xref: /openbmc/linux/kernel/locking/rtmutex.c (revision b34e08d5)
1 /*
2  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3  *
4  * started by Ingo Molnar and Thomas Gleixner.
5  *
6  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9  *  Copyright (C) 2006 Esben Nielsen
10  *
11  *  See Documentation/rt-mutex-design.txt for details.
12  */
13 #include <linux/spinlock.h>
14 #include <linux/export.h>
15 #include <linux/sched.h>
16 #include <linux/sched/rt.h>
17 #include <linux/sched/deadline.h>
18 #include <linux/timer.h>
19 
20 #include "rtmutex_common.h"
21 
22 /*
23  * lock->owner state tracking:
24  *
25  * lock->owner holds the task_struct pointer of the owner. Bit 0
26  * is used to keep track of the "lock has waiters" state.
27  *
28  * owner	bit0
29  * NULL		0	lock is free (fast acquire possible)
30  * NULL		1	lock is free and has waiters and the top waiter
31  *				is going to take the lock*
32  * taskpointer	0	lock is held (fast release possible)
33  * taskpointer	1	lock is held and has waiters**
34  *
35  * The fast atomic compare exchange based acquire and release is only
36  * possible when bit 0 of lock->owner is 0.
37  *
38  * (*) It also can be a transitional state when grabbing the lock
39  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
40  * we need to set the bit0 before looking at the lock, and the owner may be
41  * NULL in this small time, hence this can be a transitional state.
42  *
43  * (**) There is a small time when bit 0 is set but there are no
44  * waiters. This can happen when grabbing the lock in the slow path.
45  * To prevent a cmpxchg of the owner releasing the lock, we need to
46  * set this bit before looking at the lock.
47  */
48 
49 static void
50 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
51 {
52 	unsigned long val = (unsigned long)owner;
53 
54 	if (rt_mutex_has_waiters(lock))
55 		val |= RT_MUTEX_HAS_WAITERS;
56 
57 	lock->owner = (struct task_struct *)val;
58 }
59 
60 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
61 {
62 	lock->owner = (struct task_struct *)
63 			((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
64 }
65 
66 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
67 {
68 	if (!rt_mutex_has_waiters(lock))
69 		clear_rt_mutex_waiters(lock);
70 }
71 
72 /*
73  * We can speed up the acquire/release, if the architecture
74  * supports cmpxchg and if there's no debugging state to be set up
75  */
76 #if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
77 # define rt_mutex_cmpxchg(l,c,n)	(cmpxchg(&l->owner, c, n) == c)
78 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
79 {
80 	unsigned long owner, *p = (unsigned long *) &lock->owner;
81 
82 	do {
83 		owner = *p;
84 	} while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
85 }
86 #else
87 # define rt_mutex_cmpxchg(l,c,n)	(0)
88 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
89 {
90 	lock->owner = (struct task_struct *)
91 			((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
92 }
93 #endif
94 
95 static inline int
96 rt_mutex_waiter_less(struct rt_mutex_waiter *left,
97 		     struct rt_mutex_waiter *right)
98 {
99 	if (left->prio < right->prio)
100 		return 1;
101 
102 	/*
103 	 * If both waiters have dl_prio(), we check the deadlines of the
104 	 * associated tasks.
105 	 * If left waiter has a dl_prio(), and we didn't return 1 above,
106 	 * then right waiter has a dl_prio() too.
