1 /* 2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support 3 * 4 * started by Ingo Molnar and Thomas Gleixner. 5 * 6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 7 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com> 8 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt 9 * Copyright (C) 2006 Esben Nielsen 10 * 11 * See Documentation/rt-mutex-design.txt for details. 12 */ 13 #include <linux/spinlock.h> 14 #include <linux/export.h> 15 #include <linux/sched.h> 16 #include <linux/sched/rt.h> 17 #include <linux/sched/deadline.h> 18 #include <linux/timer.h> 19 20 #include "rtmutex_common.h" 21 22 /* 23 * lock->owner state tracking: 24 * 25 * lock->owner holds the task_struct pointer of the owner. Bit 0 26 * is used to keep track of the "lock has waiters" state. 27 * 28 * owner bit0 29 * NULL 0 lock is free (fast acquire possible) 30 * NULL 1 lock is free and has waiters and the top waiter 31 * is going to take the lock* 32 * taskpointer 0 lock is held (fast release possible) 33 * taskpointer 1 lock is held and has waiters** 34 * 35 * The fast atomic compare exchange based acquire and release is only 36 * possible when bit 0 of lock->owner is 0. 37 * 38 * (*) It also can be a transitional state when grabbing the lock 39 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock, 40 * we need to set the bit0 before looking at the lock, and the owner may be 41 * NULL in this small time, hence this can be a transitional state. 42 * 43 * (**) There is a small time when bit 0 is set but there are no 44 * waiters. This can happen when grabbing the lock in the slow path. 45 * To prevent a cmpxchg of the owner releasing the lock, we need to 46 * set this bit before looking at the lock. 47 */ 48 49 static void 50 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner) 51 { 52 unsigned long val = (unsigned long)owner; 53 54 if (rt_mutex_has_waiters(lock)) 55 val |= RT_MUTEX_HAS_WAITERS; 56 57 lock->owner = (struct task_struct *)val; 58 } 59 60 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock) 61 { 62 lock->owner = (struct task_struct *) 63 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS); 64 } 65 66 static void fixup_rt_mutex_waiters(struct rt_mutex *lock) 67 { 68 if (!rt_mutex_has_waiters(lock)) 69 clear_rt_mutex_waiters(lock); 70 } 71 72 /* 73 * We can speed up the acquire/release, if the architecture 74 * supports cmpxchg and if there's no debugging state to be set up 75 */ 76 #if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES) 77 # define rt_mutex_cmpxchg(l,c,n) (cmpxchg(&l->owner, c, n) == c) 78 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock) 79 { 80 unsigned long owner, *p = (unsigned long *) &lock->owner; 81 82 do { 83 owner = *p; 84 } while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner); 85 } 86 87 /* 88 * Safe fastpath aware unlock: 89 * 1) Clear the waiters bit 90 * 2) Drop lock->wait_lock 91 * 3) Try to unlock the lock with cmpxchg 92 */ 93 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock) 94 __releases(lock->wait_lock) 95 { 96 struct task_struct *owner = rt_mutex_owner(lock); 97 98 clear_rt_mutex_waiters(lock); 99 raw_spin_unlock(&lock->wait_lock); 100 /* 101 * If a new waiter comes in between the unlock and the cmpxchg 102 * we have two situations: 103 * 104 * unlock(wait_lock); 105 * lock(wait_lock); 106 * cmpxchg(p, owner, 0) == owner 107 * mark_rt_mutex_waiters(lock); 108 * acquire(lock); 109 * or: 110 * 111 * unlock(wait_lock); 112 * lock(wait_lock); 113 * mark_rt_mutex_waiters(lock); 114 * 115 * cmpxchg(p, owner, 0) != owner 116 * enqueue_waiter(); 117 * unlock(wait_lock); 118 * lock(wait_lock); 119 * wake waiter(); 120 * unlock(wait_lock); 121 * lock(wait_lock); 122 * acquire(lock); 123 */ 124 return rt_mutex_cmpxchg(lock, owner, NULL); 125 } 126 127 #else 128 # define rt_mutex_cmpxchg(l,c,n) (0) 129 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock) 130 { 131 lock->owner = (struct task_struct *) 132 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS); 133 } 134 135 /* 136 * Simple slow path only version: lock->owner is protected by lock->wait_lock. 137 */ 138 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock) 139 __releases(lock->wait_lock) 140 { 141 lock->owner = NULL; 142 raw_spin_unlock(&lock->wait_lock); 143 return true; 144 } 145 #endif 146 147 static inline int 148 rt_mutex_waiter_less(struct rt_mutex_waiter *left, 149 struct rt_mutex_waiter *right) 150 { 151 if (left->prio < right->prio) 152 return 1; 153 154 /* 155 * If both waiters have dl_prio(), we check the deadlines of the 156 * associated tasks. 