pi; 526 527 /* 528 * We dropped all locks after taking a refcount on @task, so 529 * the task might have moved on in the lock chain or even left 530 * the chain completely and blocks now on an unrelated lock or 531 * on @orig_lock. 532 * 533 * We stored the lock on which @task was blocked in @next_lock, 534 * so we can detect the chain change. 535 */ 536 if (next_lock != waiter->lock) 537 goto out_unlock_pi; 538 539 /* 540 * Drop out, when the task has no waiters. Note, 541 * top_waiter can be NULL, when we are in the deboosting 542 * mode! 543 */ 544 if (top_waiter) { 545 if (!task_has_pi_waiters(task)) 546 goto out_unlock_pi; 547 /* 548 * If deadlock detection is off, we stop here if we 549 * are not the top pi waiter of the task. If deadlock 550 * detection is enabled we continue, but stop the 551 * requeueing in the chain walk. 552 */ 553 if (top_waiter != task_top_pi_waiter(task)) { 554 if (!detect_deadlock) 555 goto out_unlock_pi; 556 else 557 requeue = false; 558 } 559 } 560 561 /* 562 * If the waiter priority is the same as the task priority 563 * then there is no further priority adjustment necessary. If 564 * deadlock detection is off, we stop the chain walk. If its 565 * enabled we continue, but stop the requeueing in the chain 566 * walk. 567 */ 568 if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) { 569 if (!detect_deadlock) 570 goto out_unlock_pi; 571 else 572 requeue = false; 573 } 574 575 /* 576 * [4] Get the next lock 577 */ 578 lock = waiter->lock; 579 /* 580 * [5] We need to trylock here as we are holding task->pi_lock, 581 * which is the reverse lock order versus the other rtmutex 582 * operations. 583 */ 584 if (!raw_spin_trylock(&lock->wait_lock)) { 585 raw_spin_unlock_irq(&task->pi_lock); 586 cpu_relax(); 587 goto retry; 588 } 589 590 /* 591 * [6] check_exit_conditions_2() protected by task->pi_lock and 592 * lock->wait_lock. 593 * 594 * Deadlock detection. If the lock is the same as the original 595 * lock which caused us to walk the lock chain or if the 596 * current lock is owned by the task which initiated the chain 597 * walk, we detected a deadlock. 598 */ 599 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) { 600 debug_rt_mutex_deadlock(chwalk, orig_waiter, lock); 601 raw_spin_unlock(&lock->wait_lock); 602 ret = -EDEADLK; 603 goto out_unlock_pi; 604 } 605 606 /* 607 * If we just follow the lock chain for deadlock detection, no 608 * need to do all the requeue operations. To avoid a truckload 609 * of conditionals around the various places below, just do the 610 * minimum chain walk checks. 611 */ 612 if (!requeue) { 613 /* 614 * No requeue[7] here. Just release @task [8] 615 */ 616 raw_spin_unlock(&task->pi_lock); 617 put_task_struct(task); 618 619 /* 620 * [9] check_exit_conditions_3 protected by lock->wait_lock. 621 * If there is no owner of the lock, end of chain. 622 */ 623 if (!rt_mutex_owner(lock)) { 624 raw_spin_unlock_irq(&lock->wait_lock); 625 return 0; 626 } 627 628 /* [10] Grab the next task, i.e. owner of @lock */ 629 task = get_task_struct(rt_mutex_owner(lock)); 630 raw_spin_lock(&task->pi_lock); 631 632 /* 633 * No requeue [11] here. We just do deadlock detection. 634 * 635 * [12] Store whether owner is blocked 636 * itself. Decision is made after dropping the locks 637 */ 638 next_lock = task_blocked_on_lock(task); 639 /* 640 * Get the top waiter for the next iteration 641 */ 642 top_waiter = rt_mutex_top_waiter(lock); 643 644 /* [13] Drop locks */ 645 raw_spin_unlock(&task->pi_lock); 646 raw_spin_unlock_irq(&lock->wait_lock); 647 648 /* If owner is not blocked, end of chain. */ 649 if (!next_lock) 650 goto out_put_task; 651 goto again; 652 } 653 654 /* 655 * Store the current top waiter before doing the requeue 656 * operation on @lock. We need it for the boost/deboost 657 * decision below. 658 */ 659 prerequeue_top_waiter = rt_mutex_top_waiter(lock); 660 661 /* [7] Requeue the waiter in the lock waiter tree. */ 662 rt_mutex_dequeue(lock, waiter); 663 664 /* 665 * Update the waiter prio fields now that we're dequeued. 666 * 667 * These values can have changed through either: 668 * 669 * sys_sched_set_scheduler() / sys_sched_setattr() 670 * 671 * or 672 * 673 * DL CBS enforcement advancing the effective deadline. 674 * 675 * Even though pi_waiters also uses these fields, and that tree is only 676 * updated in [11], we can do this here, since we hold [L], which 677 * serializes all pi_waiters access and rb_erase() does not care about 678 * the values of the node being removed. 679 */ 680 waiter->prio = task->prio; 681 waiter->deadline = task->dl.deadline; 682 683 rt_mutex_enqueue(lock, waiter); 684 685 /* [8] Release the task */ 686 raw_spin_unlock(&task->pi_lock); 687 put_task_struct(task); 688 689 /* 690 * [9] check_exit_conditions_3 protected by lock->wait_lock. 691 * 692 * We must abort the chain walk if there is no lock owner even 693 * in the dead lock detection case, as we have nothing to 694 * follow here. This is the end of the chain we are walking. 