107 	 */
108 	if (dl_prio(left->prio))
109 		return (left->task->dl.deadline < right->task->dl.deadline);
110 
111 	return 0;
112 }
113 
114 static void
115 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
116 {
117 	struct rb_node **link = &lock->waiters.rb_node;
118 	struct rb_node *parent = NULL;
119 	struct rt_mutex_waiter *entry;
120 	int leftmost = 1;
121 
122 	while (*link) {
123 		parent = *link;
124 		entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
125 		if (rt_mutex_waiter_less(waiter, entry)) {
126 			link = &parent->rb_left;
127 		} else {
128 			link = &parent->rb_right;
129 			leftmost = 0;
130 		}
131 	}
132 
133 	if (leftmost)
134 		lock->waiters_leftmost = &waiter->tree_entry;
135 
136 	rb_link_node(&waiter->tree_entry, parent, link);
137 	rb_insert_color(&waiter->tree_entry, &lock->waiters);
138 }
139 
140 static void
141 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
142 {
143 	if (RB_EMPTY_NODE(&waiter->tree_entry))
144 		return;
145 
146 	if (lock->waiters_leftmost == &waiter->tree_entry)
147 		lock->waiters_leftmost = rb_next(&waiter->tree_entry);
148 
149 	rb_erase(&waiter->tree_entry, &lock->waiters);
150 	RB_CLEAR_NODE(&waiter->tree_entry);
151 }
152 
153 static void
154 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
155 {
156 	struct rb_node **link = &task->pi_waiters.rb_node;
157 	struct rb_node *parent = NULL;
158 	struct rt_mutex_waiter *entry;
159 	int leftmost = 1;
160 
161 	while (*link) {
162 		parent = *link;
163 		entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
164 		if (rt_mutex_waiter_less(waiter, entry)) {
165 			link = &parent->rb_left;
166 		} else {
167 			link = &parent->rb_right;
168 			leftmost = 0;
169 		}
170 	}
171 
172 	if (leftmost)
173 		task->pi_waiters_leftmost = &waiter->pi_tree_entry;
174 
175 	rb_link_node(&waiter->pi_tree_entry, parent, link);
176 	rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
177 }
178 
179 static void
180 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
181 {
182 	if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
183 		return;
184 
185 	if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
186 		task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
187 
188 	rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
189 	RB_CLEAR_NODE(&waiter->pi_tree_entry);
190 }
191 
192 /*
193  * Calculate task priority from the waiter tree priority
194  *
195  * Return task->normal_prio when the waiter tree is empty or when
196  * the waiter is not allowed to do priority boosting
197  */
198 int rt_mutex_getprio(struct task_struct *task)
199 {
200 	if (likely(!task_has_pi_waiters(task)))
201 		return task->normal_prio;
202 
203 	return min(task_top_pi_waiter(task)->prio,
204 		   task->normal_prio);
205 }
206 
207 struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
208 {
209 	if (likely(!task_has_pi_waiters(task)))
210 		return NULL;
211 
212 	return task_top_pi_waiter(task)->task;
213 }
214 
215 /*
216  * Called by sched_setscheduler() to check whether the priority change
217  * is overruled by a possible priority boosting.
218  */
219 int rt_mutex_check_prio(struct task_struct *task, int newprio)
220 {
221 	if (!task_has_pi_waiters(task))
222 		return 0;
223 
224 	return task_top_pi_waiter(task)->task->prio <= newprio;
225 }
226 
227 /*
228  * Adjust the priority of a task, after its pi_waiters got modified.
229  *
230  * This can be both boosting and unboosting. task->pi_lock must be held.
231  */
232 static void __rt_mutex_adjust_prio(struct task_struct *task)
233 {
234 	int prio = rt_mutex_getprio(task);
235 
236 	if (task->prio != prio || dl_prio(prio))
237 		rt_mutex_setprio(task, prio);
238 }
239 
240 /*
241  * Adjust task priority (undo boosting). Called from the exit path of
242  * rt_mutex_slowunlock() and rt_mutex_slowlock().
243  *
244  * (Note: We do this outside of the protection of lock->wait_lock to
245  * allow the lock to be taken while or before we readjust the priority
246  * of task. We do not use the spin_xx_mutex() variants here as we are
247  * outside of the debug path.)
248  */
249 static void rt_mutex_adjust_prio(struct task_struct *task)
250 {
251 	unsigned long flags;
252 
253 	raw_spin_lock_irqsave(&task->pi_lock, flags);
254 	__rt_mutex_adjust_prio(task);
255 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
256 }
257 
258 /*
259  * Max number of times we'll walk the boosting chain:
260  */
261 int max_lock_depth = 1024;
262 
263 /*
264  * Adjust the priority chain. Also used for deadlock detection.
265  * Decreases task's usage by one - may thus free the task.
266  *
267  * @task: the task owning the mutex (owner) for which a chain walk is probably
268  *	  needed
269  * @deadlock_detect: do we have to carry out deadlock detection?
270  * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
271  * 	       things for a task that has just got its priority adjusted, and
272  *	       is waiting on a mutex)
273  * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
274  *		 its priority to the mutex owner (can be NULL in the case
275  *		 depicted above or if the top waiter is gone away and we are
276  *		 actually deboosting the owner)
277  * @top_task: the current top waiter
278  *
279  * Returns 0 or -EDEADLK.
280  */
281 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
282 				      int deadlock_detect,
283 				      struct rt_mutex *orig_lock,
284 				      struct rt_mutex_waiter *orig_waiter,
285 				      struct task_struct *top_task)
286 {
287 	struct rt_mutex *lock;
288 	struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
289 	int detect_deadlock, ret = 0, depth = 0;
290 	unsigned long flags;
291 
292 	detect_deadlock = debug_rt_mutex_detect_deadlock(orig_waiter,
293 							 deadlock_detect);
294 
295 	/*
296 	 * The (de)boosting is a step by step approach with a lot of
297 	 * pitfalls. We want this to be preemptible and we want hold a
298 	 * maximum of two locks per step. So we have to check
299 	 * carefully whether things change under us.