157 * If left waiter has a dl_prio(), and we didn't return 1 above, 158 * then right waiter has a dl_prio() too. 159 */ 160 if (dl_prio(left->prio)) 161 return (left->task->dl.deadline < right->task->dl.deadline); 162 163 return 0; 164 } 165 166 static void 167 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter) 168 { 169 struct rb_node **link = &lock->waiters.rb_node; 170 struct rb_node *parent = NULL; 171 struct rt_mutex_waiter *entry; 172 int leftmost = 1; 173 174 while (*link) { 175 parent = *link; 176 entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry); 177 if (rt_mutex_waiter_less(waiter, entry)) { 178 link = &parent->rb_left; 179 } else { 180 link = &parent->rb_right; 181 leftmost = 0; 182 } 183 } 184 185 if (leftmost) 186 lock->waiters_leftmost = &waiter->tree_entry; 187 188 rb_link_node(&waiter->tree_entry, parent, link); 189 rb_insert_color(&waiter->tree_entry, &lock->waiters); 190 } 191 192 static void 193 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter) 194 { 195 if (RB_EMPTY_NODE(&waiter->tree_entry)) 196 return; 197 198 if (lock->waiters_leftmost == &waiter->tree_entry) 199 lock->waiters_leftmost = rb_next(&waiter->tree_entry); 200 201 rb_erase(&waiter->tree_entry, &lock->waiters); 202 RB_CLEAR_NODE(&waiter->tree_entry); 203 } 204 205 static void 206 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter) 207 { 208 struct rb_node **link = &task->pi_waiters.rb_node; 209 struct rb_node *parent = NULL; 210 struct rt_mutex_waiter *entry; 211 int leftmost = 1; 212 213 while (*link) { 214 parent = *link; 215 entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry); 216 if (rt_mutex_waiter_less(waiter, entry)) { 217 link = &parent->rb_left; 218 } else { 219 link = &parent->rb_right; 220 leftmost = 0; 221 } 222 } 223 224 if (leftmost) 225 task->pi_waiters_leftmost = &waiter->pi_tree_entry; 226 227 rb_link_node(&waiter->pi_tree_entry, parent, link); 228 rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters); 229 } 230 231 static void 232 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter) 233 { 234 if (RB_EMPTY_NODE(&waiter->pi_tree_entry)) 235 return; 236 237 if (task->pi_waiters_leftmost == &waiter->pi_tree_entry) 238 task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry); 239 240 rb_erase(&waiter->pi_tree_entry, &task->pi_waiters); 241 RB_CLEAR_NODE(&waiter->pi_tree_entry); 242 } 243 244 /* 245 * Calculate task priority from the waiter tree priority 246 * 247 * Return task->normal_prio when the waiter tree is empty or when 248 * the waiter is not allowed to do priority boosting 249 */ 250 int rt_mutex_getprio(struct task_struct *task) 251 { 252 if (likely(!task_has_pi_waiters(task))) 253 return task->normal_prio; 254 255 return min(task_top_pi_waiter(task)->prio, 256 task->normal_prio); 257 } 258 259 struct task_struct *rt_mutex_get_top_task(struct task_struct *task) 260 { 261 if (likely(!task_has_pi_waiters(task))) 262 return NULL; 263 264 return task_top_pi_waiter(task)->task; 265 } 266 267 /* 268 * Called by sched_setscheduler() to check whether the priority change 269 * is overruled by a possible priority boosting. 270 */ 271 int rt_mutex_check_prio(struct task_struct *task, int newprio) 272 { 273 if (!task_has_pi_waiters(task)) 274 return 0; 275 276 return task_top_pi_waiter(task)->task->prio <= newprio; 277 } 278 279 /* 280 * Adjust the priority of a task, after its pi_waiters got modified. 281 * 282 * This can be both boosting and unboosting. task->pi_lock must be held. 283 */ 284 static void __rt_mutex_adjust_prio(struct task_struct *task) 285 { 286 int prio = rt_mutex_getprio(task); 287 288 if (task->prio != prio || dl_prio(prio)) 289 rt_mutex_setprio(task, prio); 290 } 291 292 /* 293 * Adjust task priority (undo boosting). Called from the exit path of 294 * rt_mutex_slowunlock() and rt_mutex_slowlock(). 295 * 296 * (Note: We do this outside of the protection of lock->wait_lock to 297 * allow the lock to be taken while or before we readjust the priority 298 * of task. We do not use the spin_xx_mutex() variants here as we are 299 * outside of the debug path.) 300 */ 301 static void rt_mutex_adjust_prio(struct task_struct *task) 302 { 303 unsigned long flags; 304 305 raw_spin_lock_irqsave(&task->pi_lock, flags); 306 __rt_mutex_adjust_prio(task); 307 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 308 } 309 310 /* 311 * Max number of times we'll walk the boosting chain: 312 */ 313 int max_lock_depth = 1024; 314 315 static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p) 316 { 317 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL; 318 } 319 320 /* 321 * Adjust the priority chain. Also used for deadlock detection. 322 * Decreases task's usage by one - may thus free the task. 323 * 324 * @task: the task owning the mutex (owner) for which a chain walk is 325 * probably needed 326 * @deadlock_detect: do we have to carry out deadlock detection? 327 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck 328 * things for a task that has just got its priority adjusted, and 329 * is waiting on a mutex) 330 * @next_lock: the mutex on which the owner of @orig_lock was blocked before 331 * we dropped its pi_lock. Is never dereferenced, only used for 332 * comparison to detect lock chain changes. 