695 */ 696 if (!rt_mutex_owner(lock)) { 697 /* 698 * If the requeue [7] above changed the top waiter, 699 * then we need to wake the new top waiter up to try 700 * to get the lock. 701 */ 702 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock)) 703 wake_up_process(rt_mutex_top_waiter(lock)->task); 704 raw_spin_unlock_irq(&lock->wait_lock); 705 return 0; 706 } 707 708 /* [10] Grab the next task, i.e. the owner of @lock */ 709 task = get_task_struct(rt_mutex_owner(lock)); 710 raw_spin_lock(&task->pi_lock); 711 712 /* [11] requeue the pi waiters if necessary */ 713 if (waiter == rt_mutex_top_waiter(lock)) { 714 /* 715 * The waiter became the new top (highest priority) 716 * waiter on the lock. Replace the previous top waiter 717 * in the owner tasks pi waiters tree with this waiter 718 * and adjust the priority of the owner. 719 */ 720 rt_mutex_dequeue_pi(task, prerequeue_top_waiter); 721 rt_mutex_enqueue_pi(task, waiter); 722 rt_mutex_adjust_prio(task); 723 724 } else if (prerequeue_top_waiter == waiter) { 725 /* 726 * The waiter was the top waiter on the lock, but is 727 * no longer the top prority waiter. Replace waiter in 728 * the owner tasks pi waiters tree with the new top 729 * (highest priority) waiter and adjust the priority 730 * of the owner. 731 * The new top waiter is stored in @waiter so that 732 * @waiter == @top_waiter evaluates to true below and 733 * we continue to deboost the rest of the chain. 734 */ 735 rt_mutex_dequeue_pi(task, waiter); 736 waiter = rt_mutex_top_waiter(lock); 737 rt_mutex_enqueue_pi(task, waiter); 738 rt_mutex_adjust_prio(task); 739 } else { 740 /* 741 * Nothing changed. No need to do any priority 742 * adjustment. 743 */ 744 } 745 746 /* 747 * [12] check_exit_conditions_4() protected by task->pi_lock 748 * and lock->wait_lock. The actual decisions are made after we 749 * dropped the locks. 750 * 751 * Check whether the task which owns the current lock is pi 752 * blocked itself. If yes we store a pointer to the lock for 753 * the lock chain change detection above. After we dropped 754 * task->pi_lock next_lock cannot be dereferenced anymore. 755 */ 756 next_lock = task_blocked_on_lock(task); 757 /* 758 * Store the top waiter of @lock for the end of chain walk 759 * decision below. 760 */ 761 top_waiter = rt_mutex_top_waiter(lock); 762 763 /* [13] Drop the locks */ 764 raw_spin_unlock(&task->pi_lock); 765 raw_spin_unlock_irq(&lock->wait_lock); 766 767 /* 768 * Make the actual exit decisions [12], based on the stored 769 * values. 770 * 771 * We reached the end of the lock chain. Stop right here. No 772 * point to go back just to figure that out. 773 */ 774 if (!next_lock) 775 goto out_put_task; 776 777 /* 778 * If the current waiter is not the top waiter on the lock, 779 * then we can stop the chain walk here if we are not in full 780 * deadlock detection mode. 781 */ 782 if (!detect_deadlock && waiter != top_waiter) 783 goto out_put_task; 784 785 goto again; 786 787 out_unlock_pi: 788 raw_spin_unlock_irq(&task->pi_lock); 789 out_put_task: 790 put_task_struct(task); 791 792 return ret; 793 } 794 795 /* 796 * Try to take an rt-mutex 797 * 798 * Must be called with lock->wait_lock held and interrupts disabled 799 * 800 * @lock: The lock to be acquired. 801 * @task: The task which wants to acquire the lock 802 * @waiter: The waiter that is queued to the lock's wait tree if the 803 * callsite called task_blocked_on_lock(), otherwise NULL 804 */ 805 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task, 806 struct rt_mutex_waiter *waiter) 807 { 808 lockdep_assert_held(&lock->wait_lock); 809 810 /* 811 * Before testing whether we can acquire @lock, we set the 812 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all 813 * other tasks which try to modify @lock into the slow path 814 * and they serialize on @lock->wait_lock. 815 * 816 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state 817 * as explained at the top of this file if and only if: 818 * 819 * - There is a lock owner. The caller must fixup the 820 * transient state if it does a trylock or leaves the lock 821 * function due to a signal or timeout. 822 * 823 * - @task acquires the lock and there are no other 824 * waiters. This is undone in rt_mutex_set_owner(@task) at 825 * the end of this function. 826 */ 827 mark_rt_mutex_waiters(lock); 828 829 /* 830 * If @lock has an owner, give up. 831 */ 832 if (rt_mutex_owner(lock)) 833 return 0; 834 835 /* 836 * If @waiter != NULL, @task has already enqueued the waiter 837 * into @lock waiter tree. If @waiter == NULL then this is a 838 * trylock attempt. 839 */ 840 if (waiter) { 841 /* 842 * If waiter is not the highest priority waiter of 843 * @lock, give up. 844 */ 845 if (waiter != rt_mutex_top_waiter(lock)) 846 return 0; 847 848 /* 849 * We can acquire the lock. Remove the waiter from the 850 * lock waiters tree. 851 */ 852 rt_mutex_dequeue(lock, waiter); 853 854 } else { 855 /* 856 * If the lock has waiters already we check whether @task is 857 * eligible to take over the lock. 858 * 859 * If there are no other waiters, @task can acquire 860 * the lock. @task->pi_blocked_on is NULL, so it does 861 * not need to be dequeued. 