300 	 */
301  again:
302 	if (++depth > max_lock_depth) {
303 		static int prev_max;
304 
305 		/*
306 		 * Print this only once. If the admin changes the limit,
307 		 * print a new message when reaching the limit again.
308 		 */
309 		if (prev_max != max_lock_depth) {
310 			prev_max = max_lock_depth;
311 			printk(KERN_WARNING "Maximum lock depth %d reached "
312 			       "task: %s (%d)\n", max_lock_depth,
313 			       top_task->comm, task_pid_nr(top_task));
314 		}
315 		put_task_struct(task);
316 
317 		return deadlock_detect ? -EDEADLK : 0;
318 	}
319  retry:
320 	/*
321 	 * Task can not go away as we did a get_task() before !
322 	 */
323 	raw_spin_lock_irqsave(&task->pi_lock, flags);
324 
325 	waiter = task->pi_blocked_on;
326 	/*
327 	 * Check whether the end of the boosting chain has been
328 	 * reached or the state of the chain has changed while we
329 	 * dropped the locks.
330 	 */
331 	if (!waiter)
332 		goto out_unlock_pi;
333 
334 	/*
335 	 * Check the orig_waiter state. After we dropped the locks,
336 	 * the previous owner of the lock might have released the lock.
337 	 */
338 	if (orig_waiter && !rt_mutex_owner(orig_lock))
339 		goto out_unlock_pi;
340 
341 	/*
342 	 * Drop out, when the task has no waiters. Note,
343 	 * top_waiter can be NULL, when we are in the deboosting
344 	 * mode!
345 	 */
346 	if (top_waiter && (!task_has_pi_waiters(task) ||
347 			   top_waiter != task_top_pi_waiter(task)))
348 		goto out_unlock_pi;
349 
350 	/*
351 	 * When deadlock detection is off then we check, if further
352 	 * priority adjustment is necessary.
353 	 */
354 	if (!detect_deadlock && waiter->prio == task->prio)
355 		goto out_unlock_pi;
356 
357 	lock = waiter->lock;
358 	if (!raw_spin_trylock(&lock->wait_lock)) {
359 		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
360 		cpu_relax();
361 		goto retry;
362 	}
363 
364 	/* Deadlock detection */
365 	if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
366 		debug_rt_mutex_deadlock(deadlock_detect, orig_waiter, lock);
367 		raw_spin_unlock(&lock->wait_lock);
368 		ret = deadlock_detect ? -EDEADLK : 0;
369 		goto out_unlock_pi;
370 	}
371 
372 	top_waiter = rt_mutex_top_waiter(lock);
373 
374 	/* Requeue the waiter */
375 	rt_mutex_dequeue(lock, waiter);
376 	waiter->prio = task->prio;
377 	rt_mutex_enqueue(lock, waiter);
378 
379 	/* Release the task */
380 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
381 	if (!rt_mutex_owner(lock)) {
382 		/*
383 		 * If the requeue above changed the top waiter, then we need
384 		 * to wake the new top waiter up to try to get the lock.
385 		 */
386 
387 		if (top_waiter != rt_mutex_top_waiter(lock))
388 			wake_up_process(rt_mutex_top_waiter(lock)->task);
389 		raw_spin_unlock(&lock->wait_lock);
390 		goto out_put_task;
391 	}
392 	put_task_struct(task);
393 
394 	/* Grab the next task */
395 	task = rt_mutex_owner(lock);
396 	get_task_struct(task);
397 	raw_spin_lock_irqsave(&task->pi_lock, flags);
398 
399 	if (waiter == rt_mutex_top_waiter(lock)) {
400 		/* Boost the owner */
401 		rt_mutex_dequeue_pi(task, top_waiter);
402 		rt_mutex_enqueue_pi(task, waiter);
403 		__rt_mutex_adjust_prio(task);
404 
405 	} else if (top_waiter == waiter) {
406 		/* Deboost the owner */
407 		rt_mutex_dequeue_pi(task, waiter);
408 		waiter = rt_mutex_top_waiter(lock);
409 		rt_mutex_enqueue_pi(task, waiter);
410 		__rt_mutex_adjust_prio(task);
411 	}
412 
413 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
414 
415 	top_waiter = rt_mutex_top_waiter(lock);
416 	raw_spin_unlock(&lock->wait_lock);
417 
418 	if (!detect_deadlock && waiter != top_waiter)
419 		goto out_put_task;
420 
421 	goto again;
422 
423  out_unlock_pi:
424 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
425  out_put_task:
426 	put_task_struct(task);
427 
428 	return ret;
429 }
430 
431 /*
432  * Try to take an rt-mutex
433  *
434  * Must be called with lock->wait_lock held.
435  *
436  * @lock:   the lock to be acquired.
