xref: /openbmc/linux/kernel/locking/rtmutex.c (revision 9adc8050)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
4  *
5  * started by Ingo Molnar and Thomas Gleixner.
6  *
7  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
8  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
9  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
10  *  Copyright (C) 2006 Esben Nielsen
11  *
12  *  See Documentation/locking/rt-mutex-design.rst for details.
13  */
14 #include <linux/spinlock.h>
15 #include <linux/export.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/rt.h>
18 #include <linux/sched/deadline.h>
19 #include <linux/sched/wake_q.h>
20 #include <linux/sched/debug.h>
21 #include <linux/timer.h>
22 
23 #include "rtmutex_common.h"
24 
25 /*
26  * lock->owner state tracking:
27  *
28  * lock->owner holds the task_struct pointer of the owner. Bit 0
29  * is used to keep track of the "lock has waiters" state.
30  *
31  * owner	bit0
32  * NULL		0	lock is free (fast acquire possible)
33  * NULL		1	lock is free and has waiters and the top waiter
34  *				is going to take the lock*
35  * taskpointer	0	lock is held (fast release possible)
36  * taskpointer	1	lock is held and has waiters**
37  *
38  * The fast atomic compare exchange based acquire and release is only
39  * possible when bit 0 of lock->owner is 0.
40  *
41  * (*) It also can be a transitional state when grabbing the lock
42  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
43  * we need to set the bit0 before looking at the lock, and the owner may be
44  * NULL in this small time, hence this can be a transitional state.
45  *
46  * (**) There is a small time when bit 0 is set but there are no
47  * waiters. This can happen when grabbing the lock in the slow path.
48  * To prevent a cmpxchg of the owner releasing the lock, we need to
49  * set this bit before looking at the lock.
50  */
51 
52 static void
53 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
54 {
55 	unsigned long val = (unsigned long)owner;
56 
57 	if (rt_mutex_has_waiters(lock))
58 		val |= RT_MUTEX_HAS_WAITERS;
59 
60 	lock->owner = (struct task_struct *)val;
61 }
62 
63 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
64 {
65 	lock->owner = (struct task_struct *)
66 			((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
67 }
68 
69 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
70 {
71 	unsigned long owner, *p = (unsigned long *) &lock->owner;
72 
73 	if (rt_mutex_has_waiters(lock))
74 		return;
75 
76 	/*
77 	 * The rbtree has no waiters enqueued, now make sure that the
78 	 * lock->owner still has the waiters bit set, otherwise the
79 	 * following can happen:
80 	 *
81 	 * CPU 0	CPU 1		CPU2
82 	 * l->owner=T1
83 	 *		rt_mutex_lock(l)
84 	 *		lock(l->lock)
85 	 *		l->owner = T1 | HAS_WAITERS;
86 	 *		enqueue(T2)
87 	 *		boost()
88 	 *		  unlock(l->lock)
89 	 *		block()
90 	 *
91 	 *				rt_mutex_lock(l)
92 	 *				lock(l->lock)
93 	 *				l->owner = T1 | HAS_WAITERS;
94 	 *				enqueue(T3)
95 	 *				boost()
96 	 *				  unlock(l->lock)
97 	 *				block()
98 	 *		signal(->T2)	signal(->T3)
99 	 *		lock(l->lock)
100 	 *		dequeue(T2)
101 	 *		deboost()
102 	 *		  unlock(l->lock)
103 	 *				lock(l->lock)
104 	 *				dequeue(T3)
105 	 *				 ==> wait list is empty
106 	 *				deboost()
107 	 *				 unlock(l->lock)
108 	 *		lock(l->lock)
109 	 *		fixup_rt_mutex_waiters()
110 	 *		  if (wait_list_empty(l) {
111 	 *		    l->owner = owner
112 	 *		    owner = l->owner & ~HAS_WAITERS;
113 	 *		      ==> l->owner = T1
114 	 *		  }
115 	 *				lock(l->lock)
116 	 * rt_mutex_unlock(l)		fixup_rt_mutex_waiters()
117 	 *				  if (wait_list_empty(l) {
118 	 *				    owner = l->owner & ~HAS_WAITERS;
119 	 * cmpxchg(l->owner, T1, NULL)
120 	 *  ===> Success (l->owner = NULL)
121 	 *
122 	 *				    l->owner = owner
123 	 *				      ==> l->owner = T1
124 	 *				  }
125 	 *
126 	 * With the check for the waiter bit in place T3 on CPU2 will not
127 	 * overwrite. All tasks fiddling with the waiters bit are
128 	 * serialized by l->lock, so nothing else can modify the waiters
129 	 * bit. If the bit is set then nothing can change l->owner either
130 	 * so the simple RMW is safe. The cmpxchg() will simply fail if it
131 	 * happens in the middle of the RMW because the waiters bit is
132 	 * still set.