862 */ 863 if (rt_mutex_has_waiters(lock)) { 864 /* 865 * If @task->prio is greater than or equal to 866 * the top waiter priority (kernel view), 867 * @task lost. 868 */ 869 if (!rt_mutex_waiter_less(task_to_waiter(task), 870 rt_mutex_top_waiter(lock))) 871 return 0; 872 873 /* 874 * The current top waiter stays enqueued. We 875 * don't have to change anything in the lock 876 * waiters order. 877 */ 878 } else { 879 /* 880 * No waiters. Take the lock without the 881 * pi_lock dance.@task->pi_blocked_on is NULL 882 * and we have no waiters to enqueue in @task 883 * pi waiters tree. 884 */ 885 goto takeit; 886 } 887 } 888 889 /* 890 * Clear @task->pi_blocked_on. Requires protection by 891 * @task->pi_lock. Redundant operation for the @waiter == NULL 892 * case, but conditionals are more expensive than a redundant 893 * store. 894 */ 895 raw_spin_lock(&task->pi_lock); 896 task->pi_blocked_on = NULL; 897 /* 898 * Finish the lock acquisition. @task is the new owner. If 899 * other waiters exist we have to insert the highest priority 900 * waiter into @task->pi_waiters tree. 901 */ 902 if (rt_mutex_has_waiters(lock)) 903 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock)); 904 raw_spin_unlock(&task->pi_lock); 905 906 takeit: 907 /* We got the lock. */ 908 debug_rt_mutex_lock(lock); 909 910 /* 911 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there 912 * are still waiters or clears it. 913 */ 914 rt_mutex_set_owner(lock, task); 915 916 return 1; 917 } 918 919 /* 920 * Task blocks on lock. 921 * 922 * Prepare waiter and propagate pi chain 923 * 924 * This must be called with lock->wait_lock held and interrupts disabled 925 */ 926 static int task_blocks_on_rt_mutex(struct rt_mutex *lock, 927 struct rt_mutex_waiter *waiter, 928 struct task_struct *task, 929 enum rtmutex_chainwalk chwalk) 930 { 931 struct task_struct *owner = rt_mutex_owner(lock); 932 struct rt_mutex_waiter *top_waiter = waiter; 933 struct rt_mutex *next_lock; 934 int chain_walk = 0, res; 935 936 lockdep_assert_held(&lock->wait_lock); 937 938 /* 939 * Early deadlock detection. We really don't want the task to 940 * enqueue on itself just to untangle the mess later. It's not 941 * only an optimization. We drop the locks, so another waiter 942 * can come in before the chain walk detects the deadlock. So 943 * the other will detect the deadlock and return -EDEADLOCK, 944 * which is wrong, as the other waiter is not in a deadlock 945 * situation. 946 */ 947 if (owner == task) 948 return -EDEADLK; 949 950 raw_spin_lock(&task->pi_lock); 951 waiter->task = task; 952 waiter->lock = lock; 953 waiter->prio = task->prio; 954 waiter->deadline = task->dl.deadline; 955 956 /* Get the top priority waiter on the lock */ 957 if (rt_mutex_has_waiters(lock)) 958 top_waiter = rt_mutex_top_waiter(lock); 959 rt_mutex_enqueue(lock, waiter); 960 961 task->pi_blocked_on = waiter; 962 963 raw_spin_unlock(&task->pi_lock); 964 965 if (!owner) 966 return 0; 967 968 raw_spin_lock(&owner->pi_lock); 969 if (waiter == rt_mutex_top_waiter(lock)) { 970 rt_mutex_dequeue_pi(owner, top_waiter); 971 rt_mutex_enqueue_pi(owner, waiter); 972 973 rt_mutex_adjust_prio(owner); 974 if (owner->pi_blocked_on) 975 chain_walk = 1; 976 } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) { 977 chain_walk = 1; 978 } 979 980 /* Store the lock on which owner is blocked or NULL */ 981 next_lock = task_blocked_on_lock(owner); 982 983 raw_spin_unlock(&owner->pi_lock); 984 /* 985 * Even if full deadlock detection is on, if the owner is not 986 * blocked itself, we can avoid finding this out in the chain 987 * walk. 988 */ 989 if (!chain_walk || !next_lock) 990 return 0; 991 992 /* 993 * The owner can't disappear while holding a lock, 994 * so the owner struct is protected by wait_lock. 995 * Gets dropped in rt_mutex_adjust_prio_chain()! 996 */ 997 get_task_struct(owner); 998 999 raw_spin_unlock_irq(&lock->wait_lock); 1000 1001 res = rt_mutex_adjust_prio_chain(owner, chwalk, lock, 1002 next_lock, waiter, task); 1003 1004 raw_spin_lock_irq(&lock->wait_lock); 1005 1006 return res; 1007 } 1008 1009 /* 1010 * Remove the top waiter from the current tasks pi waiter tree and 1011 * queue it up. 1012 * 1013 * Called with lock->wait_lock held and interrupts disabled. 1014 */ 1015 static void mark_wakeup_next_waiter(struct wake_q_head *wake_q, 1016 struct rt_mutex *lock) 1017 { 1018 struct rt_mutex_waiter *waiter; 1019 1020 raw_spin_lock(¤t->pi_lock); 1021 1022 waiter = rt_mutex_top_waiter(lock); 1023 1024 /* 1025 * Remove it from current->pi_waiters and deboost. 1026 * 1027 * We must in fact deboost here in order to ensure we call 1028 * rt_mutex_setprio() to update p->pi_top_task before the 1029 * task unblocks. 1030 */ 1031 rt_mutex_dequeue_pi(current, waiter); 1032 rt_mutex_adjust_prio(current); 1033 1034 /* 1035 * As we are waking up the top waiter, and the waiter stays 1036 * queued on the lock until it gets the lock, this lock 1037 * obviously has waiters. Just set the bit here and this has 1038 * the added benefit of forcing all new tasks into the 1039 * slow path making sure no task of lower priority than 1040 * the top waiter can steal this lock. 1041 */ 1042 lock->owner = (void *) RT_MUTEX_HAS_WAITERS; 1043 1044 /* 1045 * We deboosted before waking the top waiter task such that we don't 1046 * run two tasks with the 'same' priority (and ensure the 1047 * p->pi_top_task pointer points to a blocked task). This however can 1048 * lead to priority inversion if we would get preempted after the 1049 * deboost but before waking our donor task, hence the preempt_disable() 1050 * before unlock. 