333 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated 334 * its priority to the mutex owner (can be NULL in the case 335 * depicted above or if the top waiter is gone away and we are 336 * actually deboosting the owner) 337 * @top_task: the current top waiter 338 * 339 * Returns 0 or -EDEADLK. 340 */ 341 static int rt_mutex_adjust_prio_chain(struct task_struct *task, 342 int deadlock_detect, 343 struct rt_mutex *orig_lock, 344 struct rt_mutex *next_lock, 345 struct rt_mutex_waiter *orig_waiter, 346 struct task_struct *top_task) 347 { 348 struct rt_mutex *lock; 349 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter; 350 int detect_deadlock, ret = 0, depth = 0; 351 unsigned long flags; 352 353 detect_deadlock = debug_rt_mutex_detect_deadlock(orig_waiter, 354 deadlock_detect); 355 356 /* 357 * The (de)boosting is a step by step approach with a lot of 358 * pitfalls. We want this to be preemptible and we want hold a 359 * maximum of two locks per step. So we have to check 360 * carefully whether things change under us. 361 */ 362 again: 363 if (++depth > max_lock_depth) { 364 static int prev_max; 365 366 /* 367 * Print this only once. If the admin changes the limit, 368 * print a new message when reaching the limit again. 369 */ 370 if (prev_max != max_lock_depth) { 371 prev_max = max_lock_depth; 372 printk(KERN_WARNING "Maximum lock depth %d reached " 373 "task: %s (%d)\n", max_lock_depth, 374 top_task->comm, task_pid_nr(top_task)); 375 } 376 put_task_struct(task); 377 378 return -EDEADLK; 379 } 380 retry: 381 /* 382 * Task can not go away as we did a get_task() before ! 383 */ 384 raw_spin_lock_irqsave(&task->pi_lock, flags); 385 386 waiter = task->pi_blocked_on; 387 /* 388 * Check whether the end of the boosting chain has been 389 * reached or the state of the chain has changed while we 390 * dropped the locks. 391 */ 392 if (!waiter) 393 goto out_unlock_pi; 394 395 /* 396 * Check the orig_waiter state. After we dropped the locks, 397 * the previous owner of the lock might have released the lock. 398 */ 399 if (orig_waiter && !rt_mutex_owner(orig_lock)) 400 goto out_unlock_pi; 401 402 /* 403 * We dropped all locks after taking a refcount on @task, so 404 * the task might have moved on in the lock chain or even left 405 * the chain completely and blocks now on an unrelated lock or 406 * on @orig_lock. 407 * 408 * We stored the lock on which @task was blocked in @next_lock, 409 * so we can detect the chain change. 410 */ 411 if (next_lock != waiter->lock) 412 goto out_unlock_pi; 413 414 /* 415 * Drop out, when the task has no waiters. Note, 416 * top_waiter can be NULL, when we are in the deboosting 417 * mode! 418 */ 419 if (top_waiter) { 420 if (!task_has_pi_waiters(task)) 421 goto out_unlock_pi; 422 /* 423 * If deadlock detection is off, we stop here if we 424 * are not the top pi waiter of the task. 425 */ 426 if (!detect_deadlock && top_waiter != task_top_pi_waiter(task)) 427 goto out_unlock_pi; 428 } 429 430 /* 431 * When deadlock detection is off then we check, if further 432 * priority adjustment is necessary. 433 */ 434 if (!detect_deadlock && waiter->prio == task->prio) 435 goto out_unlock_pi; 436 437 lock = waiter->lock; 438 if (!raw_spin_trylock(&lock->wait_lock)) { 439 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 440 cpu_relax(); 441 goto retry; 442 } 443 444 /* 445 * Deadlock detection. If the lock is the same as the original 446 * lock which caused us to walk the lock chain or if the 447 * current lock is owned by the task which initiated the chain 448 * walk, we detected a deadlock. 449 */ 450 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) { 451 debug_rt_mutex_deadlock(deadlock_detect, orig_waiter, lock); 452 raw_spin_unlock(&lock->wait_lock); 453 ret = -EDEADLK; 454 goto out_unlock_pi; 455 } 456 457 top_waiter = rt_mutex_top_waiter(lock); 458 459 /* Requeue the waiter */ 460 rt_mutex_dequeue(lock, waiter); 461 waiter->prio = task->prio; 462 rt_mutex_enqueue(lock, waiter); 463 464 /* Release the task */ 465 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 466 if (!rt_mutex_owner(lock)) { 467 /* 468 * If the requeue above changed the top waiter, then we need 469 * to wake the new top waiter up to try to get the lock. 470 */ 471 472 if (top_waiter != rt_mutex_top_waiter(lock)) 473 wake_up_process(rt_mutex_top_waiter(lock)->task); 474 raw_spin_unlock(&lock->wait_lock); 475 goto out_put_task; 476 } 477 put_task_struct(task); 478 479 /* Grab the next task */ 480 task = rt_mutex_owner(lock); 481 get_task_struct(task); 482 raw_spin_lock_irqsave(&task->pi_lock, flags); 483 484 if (waiter == rt_mutex_top_waiter(lock)) { 485 /* Boost the owner */ 486 rt_mutex_dequeue_pi(task, top_waiter); 487 rt_mutex_enqueue_pi(task, waiter); 488 __rt_mutex_adjust_prio(task); 489 490 } else if (top_waiter == waiter) { 491 /* Deboost the owner */ 492 rt_mutex_dequeue_pi(task, waiter); 493 waiter = rt_mutex_top_waiter(lock); 494 rt_mutex_enqueue_pi(task, waiter); 495 __rt_mutex_adjust_prio(task); 496 } 497 498 /* 499 * Check whether the task which owns the current lock is pi 500 * blocked itself. If yes we store a pointer to the lock for 501 * the lock chain change detection above. After we dropped 502 * task->pi_lock next_lock cannot be dereferenced anymore. 