133 	 */
134 	owner = READ_ONCE(*p);
135 	if (owner & RT_MUTEX_HAS_WAITERS)
136 		WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
137 }
138 
139 /*
140  * We can speed up the acquire/release, if there's no debugging state to be
141  * set up.
142  */
143 #ifndef CONFIG_DEBUG_RT_MUTEXES
144 # define rt_mutex_cmpxchg_relaxed(l,c,n) (cmpxchg_relaxed(&l->owner, c, n) == c)
145 # define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
146 # define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
147 
148 /*
149  * Callers must hold the ->wait_lock -- which is the whole purpose as we force
150  * all future threads that attempt to [Rmw] the lock to the slowpath. As such
151  * relaxed semantics suffice.
152  */
153 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
154 {
155 	unsigned long owner, *p = (unsigned long *) &lock->owner;
156 
157 	do {
158 		owner = *p;
159 	} while (cmpxchg_relaxed(p, owner,
160 				 owner | RT_MUTEX_HAS_WAITERS) != owner);
161 }
162 
163 /*
164  * Safe fastpath aware unlock:
165  * 1) Clear the waiters bit
166  * 2) Drop lock->wait_lock
167  * 3) Try to unlock the lock with cmpxchg
168  */
169 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
170 					unsigned long flags)
171 	__releases(lock->wait_lock)
172 {
173 	struct task_struct *owner = rt_mutex_owner(lock);
174 
175 	clear_rt_mutex_waiters(lock);
176 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
177 	/*
178 	 * If a new waiter comes in between the unlock and the cmpxchg
179 	 * we have two situations:
180 	 *
181 	 * unlock(wait_lock);
182 	 *					lock(wait_lock);
183 	 * cmpxchg(p, owner, 0) == owner
184 	 *					mark_rt_mutex_waiters(lock);
185 	 *					acquire(lock);
186 	 * or:
187 	 *
188 	 * unlock(wait_lock);
189 	 *					lock(wait_lock);
190 	 *					mark_rt_mutex_waiters(lock);
191 	 *
192 	 * cmpxchg(p, owner, 0) != owner
193 	 *					enqueue_waiter();
194 	 *					unlock(wait_lock);
195 	 * lock(wait_lock);
196 	 * wake waiter();
197 	 * unlock(wait_lock);
198 	 *					lock(wait_lock);
199 	 *					acquire(lock);
200 	 */
201 	return rt_mutex_cmpxchg_release(lock, owner, NULL);
202 }
203 
204 #else
205 # define rt_mutex_cmpxchg_relaxed(l,c,n)	(0)
206 # define rt_mutex_cmpxchg_acquire(l,c,n)	(0)
207 # define rt_mutex_cmpxchg_release(l,c,n)	(0)
208 
209 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
210 {
211 	lock->owner = (struct task_struct *)
212 			((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
213 }
214 
215 /*
216  * Simple slow path only version: lock->owner is protected by lock->wait_lock.
217  */
218 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
219 					unsigned long flags)
220 	__releases(lock->wait_lock)
221 {
222 	lock->owner = NULL;
223 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
224 	return true;
225 }
226 #endif
227 
228 /*
229  * Only use with rt_mutex_waiter_{less,equal}()
230  */
231 #define task_to_waiter(p)	\
232 	&(struct rt_mutex_waiter){ .prio = (p)->prio, .deadline = (p)->dl.deadline }
233 
234 static inline int
235 rt_mutex_waiter_less(struct rt_mutex_waiter *left,
236 		     struct rt_mutex_waiter *right)
237 {
238 	if (left->prio < right->prio)
239 		return 1;
240 
241 	/*
242 	 * If both waiters have dl_prio(), we check the deadlines of the
243 	 * associated tasks.