1051 * 1052 * Pairs with preempt_enable() in rt_mutex_postunlock(); 1053 */ 1054 preempt_disable(); 1055 wake_q_add(wake_q, waiter->task); 1056 raw_spin_unlock(¤t->pi_lock); 1057 } 1058 1059 /* 1060 * Remove a waiter from a lock and give up 1061 * 1062 * Must be called with lock->wait_lock held and interrupts disabled. I must 1063 * have just failed to try_to_take_rt_mutex(). 1064 */ 1065 static void remove_waiter(struct rt_mutex *lock, 1066 struct rt_mutex_waiter *waiter) 1067 { 1068 bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock)); 1069 struct task_struct *owner = rt_mutex_owner(lock); 1070 struct rt_mutex *next_lock; 1071 1072 lockdep_assert_held(&lock->wait_lock); 1073 1074 raw_spin_lock(¤t->pi_lock); 1075 rt_mutex_dequeue(lock, waiter); 1076 current->pi_blocked_on = NULL; 1077 raw_spin_unlock(¤t->pi_lock); 1078 1079 /* 1080 * Only update priority if the waiter was the highest priority 1081 * waiter of the lock and there is an owner to update. 1082 */ 1083 if (!owner || !is_top_waiter) 1084 return; 1085 1086 raw_spin_lock(&owner->pi_lock); 1087 1088 rt_mutex_dequeue_pi(owner, waiter); 1089 1090 if (rt_mutex_has_waiters(lock)) 1091 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock)); 1092 1093 rt_mutex_adjust_prio(owner); 1094 1095 /* Store the lock on which owner is blocked or NULL */ 1096 next_lock = task_blocked_on_lock(owner); 1097 1098 raw_spin_unlock(&owner->pi_lock); 1099 1100 /* 1101 * Don't walk the chain, if the owner task is not blocked 1102 * itself. 1103 */ 1104 if (!next_lock) 1105 return; 1106 1107 /* gets dropped in rt_mutex_adjust_prio_chain()! */ 1108 get_task_struct(owner); 1109 1110 raw_spin_unlock_irq(&lock->wait_lock); 1111 1112 rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock, 1113 next_lock, NULL, current); 1114 1115 raw_spin_lock_irq(&lock->wait_lock); 1116 } 1117 1118 /* 1119 * Recheck the pi chain, in case we got a priority setting 1120 * 1121 * Called from sched_setscheduler 1122 */ 1123 void rt_mutex_adjust_pi(struct task_struct *task) 1124 { 1125 struct rt_mutex_waiter *waiter; 1126 struct rt_mutex *next_lock; 1127 unsigned long flags; 1128 1129 raw_spin_lock_irqsave(&task->pi_lock, flags); 1130 1131 waiter = task->pi_blocked_on; 1132 if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) { 1133 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 1134 return; 1135 } 1136 next_lock = waiter->lock; 1137 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 1138 1139 /* gets dropped in rt_mutex_adjust_prio_chain()! */ 1140 get_task_struct(task); 1141 1142 rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL, 1143 next_lock, NULL, task); 1144 } 1145 1146 void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter) 1147 { 1148 debug_rt_mutex_init_waiter(waiter); 1149 RB_CLEAR_NODE(&waiter->pi_tree_entry); 1150 RB_CLEAR_NODE(&waiter->tree_entry); 1151 waiter->task = NULL; 1152 } 1153 1154 /** 1155 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop 1156 * @lock: the rt_mutex to take 1157 * @state: the state the task should block in (TASK_INTERRUPTIBLE 1158 * or TASK_UNINTERRUPTIBLE) 1159 * @timeout: the pre-initialized and started timer, or NULL for none 1160 * @waiter: the pre-initialized rt_mutex_waiter 1161 * 1162 * Must be called with lock->wait_lock held and interrupts disabled 1163 */ 1164 static int __sched 1165 __rt_mutex_slowlock(struct rt_mutex *lock, int state, 1166 struct hrtimer_sleeper *timeout, 1167 struct rt_mutex_waiter *waiter) 1168 { 1169 int ret = 0; 1170 1171 for (;;) { 1172 /* Try to acquire the lock: */ 1173 if (try_to_take_rt_mutex(lock, current, waiter)) 1174 break; 1175 1176 /* 1177 * TASK_INTERRUPTIBLE checks for signals and 1178 * timeout. Ignored otherwise. 1179 */ 1180 if (likely(state == TASK_INTERRUPTIBLE)) { 1181 /* Signal pending? */ 1182 if (signal_pending(current)) 1183 ret = -EINTR; 1184 if (timeout && !timeout->task) 1185 ret = -ETIMEDOUT; 1186 if (ret) 1187 break; 1188 } 1189 1190 raw_spin_unlock_irq(&lock->wait_lock); 1191 1192 debug_rt_mutex_print_deadlock(waiter); 1193 1194 schedule(); 1195 1196 raw_spin_lock_irq(&lock->wait_lock); 1197 set_current_state(state); 1198 } 1199 1200 __set_current_state(TASK_RUNNING); 1201 return ret; 1202 } 1203 1204 static void rt_mutex_handle_deadlock(int res, int detect_deadlock, 1205 struct rt_mutex_waiter *w) 1206 { 1207 /* 1208 * If the result is not -EDEADLOCK or the caller requested 1209 * deadlock detection, nothing to do here. 1210 */ 1211 if (res != -EDEADLOCK || detect_deadlock) 1212 return; 1213 1214 /* 1215 * Yell lowdly and stop the task right here. 1216 */ 1217 rt_mutex_print_deadlock(w); 1218 while (1) { 1219 set_current_state(TASK_INTERRUPTIBLE); 1220 schedule(); 1221 } 1222 } 1223 1224 /* 1225 * Slow path lock function: 1226 */ 1227 static int __sched 1228 rt_mutex_slowlock(struct rt_mutex *lock, int state, 1229 struct hrtimer_sleeper *timeout, 1230 enum rtmutex_chainwalk chwalk) 1231 { 1232 struct rt_mutex_waiter waiter; 1233 unsigned long flags; 1234 int ret = 0; 1235 1236 rt_mutex_init_waiter(&waiter); 1237 1238 /* 1239 * Technically we could use raw_spin_[un]lock_irq() here, but this can 1240 * be called in early boot if the cmpxchg() fast path is disabled 1241 * (debug, no architecture support). In this case we will acquire the 1242 * rtmutex with lock->wait_lock held. But we cannot unconditionally 1243 * enable interrupts in that early boot case. So we need to use the 1244 * irqsave/restore variants. 