503 */ 504 next_lock = task_blocked_on_lock(task); 505 506 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 507 508 top_waiter = rt_mutex_top_waiter(lock); 509 raw_spin_unlock(&lock->wait_lock); 510 511 /* 512 * We reached the end of the lock chain. Stop right here. No 513 * point to go back just to figure that out. 514 */ 515 if (!next_lock) 516 goto out_put_task; 517 518 if (!detect_deadlock && waiter != top_waiter) 519 goto out_put_task; 520 521 goto again; 522 523 out_unlock_pi: 524 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 525 out_put_task: 526 put_task_struct(task); 527 528 return ret; 529 } 530 531 /* 532 * Try to take an rt-mutex 533 * 534 * Must be called with lock->wait_lock held. 535 * 536 * @lock: the lock to be acquired. 537 * @task: the task which wants to acquire the lock 538 * @waiter: the waiter that is queued to the lock's wait list. (could be NULL) 539 */ 540 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task, 541 struct rt_mutex_waiter *waiter) 542 { 543 /* 544 * We have to be careful here if the atomic speedups are 545 * enabled, such that, when 546 * - no other waiter is on the lock 547 * - the lock has been released since we did the cmpxchg 548 * the lock can be released or taken while we are doing the 549 * checks and marking the lock with RT_MUTEX_HAS_WAITERS. 550 * 551 * The atomic acquire/release aware variant of 552 * mark_rt_mutex_waiters uses a cmpxchg loop. After setting 553 * the WAITERS bit, the atomic release / acquire can not 554 * happen anymore and lock->wait_lock protects us from the 555 * non-atomic case. 556 * 557 * Note, that this might set lock->owner = 558 * RT_MUTEX_HAS_WAITERS in the case the lock is not contended 559 * any more. This is fixed up when we take the ownership. 560 * This is the transitional state explained at the top of this file. 561 */ 562 mark_rt_mutex_waiters(lock); 563 564 if (rt_mutex_owner(lock)) 565 return 0; 566 567 /* 568 * It will get the lock because of one of these conditions: 569 * 1) there is no waiter 570 * 2) higher priority than waiters 571 * 3) it is top waiter 572 */ 573 if (rt_mutex_has_waiters(lock)) { 574 if (task->prio >= rt_mutex_top_waiter(lock)->prio) { 575 if (!waiter || waiter != rt_mutex_top_waiter(lock)) 576 return 0; 577 } 578 } 579 580 if (waiter || rt_mutex_has_waiters(lock)) { 581 unsigned long flags; 582 struct rt_mutex_waiter *top; 583 584 raw_spin_lock_irqsave(&task->pi_lock, flags); 585 586 /* remove the queued waiter. */ 587 if (waiter) { 588 rt_mutex_dequeue(lock, waiter); 589 task->pi_blocked_on = NULL; 590 } 591 592 /* 593 * We have to enqueue the top waiter(if it exists) into 594 * task->pi_waiters list. 595 */ 596 if (rt_mutex_has_waiters(lock)) { 597 top = rt_mutex_top_waiter(lock); 598 rt_mutex_enqueue_pi(task, top); 599 } 600 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 601 } 602 603 /* We got the lock. */ 604 debug_rt_mutex_lock(lock); 605 606 rt_mutex_set_owner(lock, task); 607 608 rt_mutex_deadlock_account_lock(lock, task); 609 610 return 1; 611 } 612 613 /* 614 * Task blocks on lock. 615 * 616 * Prepare waiter and propagate pi chain 617 * 618 * This must be called with lock->wait_lock held. 619 */ 620 static int task_blocks_on_rt_mutex(struct rt_mutex *lock, 621 struct rt_mutex_waiter *waiter, 622 struct task_struct *task, 623 int detect_deadlock) 624 { 625 struct task_struct *owner = rt_mutex_owner(lock); 626 struct rt_mutex_waiter *top_waiter = waiter; 627 struct rt_mutex *next_lock; 628 int chain_walk = 0, res; 629 unsigned long flags; 630 631 /* 632 * Early deadlock detection. We really don't want the task to 633 * enqueue on itself just to untangle the mess later. It's not 634 * only an optimization. We drop the locks, so another waiter 635 * can come in before the chain walk detects the deadlock. So 636 * the other will detect the deadlock and return -EDEADLOCK, 637 * which is wrong, as the other waiter is not in a deadlock 638 * situation. 