244 	 * If left waiter has a dl_prio(), and we didn't return 1 above,
245 	 * then right waiter has a dl_prio() too.
246 	 */
247 	if (dl_prio(left->prio))
248 		return dl_time_before(left->deadline, right->deadline);
249 
250 	return 0;
251 }
252 
253 static inline int
254 rt_mutex_waiter_equal(struct rt_mutex_waiter *left,
255 		      struct rt_mutex_waiter *right)
256 {
257 	if (left->prio != right->prio)
258 		return 0;
259 
260 	/*
261 	 * If both waiters have dl_prio(), we check the deadlines of the
262 	 * associated tasks.
263 	 * If left waiter has a dl_prio(), and we didn't return 0 above,
264 	 * then right waiter has a dl_prio() too.
265 	 */
266 	if (dl_prio(left->prio))
267 		return left->deadline == right->deadline;
268 
269 	return 1;
270 }
271 
272 static void
273 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
274 {
275 	struct rb_node **link = &lock->waiters.rb_root.rb_node;
276 	struct rb_node *parent = NULL;
277 	struct rt_mutex_waiter *entry;
278 	bool leftmost = true;
279 
280 	while (*link) {
281 		parent = *link;
282 		entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
283 		if (rt_mutex_waiter_less(waiter, entry)) {
284 			link = &parent->rb_left;
285 		} else {
286 			link = &parent->rb_right;
287 			leftmost = false;
288 		}
289 	}
290 
291 	rb_link_node(&waiter->tree_entry, parent, link);
292 	rb_insert_color_cached(&waiter->tree_entry, &lock->waiters, leftmost);
293 }
294 
295 static void
296 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
297 {
298 	if (RB_EMPTY_NODE(&waiter->tree_entry))
299 		return;
300 
301 	rb_erase_cached(&waiter->tree_entry, &lock->waiters);
302 	RB_CLEAR_NODE(&waiter->tree_entry);
303 }
304 
305 static void
306 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
307 {
308 	struct rb_node **link = &task->pi_waiters.rb_root.rb_node;
309 	struct rb_node *parent = NULL;
310 	struct rt_mutex_waiter *entry;
311 	bool leftmost = true;
312 
313 	while (*link) {
314 		parent = *link;
315 		entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
316 		if (rt_mutex_waiter_less(waiter, entry)) {
317 			link = &parent->rb_left;
318 		} else {
319 			link = &parent->rb_right;
320 			leftmost = false;
321 		}
322 	}
323 
324 	rb_link_node(&waiter->pi_tree_entry, parent, link);
325 	rb_insert_color_cached(&waiter->pi_tree_entry, &task->pi_waiters, leftmost);
326 }
327 
328 static void
329 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
330 {
331 	if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
332 		return;
333 
334 	rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters);
335 	RB_CLEAR_NODE(&waiter->pi_tree_entry);
336 }
337 
338 static void rt_mutex_adjust_prio(struct task_struct *p)
339 {
340 	struct task_struct *pi_task = NULL;
341 
342 	lockdep_assert_held(&p->pi_lock);
343 
344 	if (task_has_pi_waiters(p))
345 		pi_task = task_top_pi_waiter(p)->task;
346 
347 	rt_mutex_setprio(p, pi_task);
348 }
349 
350 /*
351  * Deadlock detection is conditional:
352  *
353  * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
354  * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
355  *
356  * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
357  * conducted independent of the detect argument.
358  *
359  * If the waiter argument is NULL this indicates the deboost path and
360  * deadlock detection is disabled independent of the detect argument
361  * and the config settings.
362  */
363 static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
364 					  enum rtmutex_chainwalk chwalk)
365 {
366 	/*
367 	 * This is just a wrapper function for the following call,
368 	 * because debug_rt_mutex_detect_deadlock() smells like a magic
369 	 * debug feature and I wanted to keep the cond function in the
370 	 * main source file along with the comments instead of having
371 	 * two of the same in the headers.
372 	 */
373 	return debug_rt_mutex_detect_deadlock(waiter, chwalk);
374 }
375 
376 /*
377  * Max number of times we'll walk the boosting chain:
378  */
379 int max_lock_depth = 1024;
380 
381 static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
382 {
383 	return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
384 }
385 
386 /*
387  * Adjust the priority chain. Also used for deadlock detection.