1245 */ 1246 raw_spin_lock_irqsave(&lock->wait_lock, flags); 1247 1248 /* Try to acquire the lock again: */ 1249 if (try_to_take_rt_mutex(lock, current, NULL)) { 1250 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 1251 return 0; 1252 } 1253 1254 set_current_state(state); 1255 1256 /* Setup the timer, when timeout != NULL */ 1257 if (unlikely(timeout)) 1258 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS); 1259 1260 ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk); 1261 1262 if (likely(!ret)) 1263 /* sleep on the mutex */ 1264 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter); 1265 1266 if (unlikely(ret)) { 1267 __set_current_state(TASK_RUNNING); 1268 remove_waiter(lock, &waiter); 1269 rt_mutex_handle_deadlock(ret, chwalk, &waiter); 1270 } 1271 1272 /* 1273 * try_to_take_rt_mutex() sets the waiter bit 1274 * unconditionally. We might have to fix that up. 1275 */ 1276 fixup_rt_mutex_waiters(lock); 1277 1278 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 1279 1280 /* Remove pending timer: */ 1281 if (unlikely(timeout)) 1282 hrtimer_cancel(&timeout->timer); 1283 1284 debug_rt_mutex_free_waiter(&waiter); 1285 1286 return ret; 1287 } 1288 1289 static inline int __rt_mutex_slowtrylock(struct rt_mutex *lock) 1290 { 1291 int ret = try_to_take_rt_mutex(lock, current, NULL); 1292 1293 /* 1294 * try_to_take_rt_mutex() sets the lock waiters bit 1295 * unconditionally. Clean this up. 1296 */ 1297 fixup_rt_mutex_waiters(lock); 1298 1299 return ret; 1300 } 1301 1302 /* 1303 * Slow path try-lock function: 1304 */ 1305 static inline int rt_mutex_slowtrylock(struct rt_mutex *lock) 1306 { 1307 unsigned long flags; 1308 int ret; 1309 1310 /* 1311 * If the lock already has an owner we fail to get the lock. 1312 * This can be done without taking the @lock->wait_lock as 1313 * it is only being read, and this is a trylock anyway. 1314 */ 1315 if (rt_mutex_owner(lock)) 1316 return 0; 1317 1318 /* 1319 * The mutex has currently no owner. Lock the wait lock and try to 1320 * acquire the lock. We use irqsave here to support early boot calls. 1321 */ 1322 raw_spin_lock_irqsave(&lock->wait_lock, flags); 1323 1324 ret = __rt_mutex_slowtrylock(lock); 1325 1326 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 1327 1328 return ret; 1329 } 1330 1331 /* 1332 * Slow path to release a rt-mutex. 1333 * 1334 * Return whether the current task needs to call rt_mutex_postunlock(). 1335 */ 1336 static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock, 1337 struct wake_q_head *wake_q) 1338 { 1339 unsigned long flags; 1340 1341 /* irqsave required to support early boot calls */ 1342 raw_spin_lock_irqsave(&lock->wait_lock, flags); 1343 1344 debug_rt_mutex_unlock(lock); 1345 1346 /* 1347 * We must be careful here if the fast path is enabled. If we 1348 * have no waiters queued we cannot set owner to NULL here 1349 * because of: 1350 * 1351 * foo->lock->owner = NULL; 1352 * rtmutex_lock(foo->lock); <- fast path 1353 * free = atomic_dec_and_test(foo->refcnt); 1354 * rtmutex_unlock(foo->lock); <- fast path 1355 * if (free) 1356 * kfree(foo); 1357 * raw_spin_unlock(foo->lock->wait_lock); 1358 * 1359 * So for the fastpath enabled kernel: 1360 * 1361 * Nothing can set the waiters bit as long as we hold 1362 * lock->wait_lock. So we do the following sequence: 1363 * 1364 * owner = rt_mutex_owner(lock); 1365 * clear_rt_mutex_waiters(lock); 1366 * raw_spin_unlock(&lock->wait_lock); 1367 * if (cmpxchg(&lock->owner, owner, 0) == owner) 1368 * return; 1369 * goto retry; 1370 * 1371 * The fastpath disabled variant is simple as all access to 1372 * lock->owner is serialized by lock->wait_lock: 1373 * 1374 * lock->owner = NULL; 1375 * raw_spin_unlock(&lock->wait_lock); 1376 */ 1377 while (!rt_mutex_has_waiters(lock)) { 1378 /* Drops lock->wait_lock ! */ 1379 if (unlock_rt_mutex_safe(lock, flags) == true) 1380 return false; 1381 /* Relock the rtmutex and try again */ 1382 raw_spin_lock_irqsave(&lock->wait_lock, flags); 1383 } 1384 1385 /* 1386 * The wakeup next waiter path does not suffer from the above 1387 * race. See the comments there. 1388 * 1389 * Queue the next waiter for wakeup once we release the wait_lock. 1390 */ 1391 mark_wakeup_next_waiter(wake_q, lock); 1392 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 1393 1394 return true; /* call rt_mutex_postunlock() */ 1395 } 1396 1397 /* 1398 * debug aware fast / slowpath lock,trylock,unlock 1399 * 1400 * The atomic acquire/release ops are compiled away, when either the 1401 * architecture does not support cmpxchg or when debugging is enabled. 