437  * @task:   the task which wants to acquire the lock
438  * @waiter: the waiter that is queued to the lock's wait list. (could be NULL)
439  */
440 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
441 		struct rt_mutex_waiter *waiter)
442 {
443 	/*
444 	 * We have to be careful here if the atomic speedups are
445 	 * enabled, such that, when
446 	 *  - no other waiter is on the lock
447 	 *  - the lock has been released since we did the cmpxchg
448 	 * the lock can be released or taken while we are doing the
449 	 * checks and marking the lock with RT_MUTEX_HAS_WAITERS.
450 	 *
451 	 * The atomic acquire/release aware variant of
452 	 * mark_rt_mutex_waiters uses a cmpxchg loop. After setting
453 	 * the WAITERS bit, the atomic release / acquire can not
454 	 * happen anymore and lock->wait_lock protects us from the
455 	 * non-atomic case.
456 	 *
457 	 * Note, that this might set lock->owner =
458 	 * RT_MUTEX_HAS_WAITERS in the case the lock is not contended
459 	 * any more. This is fixed up when we take the ownership.
460 	 * This is the transitional state explained at the top of this file.
461 	 */
462 	mark_rt_mutex_waiters(lock);
463 
464 	if (rt_mutex_owner(lock))
465 		return 0;
466 
467 	/*
468 	 * It will get the lock because of one of these conditions:
469 	 * 1) there is no waiter
470 	 * 2) higher priority than waiters
471 	 * 3) it is top waiter
472 	 */
473 	if (rt_mutex_has_waiters(lock)) {
474 		if (task->prio >= rt_mutex_top_waiter(lock)->prio) {
475 			if (!waiter || waiter != rt_mutex_top_waiter(lock))
476 				return 0;
477 		}
478 	}
479 
480 	if (waiter || rt_mutex_has_waiters(lock)) {
481 		unsigned long flags;
482 		struct rt_mutex_waiter *top;
483 
484 		raw_spin_lock_irqsave(&task->pi_lock, flags);
485 
486 		/* remove the queued waiter. */
487 		if (waiter) {
488 			rt_mutex_dequeue(lock, waiter);
489 			task->pi_blocked_on = NULL;
490 		}
491 
492 		/*
493 		 * We have to enqueue the top waiter(if it exists) into
494 		 * task->pi_waiters list.
495 		 */
496 		if (rt_mutex_has_waiters(lock)) {
497 			top = rt_mutex_top_waiter(lock);
498 			rt_mutex_enqueue_pi(task, top);
499 		}
500 		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
501 	}
502 
503 	/* We got the lock. */
504 	debug_rt_mutex_lock(lock);
505 
506 	rt_mutex_set_owner(lock, task);
507 
508 	rt_mutex_deadlock_account_lock(lock, task);
509 
510 	return 1;
511 }
512 
513 /*
514  * Task blocks on lock.
515  *
516  * Prepare waiter and propagate pi chain
517  *
518  * This must be called with lock->wait_lock held.
519  */
520 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
521 				   struct rt_mutex_waiter *waiter,
522 				   struct task_struct *task,
523 				   int detect_deadlock)
524 {
525 	struct task_struct *owner = rt_mutex_owner(lock);
526 	struct rt_mutex_waiter *top_waiter = waiter;
527 	unsigned long flags;
528 	int chain_walk = 0, res;
529 
530 	raw_spin_lock_irqsave(&task->pi_lock, flags);
531 	__rt_mutex_adjust_prio(task);
532 	waiter->task = task;
533 	waiter->lock = lock;
534 	waiter->prio = task->prio;
535 
536 	/* Get the top priority waiter on the lock */
537 	if (rt_mutex_has_waiters(lock))
538 		top_waiter = rt_mutex_top_waiter(lock);
539 	rt_mutex_enqueue(lock, waiter);
540 
541 	task->pi_blocked_on = waiter;
542 
543 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
544 
545 	if (!owner)
546 		return 0;
547 
548 	if (waiter == rt_mutex_top_waiter(lock)) {
549 		raw_spin_lock_irqsave(&owner->pi_lock, flags);
550 		rt_mutex_dequeue_pi(owner, top_waiter);
551 		rt_mutex_enqueue_pi(owner, waiter);
552 
553 		__rt_mutex_adjust_prio(owner);
554 		if (owner->pi_blocked_on)
555 			chain_walk = 1;
556 		raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
557 	}
558 	else if (debug_rt_mutex_detect_deadlock(waiter, detect_deadlock))
559 		chain_walk = 1;
560 
561 	if (!chain_walk)
562 		return 0;
563 
564 	/*
565 	 * The owner can't disappear while holding a lock,
566 	 * so the owner struct is protected by wait_lock.
567 	 * Gets dropped in rt_mutex_adjust_prio_chain()!