388  * Decreases task's usage by one - may thus free the task.
389  *
390  * @task:	the task owning the mutex (owner) for which a chain walk is
391  *		probably needed
392  * @chwalk:	do we have to carry out deadlock detection?
393  * @orig_lock:	the mutex (can be NULL if we are walking the chain to recheck
394  *		things for a task that has just got its priority adjusted, and
395  *		is waiting on a mutex)
396  * @next_lock:	the mutex on which the owner of @orig_lock was blocked before
397  *		we dropped its pi_lock. Is never dereferenced, only used for
398  *		comparison to detect lock chain changes.
399  * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
400  *		its priority to the mutex owner (can be NULL in the case
401  *		depicted above or if the top waiter is gone away and we are
402  *		actually deboosting the owner)
403  * @top_task:	the current top waiter
404  *
405  * Returns 0 or -EDEADLK.
406  *
407  * Chain walk basics and protection scope
408  *
409  * [R] refcount on task
410  * [P] task->pi_lock held
411  * [L] rtmutex->wait_lock held
412  *
413  * Step	Description				Protected by
414  *	function arguments:
415  *	@task					[R]
416  *	@orig_lock if != NULL			@top_task is blocked on it
417  *	@next_lock				Unprotected. Cannot be
418  *						dereferenced. Only used for
419  *						comparison.
420  *	@orig_waiter if != NULL			@top_task is blocked on it
421  *	@top_task				current, or in case of proxy
422  *						locking protected by calling
423  *						code
424  *	again:
425  *	  loop_sanity_check();
426  *	retry:
427  * [1]	  lock(task->pi_lock);			[R] acquire [P]
428  * [2]	  waiter = task->pi_blocked_on;		[P]
429  * [3]	  check_exit_conditions_1();		[P]
430  * [4]	  lock = waiter->lock;			[P]
431  * [5]	  if (!try_lock(lock->wait_lock)) {	[P] try to acquire [L]
432  *	    unlock(task->pi_lock);		release [P]
433  *	    goto retry;
434  *	  }
435  * [6]	  check_exit_conditions_2();		[P] + [L]
436  * [7]	  requeue_lock_waiter(lock, waiter);	[P] + [L]
437  * [8]	  unlock(task->pi_lock);		release [P]
438  *	  put_task_struct(task);		release [R]
439  * [9]	  check_exit_conditions_3();		[L]
440  * [10]	  task = owner(lock);			[L]
441  *	  get_task_struct(task);		[L] acquire [R]
442  *	  lock(task->pi_lock);			[L] acquire [P]
443  * [11]	  requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
444  * [12]	  check_exit_conditions_4();		[P] + [L]
445  * [13]	  unlock(task->pi_lock);		release [P]
446  *	  unlock(lock->wait_lock);		release [L]
447  *	  goto again;
448  */
449 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
450 				      enum rtmutex_chainwalk chwalk,
451 				      struct rt_mutex *orig_lock,
452 				      struct rt_mutex *next_lock,
453 				      struct rt_mutex_waiter *orig_waiter,
454 				      struct task_struct *top_task)
455 {
456 	struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
457 	struct rt_mutex_waiter *prerequeue_top_waiter;
458 	int ret = 0, depth = 0;
459 	struct rt_mutex *lock;
460 	bool detect_deadlock;
461 	bool requeue = true;
462 
463 	detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
464 
465 	/*
466 	 * The (de)boosting is a step by step approach with a lot of
467 	 * pitfalls. We want this to be preemptible and we want hold a
468 	 * maximum of two locks per step. So we have to check
469 	 * carefully whether things change under us.
470 	 */
471  again:
472 	/*
473 	 * We limit the lock chain length for each invocation.
474 	 */
475 	if (++depth > max_lock_depth) {
476 		static int prev_max;
477 
478 		/*
479 		 * Print this only once. If the admin changes the limit,
480 		 * print a new message when reaching the limit again.