1402 */ 1403 static inline int 1404 rt_mutex_fastlock(struct rt_mutex *lock, int state, 1405 int (*slowfn)(struct rt_mutex *lock, int state, 1406 struct hrtimer_sleeper *timeout, 1407 enum rtmutex_chainwalk chwalk)) 1408 { 1409 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) 1410 return 0; 1411 1412 return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK); 1413 } 1414 1415 static inline int 1416 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state, 1417 struct hrtimer_sleeper *timeout, 1418 enum rtmutex_chainwalk chwalk, 1419 int (*slowfn)(struct rt_mutex *lock, int state, 1420 struct hrtimer_sleeper *timeout, 1421 enum rtmutex_chainwalk chwalk)) 1422 { 1423 if (chwalk == RT_MUTEX_MIN_CHAINWALK && 1424 likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) 1425 return 0; 1426 1427 return slowfn(lock, state, timeout, chwalk); 1428 } 1429 1430 static inline int 1431 rt_mutex_fasttrylock(struct rt_mutex *lock, 1432 int (*slowfn)(struct rt_mutex *lock)) 1433 { 1434 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) 1435 return 1; 1436 1437 return slowfn(lock); 1438 } 1439 1440 /* 1441 * Performs the wakeup of the the top-waiter and re-enables preemption. 1442 */ 1443 void rt_mutex_postunlock(struct wake_q_head *wake_q) 1444 { 1445 wake_up_q(wake_q); 1446 1447 /* Pairs with preempt_disable() in rt_mutex_slowunlock() */ 1448 preempt_enable(); 1449 } 1450 1451 static inline void 1452 rt_mutex_fastunlock(struct rt_mutex *lock, 1453 bool (*slowfn)(struct rt_mutex *lock, 1454 struct wake_q_head *wqh)) 1455 { 1456 DEFINE_WAKE_Q(wake_q); 1457 1458 if (likely(rt_mutex_cmpxchg_release(lock, current, NULL))) 1459 return; 1460 1461 if (slowfn(lock, &wake_q)) 1462 rt_mutex_postunlock(&wake_q); 1463 } 1464 1465 static inline void __rt_mutex_lock(struct rt_mutex *lock, unsigned int subclass) 1466 { 1467 might_sleep(); 1468 1469 mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_); 1470 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock); 1471 } 1472 1473 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1474 /** 1475 * rt_mutex_lock_nested - lock a rt_mutex 1476 * 1477 * @lock: the rt_mutex to be locked 1478 * @subclass: the lockdep subclass 1479 */ 1480 void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass) 1481 { 1482 __rt_mutex_lock(lock, subclass); 1483 } 1484 EXPORT_SYMBOL_GPL(rt_mutex_lock_nested); 1485 1486 #else /* !CONFIG_DEBUG_LOCK_ALLOC */ 1487 1488 /** 1489 * rt_mutex_lock - lock a rt_mutex 1490 * 1491 * @lock: the rt_mutex to be locked 1492 */ 1493 void __sched rt_mutex_lock(struct rt_mutex *lock) 1494 { 1495 __rt_mutex_lock(lock, 0); 1496 } 1497 EXPORT_SYMBOL_GPL(rt_mutex_lock); 1498 #endif 1499 1500 /** 1501 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible 1502 * 1503 * @lock: the rt_mutex to be locked 1504 * 1505 * Returns: 1506 * 0 on success 1507 * -EINTR when interrupted by a signal 1508 */ 1509 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock) 1510 { 1511 int ret; 1512 1513 might_sleep(); 1514 1515 mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_); 1516 ret = rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock); 1517 if (ret) 1518 mutex_release(&lock->dep_map, _RET_IP_); 1519 1520 return ret; 1521 } 1522 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible); 1523 1524 /* 1525 * Futex variant, must not use fastpath. 1526 */ 1527 int __sched rt_mutex_futex_trylock(struct rt_mutex *lock) 1528 { 1529 return rt_mutex_slowtrylock(lock); 1530 } 1531 1532 int __sched __rt_mutex_futex_trylock(struct rt_mutex *lock) 1533 { 1534 return __rt_mutex_slowtrylock(lock); 1535 } 1536 1537 /** 1538 * rt_mutex_timed_lock - lock a rt_mutex interruptible 1539 * the timeout structure is provided 1540 * by the caller 1541 * 1542 * @lock: the rt_mutex to be locked 1543 * @timeout: timeout structure or NULL (no timeout) 1544 * 1545 * Returns: 1546 * 0 on success 1547 * -EINTR when interrupted by a signal 1548 * -ETIMEDOUT when the timeout expired 1549 */ 1550 int 1551 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout) 1552 { 1553 int ret; 1554 1555 might_sleep(); 1556 1557 mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_); 1558 ret = rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout, 1559 RT_MUTEX_MIN_CHAINWALK, 1560 rt_mutex_slowlock); 1561 if (ret) 1562 mutex_release(&lock->dep_map, _RET_IP_); 1563 1564 return ret; 1565 } 1566 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock); 1567 1568 /** 1569 * rt_mutex_trylock - try to lock a rt_mutex 1570 * 1571 * @lock: the rt_mutex to be locked 1572 * 1573 * This function can only be called in thread context. It's safe to 1574 * call it from atomic regions, but not from hard interrupt or soft 1575 * interrupt context. 