639 */ 640 if (owner == task) 641 return -EDEADLK; 642 643 raw_spin_lock_irqsave(&task->pi_lock, flags); 644 __rt_mutex_adjust_prio(task); 645 waiter->task = task; 646 waiter->lock = lock; 647 waiter->prio = task->prio; 648 649 /* Get the top priority waiter on the lock */ 650 if (rt_mutex_has_waiters(lock)) 651 top_waiter = rt_mutex_top_waiter(lock); 652 rt_mutex_enqueue(lock, waiter); 653 654 task->pi_blocked_on = waiter; 655 656 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 657 658 if (!owner) 659 return 0; 660 661 raw_spin_lock_irqsave(&owner->pi_lock, flags); 662 if (waiter == rt_mutex_top_waiter(lock)) { 663 rt_mutex_dequeue_pi(owner, top_waiter); 664 rt_mutex_enqueue_pi(owner, waiter); 665 666 __rt_mutex_adjust_prio(owner); 667 if (owner->pi_blocked_on) 668 chain_walk = 1; 669 } else if (debug_rt_mutex_detect_deadlock(waiter, detect_deadlock)) { 670 chain_walk = 1; 671 } 672 673 /* Store the lock on which owner is blocked or NULL */ 674 next_lock = task_blocked_on_lock(owner); 675 676 raw_spin_unlock_irqrestore(&owner->pi_lock, flags); 677 /* 678 * Even if full deadlock detection is on, if the owner is not 679 * blocked itself, we can avoid finding this out in the chain 680 * walk. 681 */ 682 if (!chain_walk || !next_lock) 683 return 0; 684 685 /* 686 * The owner can't disappear while holding a lock, 687 * so the owner struct is protected by wait_lock. 688 * Gets dropped in rt_mutex_adjust_prio_chain()! 689 */ 690 get_task_struct(owner); 691 692 raw_spin_unlock(&lock->wait_lock); 693 694 res = rt_mutex_adjust_prio_chain(owner, detect_deadlock, lock, 695 next_lock, waiter, task); 696 697 raw_spin_lock(&lock->wait_lock); 698 699 return res; 700 } 701 702 /* 703 * Wake up the next waiter on the lock. 704 * 705 * Remove the top waiter from the current tasks pi waiter list and 706 * wake it up. 707 * 708 * Called with lock->wait_lock held. 709 */ 710 static void wakeup_next_waiter(struct rt_mutex *lock) 711 { 712 struct rt_mutex_waiter *waiter; 713 unsigned long flags; 714 715 raw_spin_lock_irqsave(¤t->pi_lock, flags); 716 717 waiter = rt_mutex_top_waiter(lock); 718 719 /* 720 * Remove it from current->pi_waiters. We do not adjust a 721 * possible priority boost right now. We execute wakeup in the 722 * boosted mode and go back to normal after releasing 723 * lock->wait_lock. 724 */ 725 rt_mutex_dequeue_pi(current, waiter); 726 727 /* 728 * As we are waking up the top waiter, and the waiter stays 729 * queued on the lock until it gets the lock, this lock 730 * obviously has waiters. Just set the bit here and this has 731 * the added benefit of forcing all new tasks into the 732 * slow path making sure no task of lower priority than 733 * the top waiter can steal this lock. 734 */ 735 lock->owner = (void *) RT_MUTEX_HAS_WAITERS; 736 737 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); 738 739 /* 740 * It's safe to dereference waiter as it cannot go away as 741 * long as we hold lock->wait_lock. The waiter task needs to 742 * acquire it in order to dequeue the waiter. 743 */ 744 wake_up_process(waiter->task); 745 } 746 747 /* 748 * Remove a waiter from a lock and give up 749 * 750 * Must be called with lock->wait_lock held and 751 * have just failed to try_to_take_rt_mutex(). 752 */ 753 static void remove_waiter(struct rt_mutex *lock, 754 struct rt_mutex_waiter *waiter) 755 { 756 int first = (waiter == rt_mutex_top_waiter(lock)); 757 struct task_struct *owner = rt_mutex_owner(lock); 758 struct rt_mutex *next_lock = NULL; 759 unsigned long flags; 760 761 raw_spin_lock_irqsave(¤t->pi_lock, flags); 762 rt_mutex_dequeue(lock, waiter); 763 current->pi_blocked_on = NULL; 764 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); 765 766 if (!owner) 767 return; 768 769 if (first) { 770 771 raw_spin_lock_irqsave(&owner->pi_lock, flags); 772 773 rt_mutex_dequeue_pi(owner, waiter); 774 775 if (rt_mutex_has_waiters(lock)) { 776 struct rt_mutex_waiter *next; 777 778 next = rt_mutex_top_waiter(lock); 779 rt_mutex_enqueue_pi(owner, next); 780 } 781 __rt_mutex_adjust_prio(owner); 782 783 /* Store the lock on which owner is blocked or NULL */ 784 next_lock = task_blocked_on_lock(owner); 785 786 raw_spin_unlock_irqrestore(&owner->pi_lock, flags); 787 } 788 789 if (!next_lock) 790 return; 791 792 /* gets dropped in rt_mutex_adjust_prio_chain()! */ 793 get_task_struct(owner); 794 795 raw_spin_unlock(&lock->wait_lock); 796 797 rt_mutex_adjust_prio_chain(owner, 0, lock, next_lock, NULL, current); 798 799 raw_spin_lock(&lock->wait_lock); 800 } 801 802 /* 803 * Recheck the pi chain, in case we got a priority setting 804 * 805 * Called from sched_setscheduler 806 */ 807 void rt_mutex_adjust_pi(struct task_struct *task) 808 { 809 struct rt_mutex_waiter *waiter; 810 struct rt_mutex *next_lock; 811 unsigned long flags; 812 813 raw_spin_lock_irqsave(&task->pi_lock, flags); 814 815 waiter = task->pi_blocked_on; 816 if (!waiter || (waiter->prio == task->prio && 817 !dl_prio(task->prio))) { 818 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 819 return; 820 } 821 next_lock = waiter->lock; 822 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 823 824 /* gets dropped in rt_mutex_adjust_prio_chain()! */ 825 get_task_struct(task); 826 827 rt_mutex_adjust_prio_chain(task, 0, NULL, next_lock, NULL, task); 828 } 829 830 /** 831 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop 832 * @lock: the rt_mutex to take 833 * @state: the state the task should block in (TASK_INTERRUPTIBLE 834 * or TASK_UNINTERRUPTIBLE) 835 * @timeout: the pre-initialized and started timer, or NULL for none 836 * @waiter: the pre-initialized rt_mutex_waiter 837 * 838 * lock->wait_lock must be held by the caller. 