568 	 */
569 	get_task_struct(owner);
570 
571 	raw_spin_unlock(&lock->wait_lock);
572 
573 	res = rt_mutex_adjust_prio_chain(owner, detect_deadlock, lock, waiter,
574 					 task);
575 
576 	raw_spin_lock(&lock->wait_lock);
577 
578 	return res;
579 }
580 
581 /*
582  * Wake up the next waiter on the lock.
583  *
584  * Remove the top waiter from the current tasks waiter list and wake it up.
585  *
586  * Called with lock->wait_lock held.
587  */
588 static void wakeup_next_waiter(struct rt_mutex *lock)
589 {
590 	struct rt_mutex_waiter *waiter;
591 	unsigned long flags;
592 
593 	raw_spin_lock_irqsave(&current->pi_lock, flags);
594 
595 	waiter = rt_mutex_top_waiter(lock);
596 
597 	/*
598 	 * Remove it from current->pi_waiters. We do not adjust a
599 	 * possible priority boost right now. We execute wakeup in the
600 	 * boosted mode and go back to normal after releasing
601 	 * lock->wait_lock.
602 	 */
603 	rt_mutex_dequeue_pi(current, waiter);
604 
605 	rt_mutex_set_owner(lock, NULL);
606 
607 	raw_spin_unlock_irqrestore(&current->pi_lock, flags);
608 
609 	wake_up_process(waiter->task);
610 }
611 
612 /*
613  * Remove a waiter from a lock and give up
614  *
615  * Must be called with lock->wait_lock held and
616  * have just failed to try_to_take_rt_mutex().
617  */
618 static void remove_waiter(struct rt_mutex *lock,
619 			  struct rt_mutex_waiter *waiter)
620 {
621 	int first = (waiter == rt_mutex_top_waiter(lock));
622 	struct task_struct *owner = rt_mutex_owner(lock);
623 	unsigned long flags;
624 	int chain_walk = 0;
625 
626 	raw_spin_lock_irqsave(&current->pi_lock, flags);
627 	rt_mutex_dequeue(lock, waiter);
628 	current->pi_blocked_on = NULL;
629 	raw_spin_unlock_irqrestore(&current->pi_lock, flags);
630 
631 	if (!owner)
632 		return;
633 
634 	if (first) {
635 
636 		raw_spin_lock_irqsave(&owner->pi_lock, flags);
637 
638 		rt_mutex_dequeue_pi(owner, waiter);
639 
640 		if (rt_mutex_has_waiters(lock)) {
641 			struct rt_mutex_waiter *next;
642 
643 			next = rt_mutex_top_waiter(lock);
644 			rt_mutex_enqueue_pi(owner, next);
645 		}
646 		__rt_mutex_adjust_prio(owner);
647 
648 		if (owner->pi_blocked_on)
649 			chain_walk = 1;
650 
651 		raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
652 	}
653 
654 	if (!chain_walk)
655 		return;
656 
657 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
658 	get_task_struct(owner);
659 
660 	raw_spin_unlock(&lock->wait_lock);
661 
662 	rt_mutex_adjust_prio_chain(owner, 0, lock, NULL, current);
663 
664 	raw_spin_lock(&lock->wait_lock);
665 }
666 
667 /*
668  * Recheck the pi chain, in case we got a priority setting
669  *
670  * Called from sched_setscheduler
671  */
672 void rt_mutex_adjust_pi(struct task_struct *task)
673 {
674 	struct rt_mutex_waiter *waiter;
675 	unsigned long flags;
676 
677 	raw_spin_lock_irqsave(&task->pi_lock, flags);
678 
679 	waiter = task->pi_blocked_on;
680 	if (!waiter || (waiter->prio == task->prio &&
681 			!dl_prio(task->prio))) {
682 		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
683 		return;
684 	}
685 
686 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
687 
688 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
689 	get_task_struct(task);
690 	rt_mutex_adjust_prio_chain(task, 0, NULL, NULL, task);
691 }
692 
693 /**
694  * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
695  * @lock:		 the rt_mutex to take
696  * @state:		 the state the task should block in (TASK_INTERRUPTIBLE
697  * 			 or TASK_UNINTERRUPTIBLE)
698  * @timeout:		 the pre-initialized and started timer, or NULL for none
699  * @waiter:		 the pre-initialized rt_mutex_waiter
700  *
701  * lock->wait_lock must be held by the caller.
702  */
703 static int __sched
704 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
705 		    struct hrtimer_sleeper *timeout,
706 		    struct rt_mutex_waiter *waiter)
707 {
708 	int ret = 0;
709 
710 	for (;;) {
711 		/* Try to acquire the lock: */
712 		if (try_to_take_rt_mutex(lock, current, waiter))
713 			break;
714 
715 		/*
716 		 * TASK_INTERRUPTIBLE checks for signals and
717 		 * timeout. Ignored otherwise.