481 		 */
482 		if (prev_max != max_lock_depth) {
483 			prev_max = max_lock_depth;
484 			printk(KERN_WARNING "Maximum lock depth %d reached "
485 			       "task: %s (%d)\n", max_lock_depth,
486 			       top_task->comm, task_pid_nr(top_task));
487 		}
488 		put_task_struct(task);
489 
490 		return -EDEADLK;
491 	}
492 
493 	/*
494 	 * We are fully preemptible here and only hold the refcount on
495 	 * @task. So everything can have changed under us since the
496 	 * caller or our own code below (goto retry/again) dropped all
497 	 * locks.
498 	 */
499  retry:
500 	/*
501 	 * [1] Task cannot go away as we did a get_task() before !
502 	 */
503 	raw_spin_lock_irq(&task->pi_lock);
504 
505 	/*
506 	 * [2] Get the waiter on which @task is blocked on.
507 	 */
508 	waiter = task->pi_blocked_on;
509 
510 	/*
511 	 * [3] check_exit_conditions_1() protected by task->pi_lock.
512 	 */
513 
514 	/*
515 	 * Check whether the end of the boosting chain has been
516 	 * reached or the state of the chain has changed while we
517 	 * dropped the locks.
518 	 */
519 	if (!waiter)
520 		goto out_unlock_pi;
521 
522 	/*
523 	 * Check the orig_waiter state. After we dropped the locks,
524 	 * the previous owner of the lock might have released the lock.
525 	 */
526 	if (orig_waiter && !rt_mutex_owner(orig_lock))
527 		goto out_unlock_pi;
528 
529 	/*
530 	 * We dropped all locks after taking a refcount on @task, so
531 	 * the task might have moved on in the lock chain or even left
532 	 * the chain completely and blocks now on an unrelated lock or
533 	 * on @orig_lock.
534 	 *
535 	 * We stored the lock on which @task was blocked in @next_lock,
536 	 * so we can detect the chain change.
537 	 */
538 	if (next_lock != waiter->lock)
539 		goto out_unlock_pi;
540 
541 	/*
542 	 * Drop out, when the task has no waiters. Note,
543 	 * top_waiter can be NULL, when we are in the deboosting
544 	 * mode!
545 	 */
546 	if (top_waiter) {
547 		if (!task_has_pi_waiters(task))
548 			goto out_unlock_pi;
549 		/*
550 		 * If deadlock detection is off, we stop here if we
551 		 * are not the top pi waiter of the task. If deadlock
552 		 * detection is enabled we continue, but stop the
553 		 * requeueing in the chain walk.
554 		 */
555 		if (top_waiter != task_top_pi_waiter(task)) {
556 			if (!detect_deadlock)
557 				goto out_unlock_pi;
558 			else
559 				requeue = false;
560 		}
561 	}
562 
563 	/*
564 	 * If the waiter priority is the same as the task priority
565 	 * then there is no further priority adjustment necessary.  If
566 	 * deadlock detection is off, we stop the chain walk. If its
567 	 * enabled we continue, but stop the requeueing in the chain
568 	 * walk.
569 	 */
570 	if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
571 		if (!detect_deadlock)
572 			goto out_unlock_pi;
573 		else
574 			requeue = false;
575 	}
576 
577 	/*
578 	 * [4] Get the next lock
579 	 */
580 	lock = waiter->lock;
581 	/*
582 	 * [5] We need to trylock here as we are holding task->pi_lock,
583 	 * which is the reverse lock order versus the other rtmutex
584 	 * operations.
585 	 */
586 	if (!raw_spin_trylock(&lock->wait_lock)) {
587 		raw_spin_unlock_irq(&task->pi_lock);
588 		cpu_relax();
589 		goto retry;
590 	}
591 
592 	/*
593 	 * [6] check_exit_conditions_2() protected by task->pi_lock and
594 	 * lock->wait_lock.
595 	 *
596 	 * Deadlock detection. If the lock is the same as the original
597 	 * lock which caused us to walk the lock chain or if the
598 	 * current lock is owned by the task which initiated the chain
599 	 * walk, we detected a deadlock.
600 	 */
601 	if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
602 		debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
603 		raw_spin_unlock(&lock->wait_lock);
604 		ret = -EDEADLK;
605 		goto out_unlock_pi;
606 	}
607 
608 	/*
609 	 * If we just follow the lock chain for deadlock detection, no
610 	 * need to do all the requeue operations. To avoid a truckload
611 	 * of conditionals around the various places below, just do the
612 	 * minimum chain walk checks.