1576 * 1577 * Returns 1 on success and 0 on contention 1578 */ 1579 int __sched rt_mutex_trylock(struct rt_mutex *lock) 1580 { 1581 int ret; 1582 1583 if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq())) 1584 return 0; 1585 1586 ret = rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock); 1587 if (ret) 1588 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); 1589 1590 return ret; 1591 } 1592 EXPORT_SYMBOL_GPL(rt_mutex_trylock); 1593 1594 /** 1595 * rt_mutex_unlock - unlock a rt_mutex 1596 * 1597 * @lock: the rt_mutex to be unlocked 1598 */ 1599 void __sched rt_mutex_unlock(struct rt_mutex *lock) 1600 { 1601 mutex_release(&lock->dep_map, _RET_IP_); 1602 rt_mutex_fastunlock(lock, rt_mutex_slowunlock); 1603 } 1604 EXPORT_SYMBOL_GPL(rt_mutex_unlock); 1605 1606 /** 1607 * Futex variant, that since futex variants do not use the fast-path, can be 1608 * simple and will not need to retry. 1609 */ 1610 bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock, 1611 struct wake_q_head *wake_q) 1612 { 1613 lockdep_assert_held(&lock->wait_lock); 1614 1615 debug_rt_mutex_unlock(lock); 1616 1617 if (!rt_mutex_has_waiters(lock)) { 1618 lock->owner = NULL; 1619 return false; /* done */ 1620 } 1621 1622 /* 1623 * We've already deboosted, mark_wakeup_next_waiter() will 1624 * retain preempt_disabled when we drop the wait_lock, to 1625 * avoid inversion prior to the wakeup. preempt_disable() 1626 * therein pairs with rt_mutex_postunlock(). 1627 */ 1628 mark_wakeup_next_waiter(wake_q, lock); 1629 1630 return true; /* call postunlock() */ 1631 } 1632 1633 void __sched rt_mutex_futex_unlock(struct rt_mutex *lock) 1634 { 1635 DEFINE_WAKE_Q(wake_q); 1636 unsigned long flags; 1637 bool postunlock; 1638 1639 raw_spin_lock_irqsave(&lock->wait_lock, flags); 1640 postunlock = __rt_mutex_futex_unlock(lock, &wake_q); 1641 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 1642 1643 if (postunlock) 1644 rt_mutex_postunlock(&wake_q); 1645 } 1646 1647 /** 1648 * rt_mutex_destroy - mark a mutex unusable 1649 * @lock: the mutex to be destroyed 1650 * 1651 * This function marks the mutex uninitialized, and any subsequent 1652 * use of the mutex is forbidden. The mutex must not be locked when 1653 * this function is called. 1654 */ 1655 void rt_mutex_destroy(struct rt_mutex *lock) 1656 { 1657 WARN_ON(rt_mutex_is_locked(lock)); 1658 #ifdef CONFIG_DEBUG_RT_MUTEXES 1659 lock->magic = NULL; 1660 #endif 1661 } 1662 EXPORT_SYMBOL_GPL(rt_mutex_destroy); 1663 1664 /** 1665 * __rt_mutex_init - initialize the rt lock 1666 * 1667 * @lock: the rt lock to be initialized 1668 * 1669 * Initialize the rt lock to unlocked state. 1670 * 1671 * Initializing of a locked rt lock is not allowed 1672 */ 1673 void __rt_mutex_init(struct rt_mutex *lock, const char *name, 1674 struct lock_class_key *key) 1675 { 1676 lock->owner = NULL; 1677 raw_spin_lock_init(&lock->wait_lock); 1678 lock->waiters = RB_ROOT_CACHED; 1679 1680 if (name && key) 1681 debug_rt_mutex_init(lock, name, key); 1682 } 1683 EXPORT_SYMBOL_GPL(__rt_mutex_init); 1684 1685 /** 1686 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a 1687 * proxy owner 1688 * 1689 * @lock: the rt_mutex to be locked 1690 * @proxy_owner:the task to set as owner 1691 * 1692 * No locking. Caller has to do serializing itself 1693 * 1694 * Special API call for PI-futex support. This initializes the rtmutex and 1695 * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not 1696 * possible at this point because the pi_state which contains the rtmutex 1697 * is not yet visible to other tasks. 1698 */ 1699 void rt_mutex_init_proxy_locked(struct rt_mutex *lock, 1700 struct task_struct *proxy_owner) 1701 { 1702 __rt_mutex_init(lock, NULL, NULL); 1703 debug_rt_mutex_proxy_lock(lock, proxy_owner); 1704 rt_mutex_set_owner(lock, proxy_owner); 1705 } 1706 1707 /** 1708 * rt_mutex_proxy_unlock - release a lock on behalf of owner 1709 * 1710 * @lock: the rt_mutex to be locked 1711 * 1712 * No locking. Caller has to do serializing itself 1713 * 1714 * Special API call for PI-futex support. This merrily cleans up the rtmutex 1715 * (debugging) state. Concurrent operations on this rt_mutex are not 1716 * possible because it belongs to the pi_state which is about to be freed 1717 * and it is not longer visible to other tasks. 1718 */ 1719 void rt_mutex_proxy_unlock(struct rt_mutex *lock, 1720 struct task_struct *proxy_owner) 1721 { 1722 debug_rt_mutex_proxy_unlock(lock); 1723 rt_mutex_set_owner(lock, NULL); 1724 } 1725 1726 /** 1727 * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task 1728 * @lock: the rt_mutex to take 1729 * @waiter: the pre-initialized rt_mutex_waiter 1730 * @task: the task to prepare 1731 * 1732 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock 1733 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that. 1734 * 1735 * NOTE: does _NOT_ remove the @waiter on failure; must either call 1736 * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this. 1737 * 1738 * Returns: 1739 * 0 - task blocked on lock 1740 * 1 - acquired the lock for task, caller should wake it up 1741 * <0 - error 1742 * 1743 * Special API call for PI-futex support. 