718 		 */
719 		if (unlikely(state == TASK_INTERRUPTIBLE)) {
720 			/* Signal pending? */
721 			if (signal_pending(current))
722 				ret = -EINTR;
723 			if (timeout && !timeout->task)
724 				ret = -ETIMEDOUT;
725 			if (ret)
726 				break;
727 		}
728 
729 		raw_spin_unlock(&lock->wait_lock);
730 
731 		debug_rt_mutex_print_deadlock(waiter);
732 
733 		schedule_rt_mutex(lock);
734 
735 		raw_spin_lock(&lock->wait_lock);
736 		set_current_state(state);
737 	}
738 
739 	return ret;
740 }
741 
742 /*
743  * Slow path lock function:
744  */
745 static int __sched
746 rt_mutex_slowlock(struct rt_mutex *lock, int state,
747 		  struct hrtimer_sleeper *timeout,
748 		  int detect_deadlock)
749 {
750 	struct rt_mutex_waiter waiter;
751 	int ret = 0;
752 
753 	debug_rt_mutex_init_waiter(&waiter);
754 	RB_CLEAR_NODE(&waiter.pi_tree_entry);
755 	RB_CLEAR_NODE(&waiter.tree_entry);
756 
757 	raw_spin_lock(&lock->wait_lock);
758 
759 	/* Try to acquire the lock again: */
760 	if (try_to_take_rt_mutex(lock, current, NULL)) {
761 		raw_spin_unlock(&lock->wait_lock);
762 		return 0;
763 	}
764 
765 	set_current_state(state);
766 
767 	/* Setup the timer, when timeout != NULL */
768 	if (unlikely(timeout)) {
769 		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
770 		if (!hrtimer_active(&timeout->timer))
771 			timeout->task = NULL;
772 	}
773 
774 	ret = task_blocks_on_rt_mutex(lock, &waiter, current, detect_deadlock);
775 
776 	if (likely(!ret))
777 		ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
778 
779 	set_current_state(TASK_RUNNING);
780 
781 	if (unlikely(ret))
782 		remove_waiter(lock, &waiter);
783 
784 	/*
785 	 * try_to_take_rt_mutex() sets the waiter bit
786 	 * unconditionally. We might have to fix that up.
787 	 */
788 	fixup_rt_mutex_waiters(lock);
789 
790 	raw_spin_unlock(&lock->wait_lock);
791 
792 	/* Remove pending timer: */
793 	if (unlikely(timeout))
794 		hrtimer_cancel(&timeout->timer);
795 
796 	debug_rt_mutex_free_waiter(&waiter);
797 
798 	return ret;
799 }
800 
801 /*
802  * Slow path try-lock function:
803  */
804 static inline int
805 rt_mutex_slowtrylock(struct rt_mutex *lock)
806 {
807 	int ret = 0;
808 
809 	raw_spin_lock(&lock->wait_lock);
810 
811 	if (likely(rt_mutex_owner(lock) != current)) {
812 
813 		ret = try_to_take_rt_mutex(lock, current, NULL);
814 		/*
815 		 * try_to_take_rt_mutex() sets the lock waiters
816 		 * bit unconditionally. Clean this up.
817 		 */
818 		fixup_rt_mutex_waiters(lock);
819 	}
820 
821 	raw_spin_unlock(&lock->wait_lock);
822 
823 	return ret;
824 }
825 
826 /*
827  * Slow path to release a rt-mutex:
828  */
829 static void __sched
830 rt_mutex_slowunlock(struct rt_mutex *lock)
831 {
832 	raw_spin_lock(&lock->wait_lock);
833 
834 	debug_rt_mutex_unlock(lock);
835 
836 	rt_mutex_deadlock_account_unlock(current);
837 
838 	if (!rt_mutex_has_waiters(lock)) {
839 		lock->owner = NULL;
840 		raw_spin_unlock(&lock->wait_lock);
841 		return;
842 	}
843 
844 	wakeup_next_waiter(lock);
845 
846 	raw_spin_unlock(&lock->wait_lock);
847 
848 	/* Undo pi boosting if necessary: */
849 	rt_mutex_adjust_prio(current);
850 }
851 
852 /*
853  * debug aware fast / slowpath lock,trylock,unlock
854  *
855  * The atomic acquire/release ops are compiled away, when either the
856  * architecture does not support cmpxchg or when debugging is enabled.