839 */ 840 static int __sched 841 __rt_mutex_slowlock(struct rt_mutex *lock, int state, 842 struct hrtimer_sleeper *timeout, 843 struct rt_mutex_waiter *waiter) 844 { 845 int ret = 0; 846 847 for (;;) { 848 /* Try to acquire the lock: */ 849 if (try_to_take_rt_mutex(lock, current, waiter)) 850 break; 851 852 /* 853 * TASK_INTERRUPTIBLE checks for signals and 854 * timeout. Ignored otherwise. 855 */ 856 if (unlikely(state == TASK_INTERRUPTIBLE)) { 857 /* Signal pending? */ 858 if (signal_pending(current)) 859 ret = -EINTR; 860 if (timeout && !timeout->task) 861 ret = -ETIMEDOUT; 862 if (ret) 863 break; 864 } 865 866 raw_spin_unlock(&lock->wait_lock); 867 868 debug_rt_mutex_print_deadlock(waiter); 869 870 schedule_rt_mutex(lock); 871 872 raw_spin_lock(&lock->wait_lock); 873 set_current_state(state); 874 } 875 876 return ret; 877 } 878 879 static void rt_mutex_handle_deadlock(int res, int detect_deadlock, 880 struct rt_mutex_waiter *w) 881 { 882 /* 883 * If the result is not -EDEADLOCK or the caller requested 884 * deadlock detection, nothing to do here. 885 */ 886 if (res != -EDEADLOCK || detect_deadlock) 887 return; 888 889 /* 890 * Yell lowdly and stop the task right here. 891 */ 892 rt_mutex_print_deadlock(w); 893 while (1) { 894 set_current_state(TASK_INTERRUPTIBLE); 895 schedule(); 896 } 897 } 898 899 /* 900 * Slow path lock function: 901 */ 902 static int __sched 903 rt_mutex_slowlock(struct rt_mutex *lock, int state, 904 struct hrtimer_sleeper *timeout, 905 int detect_deadlock) 906 { 907 struct rt_mutex_waiter waiter; 908 int ret = 0; 909 910 debug_rt_mutex_init_waiter(&waiter); 911 RB_CLEAR_NODE(&waiter.pi_tree_entry); 912 RB_CLEAR_NODE(&waiter.tree_entry); 913 914 raw_spin_lock(&lock->wait_lock); 915 916 /* Try to acquire the lock again: */ 917 if (try_to_take_rt_mutex(lock, current, NULL)) { 918 raw_spin_unlock(&lock->wait_lock); 919 return 0; 920 } 921 922 set_current_state(state); 923 924 /* Setup the timer, when timeout != NULL */ 925 if (unlikely(timeout)) { 926 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS); 927 if (!hrtimer_active(&timeout->timer)) 928 timeout->task = NULL; 929 } 930 931 ret = task_blocks_on_rt_mutex(lock, &waiter, current, detect_deadlock); 932 933 if (likely(!ret)) 934 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter); 935 936 set_current_state(TASK_RUNNING); 937 938 if (unlikely(ret)) { 939 remove_waiter(lock, &waiter); 940 rt_mutex_handle_deadlock(ret, detect_deadlock, &waiter); 941 } 942 943 /* 944 * try_to_take_rt_mutex() sets the waiter bit 945 * unconditionally. We might have to fix that up. 946 */ 947 fixup_rt_mutex_waiters(lock); 948 949 raw_spin_unlock(&lock->wait_lock); 950 951 /* Remove pending timer: */ 952 if (unlikely(timeout)) 953 hrtimer_cancel(&timeout->timer); 954 955 debug_rt_mutex_free_waiter(&waiter); 956 957 return ret; 958 } 959 960 /* 961 * Slow path try-lock function: 962 */ 963 static inline int 964 rt_mutex_slowtrylock(struct rt_mutex *lock) 965 { 966 int ret = 0; 967 968 raw_spin_lock(&lock->wait_lock); 969 970 if (likely(rt_mutex_owner(lock) != current)) { 971 972 ret = try_to_take_rt_mutex(lock, current, NULL); 973 /* 974 * try_to_take_rt_mutex() sets the lock waiters 975 * bit unconditionally. Clean this up. 976 */ 977 fixup_rt_mutex_waiters(lock); 978 } 979 980 raw_spin_unlock(&lock->wait_lock); 981 982 return ret; 983 } 984 985 /* 986 * Slow path to release a rt-mutex: 987 */ 988 static void __sched 989 rt_mutex_slowunlock(struct rt_mutex *lock) 990 { 991 raw_spin_lock(&lock->wait_lock); 992 993 debug_rt_mutex_unlock(lock); 994 995 rt_mutex_deadlock_account_unlock(current); 996 997 /* 998 * We must be careful here if the fast path is enabled. If we 999 * have no waiters queued we cannot set owner to NULL here 1000 * because of: 1001 * 1002 * foo->lock->owner = NULL; 1003 * rtmutex_lock(foo->lock); <- fast path 1004 * free = atomic_dec_and_test(foo->refcnt); 1005 * rtmutex_unlock(foo->lock); <- fast path 1006 * if (free) 1007 * kfree(foo); 1008 * raw_spin_unlock(foo->lock->wait_lock); 1009 * 1010 * So for the fastpath enabled kernel: 1011 * 1012 * Nothing can set the waiters bit as long as we hold 1013 * lock->wait_lock. So we do the following sequence: 1014 * 1015 * owner = rt_mutex_owner(lock); 1016 * clear_rt_mutex_waiters(lock); 1017 * raw_spin_unlock(&lock->wait_lock); 1018 * if (cmpxchg(&lock->owner, owner, 0) == owner) 1019 * return; 1020 * goto retry; 1021 * 1022 * The fastpath disabled variant is simple as all access to 1023 * lock->owner is serialized by lock->wait_lock: 1024 * 1025 * lock->owner = NULL; 1026 * raw_spin_unlock(&lock->wait_lock); 1027 */ 1028 while (!rt_mutex_has_waiters(lock)) { 1029 /* Drops lock->wait_lock ! */ 1030 if (unlock_rt_mutex_safe(lock) == true) 1031 return; 1032 /* Relock the rtmutex and try again */ 1033 raw_spin_lock(&lock->wait_lock); 1034 } 1035 1036 /* 1037 * The wakeup next waiter path does not suffer from the above 1038 * race. See the comments there. 