1744 */ 1745 int __rt_mutex_start_proxy_lock(struct rt_mutex *lock, 1746 struct rt_mutex_waiter *waiter, 1747 struct task_struct *task) 1748 { 1749 int ret; 1750 1751 lockdep_assert_held(&lock->wait_lock); 1752 1753 if (try_to_take_rt_mutex(lock, task, NULL)) 1754 return 1; 1755 1756 /* We enforce deadlock detection for futexes */ 1757 ret = task_blocks_on_rt_mutex(lock, waiter, task, 1758 RT_MUTEX_FULL_CHAINWALK); 1759 1760 if (ret && !rt_mutex_owner(lock)) { 1761 /* 1762 * Reset the return value. We might have 1763 * returned with -EDEADLK and the owner 1764 * released the lock while we were walking the 1765 * pi chain. Let the waiter sort it out. 1766 */ 1767 ret = 0; 1768 } 1769 1770 debug_rt_mutex_print_deadlock(waiter); 1771 1772 return ret; 1773 } 1774 1775 /** 1776 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task 1777 * @lock: the rt_mutex to take 1778 * @waiter: the pre-initialized rt_mutex_waiter 1779 * @task: the task to prepare 1780 * 1781 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock 1782 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that. 1783 * 1784 * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter 1785 * on failure. 1786 * 1787 * Returns: 1788 * 0 - task blocked on lock 1789 * 1 - acquired the lock for task, caller should wake it up 1790 * <0 - error 1791 * 1792 * Special API call for PI-futex support. 1793 */ 1794 int rt_mutex_start_proxy_lock(struct rt_mutex *lock, 1795 struct rt_mutex_waiter *waiter, 1796 struct task_struct *task) 1797 { 1798 int ret; 1799 1800 raw_spin_lock_irq(&lock->wait_lock); 1801 ret = __rt_mutex_start_proxy_lock(lock, waiter, task); 1802 if (unlikely(ret)) 1803 remove_waiter(lock, waiter); 1804 raw_spin_unlock_irq(&lock->wait_lock); 1805 1806 return ret; 1807 } 1808 1809 /** 1810 * rt_mutex_next_owner - return the next owner of the lock 1811 * 1812 * @lock: the rt lock query 1813 * 1814 * Returns the next owner of the lock or NULL 1815 * 1816 * Caller has to serialize against other accessors to the lock 1817 * itself. 1818 * 1819 * Special API call for PI-futex support 1820 */ 1821 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock) 1822 { 1823 if (!rt_mutex_has_waiters(lock)) 1824 return NULL; 1825 1826 return rt_mutex_top_waiter(lock)->task; 1827 } 1828 1829 /** 1830 * rt_mutex_wait_proxy_lock() - Wait for lock acquisition 1831 * @lock: the rt_mutex we were woken on 1832 * @to: the timeout, null if none. hrtimer should already have 1833 * been started. 1834 * @waiter: the pre-initialized rt_mutex_waiter 1835 * 1836 * Wait for the the lock acquisition started on our behalf by 1837 * rt_mutex_start_proxy_lock(). Upon failure, the caller must call 1838 * rt_mutex_cleanup_proxy_lock(). 1839 * 1840 * Returns: 1841 * 0 - success 1842 * <0 - error, one of -EINTR, -ETIMEDOUT 1843 * 1844 * Special API call for PI-futex support 1845 */ 1846 int rt_mutex_wait_proxy_lock(struct rt_mutex *lock, 1847 struct hrtimer_sleeper *to, 1848 struct rt_mutex_waiter *waiter) 1849 { 1850 int ret; 1851 1852 raw_spin_lock_irq(&lock->wait_lock); 1853 /* sleep on the mutex */ 1854 set_current_state(TASK_INTERRUPTIBLE); 1855 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter); 1856 /* 1857 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might 1858 * have to fix that up. 1859 */ 1860 fixup_rt_mutex_waiters(lock); 1861 raw_spin_unlock_irq(&lock->wait_lock); 1862 1863 return ret; 1864 } 1865 1866 /** 1867 * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition 1868 * @lock: the rt_mutex we were woken on 1869 * @waiter: the pre-initialized rt_mutex_waiter 1870 * 1871 * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or 1872 * rt_mutex_wait_proxy_lock(). 1873 * 1874 * Unless we acquired the lock; we're still enqueued on the wait-list and can 1875 * in fact still be granted ownership until we're removed. Therefore we can 1876 * find we are in fact the owner and must disregard the 1877 * rt_mutex_wait_proxy_lock() failure. 1878 * 1879 * Returns: 1880 * true - did the cleanup, we done. 1881 * false - we acquired the lock after rt_mutex_wait_proxy_lock() returned, 1882 * caller should disregards its return value. 1883 * 1884 * Special API call for PI-futex support 1885 */ 1886 bool rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock, 1887 struct rt_mutex_waiter *waiter) 1888 { 1889 bool cleanup = false; 1890 1891 raw_spin_lock_irq(&lock->wait_lock); 1892 /* 1893 * Do an unconditional try-lock, this deals with the lock stealing 1894 * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter() 1895 * sets a NULL owner. 1896 * 1897 * We're not interested in the return value, because the subsequent 1898 * test on rt_mutex_owner() will infer that. If the trylock succeeded, 1899 * we will own the lock and it will have removed the waiter. If we 1900 * failed the trylock, we're still not owner and we need to remove 1901 * ourselves. 1902 */ 1903 try_to_take_rt_mutex(lock, current, waiter); 1904 /* 1905 * Unless we're the owner; we're still enqueued on the wait_list. 1906 * So check if we became owner, if not, take us off the wait_list. 1907 */ 1908 if (rt_mutex_owner(lock) != current) { 1909 remove_waiter(lock, waiter); 1910 cleanup = true; 1911 } 1912 /* 1913 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might 1914 * have to fix that up. 1915 */ 1916 fixup_rt_mutex_waiters(lock); 1917 1918 raw_spin_unlock_irq(&lock->wait_lock); 1919 1920 return cleanup; 1921 } 1922