857  */
858 static inline int
859 rt_mutex_fastlock(struct rt_mutex *lock, int state,
860 		  int detect_deadlock,
861 		  int (*slowfn)(struct rt_mutex *lock, int state,
862 				struct hrtimer_sleeper *timeout,
863 				int detect_deadlock))
864 {
865 	if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
866 		rt_mutex_deadlock_account_lock(lock, current);
867 		return 0;
868 	} else
869 		return slowfn(lock, state, NULL, detect_deadlock);
870 }
871 
872 static inline int
873 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
874 			struct hrtimer_sleeper *timeout, int detect_deadlock,
875 			int (*slowfn)(struct rt_mutex *lock, int state,
876 				      struct hrtimer_sleeper *timeout,
877 				      int detect_deadlock))
878 {
879 	if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
880 		rt_mutex_deadlock_account_lock(lock, current);
881 		return 0;
882 	} else
883 		return slowfn(lock, state, timeout, detect_deadlock);
884 }
885 
886 static inline int
887 rt_mutex_fasttrylock(struct rt_mutex *lock,
888 		     int (*slowfn)(struct rt_mutex *lock))
889 {
890 	if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
891 		rt_mutex_deadlock_account_lock(lock, current);
892 		return 1;
893 	}
894 	return slowfn(lock);
895 }
896 
897 static inline void
898 rt_mutex_fastunlock(struct rt_mutex *lock,
899 		    void (*slowfn)(struct rt_mutex *lock))
900 {
901 	if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
902 		rt_mutex_deadlock_account_unlock(current);
903 	else
904 		slowfn(lock);
905 }
906 
907 /**
908  * rt_mutex_lock - lock a rt_mutex
909  *
910  * @lock: the rt_mutex to be locked
911  */
912 void __sched rt_mutex_lock(struct rt_mutex *lock)
913 {
914 	might_sleep();
915 
916 	rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, 0, rt_mutex_slowlock);
917 }
918 EXPORT_SYMBOL_GPL(rt_mutex_lock);
919 
920 /**
921  * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
922  *
923  * @lock: 		the rt_mutex to be locked
924  * @detect_deadlock:	deadlock detection on/off
925  *
926  * Returns:
927  *  0 		on success
928  * -EINTR 	when interrupted by a signal
929  * -EDEADLK	when the lock would deadlock (when deadlock detection is on)
930  */
931 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock,
932 						 int detect_deadlock)
933 {
934 	might_sleep();
935 
936 	return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE,
937 				 detect_deadlock, rt_mutex_slowlock);
938 }
939 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
940 
941 /**
942  * rt_mutex_timed_lock - lock a rt_mutex interruptible
943  *			the timeout structure is provided
944  *			by the caller
945  *
946  * @lock: 		the rt_mutex to be locked
947  * @timeout:		timeout structure or NULL (no timeout)
948  * @detect_deadlock:	deadlock detection on/off
949  *
950  * Returns:
951  *  0 		on success
952  * -EINTR 	when interrupted by a signal
953  * -ETIMEDOUT	when the timeout expired
954  * -EDEADLK	when the lock would deadlock (when deadlock detection is on)
955  */
956 int
957 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout,
958 		    int detect_deadlock)
959 {
960 	might_sleep();
961 
962 	return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
963 				       detect_deadlock, rt_mutex_slowlock);
964 }
965 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
966 
967 /**
968  * rt_mutex_trylock - try to lock a rt_mutex
969  *
970  * @lock:	the rt_mutex to be locked
971  *
972  * Returns 1 on success and 0 on contention
973  */
974 int __sched rt_mutex_trylock(struct rt_mutex *lock)
975 {
976 	return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
977 }
978 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
979 
980 /**
981  * rt_mutex_unlock - unlock a rt_mutex
982  *
983  * @lock: the rt_mutex to be unlocked
984  */
985 void __sched rt_mutex_unlock(struct rt_mutex *lock)
986 {
987 	rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
988 }
989 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
990 
991 /**
992  * rt_mutex_destroy - mark a mutex unusable
993  * @lock: the mutex to be destroyed
994  *
995  * This function marks the mutex uninitialized, and any subsequent
996  * use of the mutex is forbidden. The mutex must not be locked when
997  * this function is called.
998  */
999 void rt_mutex_destroy(struct rt_mutex *lock)
1000 {
1001 	WARN_ON(rt_mutex_is_locked(lock));
1002 #ifdef CONFIG_DEBUG_RT_MUTEXES
1003 	lock->magic = NULL;
1004 #endif
1005 }
1006 
1007 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1008 
1009 /**
1010  * __rt_mutex_init - initialize the rt lock
1011  *
1012  * @lock: the rt lock to be initialized
1013  *
1014  * Initialize the rt lock to unlocked state.