1039 */ 1040 wakeup_next_waiter(lock); 1041 1042 raw_spin_unlock(&lock->wait_lock); 1043 1044 /* Undo pi boosting if necessary: */ 1045 rt_mutex_adjust_prio(current); 1046 } 1047 1048 /* 1049 * debug aware fast / slowpath lock,trylock,unlock 1050 * 1051 * The atomic acquire/release ops are compiled away, when either the 1052 * architecture does not support cmpxchg or when debugging is enabled. 1053 */ 1054 static inline int 1055 rt_mutex_fastlock(struct rt_mutex *lock, int state, 1056 int detect_deadlock, 1057 int (*slowfn)(struct rt_mutex *lock, int state, 1058 struct hrtimer_sleeper *timeout, 1059 int detect_deadlock)) 1060 { 1061 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) { 1062 rt_mutex_deadlock_account_lock(lock, current); 1063 return 0; 1064 } else 1065 return slowfn(lock, state, NULL, detect_deadlock); 1066 } 1067 1068 static inline int 1069 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state, 1070 struct hrtimer_sleeper *timeout, int detect_deadlock, 1071 int (*slowfn)(struct rt_mutex *lock, int state, 1072 struct hrtimer_sleeper *timeout, 1073 int detect_deadlock)) 1074 { 1075 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) { 1076 rt_mutex_deadlock_account_lock(lock, current); 1077 return 0; 1078 } else 1079 return slowfn(lock, state, timeout, detect_deadlock); 1080 } 1081 1082 static inline int 1083 rt_mutex_fasttrylock(struct rt_mutex *lock, 1084 int (*slowfn)(struct rt_mutex *lock)) 1085 { 1086 if (likely(rt_mutex_cmpxchg(lock, NULL, current))) { 1087 rt_mutex_deadlock_account_lock(lock, current); 1088 return 1; 1089 } 1090 return slowfn(lock); 1091 } 1092 1093 static inline void 1094 rt_mutex_fastunlock(struct rt_mutex *lock, 1095 void (*slowfn)(struct rt_mutex *lock)) 1096 { 1097 if (likely(rt_mutex_cmpxchg(lock, current, NULL))) 1098 rt_mutex_deadlock_account_unlock(current); 1099 else 1100 slowfn(lock); 1101 } 1102 1103 /** 1104 * rt_mutex_lock - lock a rt_mutex 1105 * 1106 * @lock: the rt_mutex to be locked 1107 */ 1108 void __sched rt_mutex_lock(struct rt_mutex *lock) 1109 { 1110 might_sleep(); 1111 1112 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, 0, rt_mutex_slowlock); 1113 } 1114 EXPORT_SYMBOL_GPL(rt_mutex_lock); 1115 1116 /** 1117 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible 1118 * 1119 * @lock: the rt_mutex to be locked 1120 * @detect_deadlock: deadlock detection on/off 1121 * 1122 * Returns: 1123 * 0 on success 1124 * -EINTR when interrupted by a signal 1125 * -EDEADLK when the lock would deadlock (when deadlock detection is on) 1126 */ 1127 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock, 1128 int detect_deadlock) 1129 { 1130 might_sleep(); 1131 1132 return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, 1133 detect_deadlock, rt_mutex_slowlock); 1134 } 1135 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible); 1136 1137 /** 1138 * rt_mutex_timed_lock - lock a rt_mutex interruptible 1139 * the timeout structure is provided 1140 * by the caller 1141 * 1142 * @lock: the rt_mutex to be locked 1143 * @timeout: timeout structure or NULL (no timeout) 1144 * @detect_deadlock: deadlock detection on/off 1145 * 1146 * Returns: 1147 * 0 on success 1148 * -EINTR when interrupted by a signal 1149 * -ETIMEDOUT when the timeout expired 1150 * -EDEADLK when the lock would deadlock (when deadlock detection is on) 1151 */ 1152 int 1153 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout, 1154 int detect_deadlock) 1155 { 1156 might_sleep(); 1157 1158 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout, 1159 detect_deadlock, rt_mutex_slowlock); 1160 } 1161 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock); 1162 1163 /** 1164 * rt_mutex_trylock - try to lock a rt_mutex 1165 * 1166 * @lock: the rt_mutex to be locked 1167 * 1168 * Returns 1 on success and 0 on contention 1169 */ 1170 int __sched rt_mutex_trylock(struct rt_mutex *lock) 1171 { 1172 return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock); 1173 } 1174 EXPORT_SYMBOL_GPL(rt_mutex_trylock); 1175 1176 /** 1177 * rt_mutex_unlock - unlock a rt_mutex 1178 * 1179 * @lock: the rt_mutex to be unlocked 1180 */ 1181 void __sched rt_mutex_unlock(struct rt_mutex *lock) 1182 { 1183 rt_mutex_fastunlock(lock, rt_mutex_slowunlock); 1184 } 1185 EXPORT_SYMBOL_GPL(rt_mutex_unlock); 1186 1187 /** 1188 * rt_mutex_destroy - mark a mutex unusable 1189 * @lock: the mutex to be destroyed 1190 * 1191 * This function marks the mutex uninitialized, and any subsequent 1192 * use of the mutex is forbidden. The mutex must not be locked when 1193 * this function is called. 