1015  *
1016  * Initializing of a locked rt lock is not allowed
1017  */
1018 void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1019 {
1020 	lock->owner = NULL;
1021 	raw_spin_lock_init(&lock->wait_lock);
1022 	lock->waiters = RB_ROOT;
1023 	lock->waiters_leftmost = NULL;
1024 
1025 	debug_rt_mutex_init(lock, name);
1026 }
1027 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1028 
1029 /**
1030  * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1031  *				proxy owner
1032  *
1033  * @lock: 	the rt_mutex to be locked
1034  * @proxy_owner:the task to set as owner
1035  *
1036  * No locking. Caller has to do serializing itself
1037  * Special API call for PI-futex support
1038  */
1039 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1040 				struct task_struct *proxy_owner)
1041 {
1042 	__rt_mutex_init(lock, NULL);
1043 	debug_rt_mutex_proxy_lock(lock, proxy_owner);
1044 	rt_mutex_set_owner(lock, proxy_owner);
1045 	rt_mutex_deadlock_account_lock(lock, proxy_owner);
1046 }
1047 
1048 /**
1049  * rt_mutex_proxy_unlock - release a lock on behalf of owner
1050  *
1051  * @lock: 	the rt_mutex to be locked
1052  *
1053  * No locking. Caller has to do serializing itself
1054  * Special API call for PI-futex support
1055  */
1056 void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1057 			   struct task_struct *proxy_owner)
1058 {
1059 	debug_rt_mutex_proxy_unlock(lock);
1060 	rt_mutex_set_owner(lock, NULL);
1061 	rt_mutex_deadlock_account_unlock(proxy_owner);
1062 }
1063 
1064 /**
1065  * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1066  * @lock:		the rt_mutex to take
1067  * @waiter:		the pre-initialized rt_mutex_waiter
1068  * @task:		the task to prepare
1069  * @detect_deadlock:	perform deadlock detection (1) or not (0)
1070  *
1071  * Returns:
1072  *  0 - task blocked on lock
1073  *  1 - acquired the lock for task, caller should wake it up
1074  * <0 - error
1075  *
1076  * Special API call for FUTEX_REQUEUE_PI support.
1077  */
1078 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1079 			      struct rt_mutex_waiter *waiter,
1080 			      struct task_struct *task, int detect_deadlock)
1081 {
1082 	int ret;
1083 
1084 	raw_spin_lock(&lock->wait_lock);
1085 
1086 	if (try_to_take_rt_mutex(lock, task, NULL)) {
1087 		raw_spin_unlock(&lock->wait_lock);
1088 		return 1;
1089 	}
1090 
1091 	ret = task_blocks_on_rt_mutex(lock, waiter, task, detect_deadlock);
1092 
1093 	if (ret && !rt_mutex_owner(lock)) {
1094 		/*
1095 		 * Reset the return value. We might have
1096 		 * returned with -EDEADLK and the owner
1097 		 * released the lock while we were walking the
1098 		 * pi chain.  Let the waiter sort it out.
1099 		 */
1100 		ret = 0;
1101 	}
1102 
1103 	if (unlikely(ret))
1104 		remove_waiter(lock, waiter);
1105 
1106 	raw_spin_unlock(&lock->wait_lock);
1107 
1108 	debug_rt_mutex_print_deadlock(waiter);
1109 
1110 	return ret;
1111 }
1112 
1113 /**
1114  * rt_mutex_next_owner - return the next owner of the lock
1115  *
1116  * @lock: the rt lock query
1117  *
1118  * Returns the next owner of the lock or NULL
1119  *
1120  * Caller has to serialize against other accessors to the lock
1121  * itself.
1122  *
1123  * Special API call for PI-futex support
1124  */
1125 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1126 {
1127 	if (!rt_mutex_has_waiters(lock))
1128 		return NULL;
1129 
1130 	return rt_mutex_top_waiter(lock)->task;
1131 }
1132 
1133 /**
1134  * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1135  * @lock:		the rt_mutex we were woken on
1136  * @to:			the timeout, null if none. hrtimer should already have
1137  * 			been started.
1138  * @waiter:		the pre-initialized rt_mutex_waiter
1139  * @detect_deadlock:	perform deadlock detection (1) or not (0)
1140  *
1141  * Complete the lock acquisition started our behalf by another thread.
1142  *
1143  * Returns:
1144  *  0 - success
1145  * <0 - error, one of -EINTR, -ETIMEDOUT, or -EDEADLK
1146  *
1147  * Special API call for PI-futex requeue support
1148  */
1149 int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1150 			       struct hrtimer_sleeper *to,
1151 			       struct rt_mutex_waiter *waiter,
1152 			       int detect_deadlock)
1153 {
1154 	int ret;
1155 
1156 	raw_spin_lock(&lock->wait_lock);
1157 
1158 	set_current_state(TASK_INTERRUPTIBLE);
1159 
1160 	ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1161 
1162 	set_current_state(TASK_RUNNING);
1163 
1164 	if (unlikely(ret))
1165 		remove_waiter(lock, waiter);
1166 
1167 	/*
1168 	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1169 	 * have to fix that up.
1170 	 */
1171 	fixup_rt_mutex_waiters(lock);
1172 
1173 	raw_spin_unlock(&lock->wait_lock);
1174 
1175 	return ret;
1176 }
1177