1194 */ 1195 void rt_mutex_destroy(struct rt_mutex *lock) 1196 { 1197 WARN_ON(rt_mutex_is_locked(lock)); 1198 #ifdef CONFIG_DEBUG_RT_MUTEXES 1199 lock->magic = NULL; 1200 #endif 1201 } 1202 1203 EXPORT_SYMBOL_GPL(rt_mutex_destroy); 1204 1205 /** 1206 * __rt_mutex_init - initialize the rt lock 1207 * 1208 * @lock: the rt lock to be initialized 1209 * 1210 * Initialize the rt lock to unlocked state. 1211 * 1212 * Initializing of a locked rt lock is not allowed 1213 */ 1214 void __rt_mutex_init(struct rt_mutex *lock, const char *name) 1215 { 1216 lock->owner = NULL; 1217 raw_spin_lock_init(&lock->wait_lock); 1218 lock->waiters = RB_ROOT; 1219 lock->waiters_leftmost = NULL; 1220 1221 debug_rt_mutex_init(lock, name); 1222 } 1223 EXPORT_SYMBOL_GPL(__rt_mutex_init); 1224 1225 /** 1226 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a 1227 * proxy owner 1228 * 1229 * @lock: the rt_mutex to be locked 1230 * @proxy_owner:the task to set as owner 1231 * 1232 * No locking. Caller has to do serializing itself 1233 * Special API call for PI-futex support 1234 */ 1235 void rt_mutex_init_proxy_locked(struct rt_mutex *lock, 1236 struct task_struct *proxy_owner) 1237 { 1238 __rt_mutex_init(lock, NULL); 1239 debug_rt_mutex_proxy_lock(lock, proxy_owner); 1240 rt_mutex_set_owner(lock, proxy_owner); 1241 rt_mutex_deadlock_account_lock(lock, proxy_owner); 1242 } 1243 1244 /** 1245 * rt_mutex_proxy_unlock - release a lock on behalf of owner 1246 * 1247 * @lock: the rt_mutex to be locked 1248 * 1249 * No locking. Caller has to do serializing itself 1250 * Special API call for PI-futex support 1251 */ 1252 void rt_mutex_proxy_unlock(struct rt_mutex *lock, 1253 struct task_struct *proxy_owner) 1254 { 1255 debug_rt_mutex_proxy_unlock(lock); 1256 rt_mutex_set_owner(lock, NULL); 1257 rt_mutex_deadlock_account_unlock(proxy_owner); 1258 } 1259 1260 /** 1261 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task 1262 * @lock: the rt_mutex to take 1263 * @waiter: the pre-initialized rt_mutex_waiter 1264 * @task: the task to prepare 1265 * @detect_deadlock: perform deadlock detection (1) or not (0) 1266 * 1267 * Returns: 1268 * 0 - task blocked on lock 1269 * 1 - acquired the lock for task, caller should wake it up 1270 * <0 - error 1271 * 1272 * Special API call for FUTEX_REQUEUE_PI support. 1273 */ 1274 int rt_mutex_start_proxy_lock(struct rt_mutex *lock, 1275 struct rt_mutex_waiter *waiter, 1276 struct task_struct *task, int detect_deadlock) 1277 { 1278 int ret; 1279 1280 raw_spin_lock(&lock->wait_lock); 1281 1282 if (try_to_take_rt_mutex(lock, task, NULL)) { 1283 raw_spin_unlock(&lock->wait_lock); 1284 return 1; 1285 } 1286 1287 /* We enforce deadlock detection for futexes */ 1288 ret = task_blocks_on_rt_mutex(lock, waiter, task, 1); 1289 1290 if (ret && !rt_mutex_owner(lock)) { 1291 /* 1292 * Reset the return value. We might have 1293 * returned with -EDEADLK and the owner 1294 * released the lock while we were walking the 1295 * pi chain. Let the waiter sort it out. 1296 */ 1297 ret = 0; 1298 } 1299 1300 if (unlikely(ret)) 1301 remove_waiter(lock, waiter); 1302 1303 raw_spin_unlock(&lock->wait_lock); 1304 1305 debug_rt_mutex_print_deadlock(waiter); 1306 1307 return ret; 1308 } 1309 1310 /** 1311 * rt_mutex_next_owner - return the next owner of the lock 1312 * 1313 * @lock: the rt lock query 1314 * 1315 * Returns the next owner of the lock or NULL 1316 * 1317 * Caller has to serialize against other accessors to the lock 1318 * itself. 1319 * 1320 * Special API call for PI-futex support 1321 */ 1322 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock) 1323 { 1324 if (!rt_mutex_has_waiters(lock)) 1325 return NULL; 1326 1327 return rt_mutex_top_waiter(lock)->task; 1328 } 1329 1330 /** 1331 * rt_mutex_finish_proxy_lock() - Complete lock acquisition 1332 * @lock: the rt_mutex we were woken on 1333 * @to: the timeout, null if none. hrtimer should already have 1334 * been started. 1335 * @waiter: the pre-initialized rt_mutex_waiter 1336 * @detect_deadlock: perform deadlock detection (1) or not (0) 1337 * 1338 * Complete the lock acquisition started our behalf by another thread. 1339 * 1340 * Returns: 1341 * 0 - success 1342 * <0 - error, one of -EINTR, -ETIMEDOUT, or -EDEADLK 1343 * 1344 * Special API call for PI-futex requeue support 1345 */ 1346 int rt_mutex_finish_proxy_lock(struct rt_mutex *lock, 1347 struct hrtimer_sleeper *to, 1348 struct rt_mutex_waiter *waiter, 1349 int detect_deadlock) 1350 { 1351 int ret; 1352 1353 raw_spin_lock(&lock->wait_lock); 1354 1355 set_current_state(TASK_INTERRUPTIBLE); 1356 1357 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter); 1358 1359 set_current_state(TASK_RUNNING); 1360 1361 if (unlikely(ret)) 1362 remove_waiter(lock, waiter); 1363 1364 /* 1365 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might 1366 * have to fix that up. 1367 */ 1368 fixup_rt_mutex_waiters(lock); 1369 1370 raw_spin_unlock(&lock->wait_lock); 1371 1372 return ret; 1373 } 1374