613 	 */
614 	if (!requeue) {
615 		/*
616 		 * No requeue[7] here. Just release @task [8]
617 		 */
618 		raw_spin_unlock(&task->pi_lock);
619 		put_task_struct(task);
620 
621 		/*
622 		 * [9] check_exit_conditions_3 protected by lock->wait_lock.
623 		 * If there is no owner of the lock, end of chain.
624 		 */
625 		if (!rt_mutex_owner(lock)) {
626 			raw_spin_unlock_irq(&lock->wait_lock);
627 			return 0;
628 		}
629 
630 		/* [10] Grab the next task, i.e. owner of @lock */
631 		task = rt_mutex_owner(lock);
632 		get_task_struct(task);
633 		raw_spin_lock(&task->pi_lock);
634 
635 		/*
636 		 * No requeue [11] here. We just do deadlock detection.
637 		 *
638 		 * [12] Store whether owner is blocked
639 		 * itself. Decision is made after dropping the locks
640 		 */
641 		next_lock = task_blocked_on_lock(task);
642 		/*
643 		 * Get the top waiter for the next iteration
644 		 */
645 		top_waiter = rt_mutex_top_waiter(lock);
646 
647 		/* [13] Drop locks */
648 		raw_spin_unlock(&task->pi_lock);
649 		raw_spin_unlock_irq(&lock->wait_lock);
650 
651 		/* If owner is not blocked, end of chain. */
652 		if (!next_lock)
653 			goto out_put_task;
654 		goto again;
655 	}
656 
657 	/*
658 	 * Store the current top waiter before doing the requeue
659 	 * operation on @lock. We need it for the boost/deboost
660 	 * decision below.
661 	 */
662 	prerequeue_top_waiter = rt_mutex_top_waiter(lock);
663 
664 	/* [7] Requeue the waiter in the lock waiter tree. */
665 	rt_mutex_dequeue(lock, waiter);
666 
667 	/*
668 	 * Update the waiter prio fields now that we're dequeued.
669 	 *
670 	 * These values can have changed through either:
671 	 *
672 	 *   sys_sched_set_scheduler() / sys_sched_setattr()
673 	 *
674 	 * or
675 	 *
676 	 *   DL CBS enforcement advancing the effective deadline.
677 	 *
678 	 * Even though pi_waiters also uses these fields, and that tree is only
679 	 * updated in [11], we can do this here, since we hold [L], which
680 	 * serializes all pi_waiters access and rb_erase() does not care about
681 	 * the values of the node being removed.
682 	 */
683 	waiter->prio = task->prio;
684 	waiter->deadline = task->dl.deadline;
685 
686 	rt_mutex_enqueue(lock, waiter);
687 
688 	/* [8] Release the task */
689 	raw_spin_unlock(&task->pi_lock);
690 	put_task_struct(task);
691 
692 	/*
693 	 * [9] check_exit_conditions_3 protected by lock->wait_lock.
694 	 *
695 	 * We must abort the chain walk if there is no lock owner even
696 	 * in the dead lock detection case, as we have nothing to
697 	 * follow here. This is the end of the chain we are walking.
698 	 */
699 	if (!rt_mutex_owner(lock)) {
700 		/*
701 		 * If the requeue [7] above changed the top waiter,
702 		 * then we need to wake the new top waiter up to try
703 		 * to get the lock.
704 		 */
705 		if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
706 			wake_up_process(rt_mutex_top_waiter(lock)->task);
707 		raw_spin_unlock_irq(&lock->wait_lock);
708 		return 0;
709 	}
710 
711 	/* [10] Grab the next task, i.e. the owner of @lock */
712 	task = rt_mutex_owner(lock);
713 	get_task_struct(task);
714 	raw_spin_lock(&task->pi_lock);
715 
716 	/* [11] requeue the pi waiters if necessary */
717 	if (waiter == rt_mutex_top_waiter(lock)) {
718 		/*
719 		 * The waiter became the new top (highest priority)
720 		 * waiter on the lock. Replace the previous top waiter
721 		 * in the owner tasks pi waiters tree with this waiter
722 		 * and adjust the priority of the owner.
723 		 */
724 		rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
725 		rt_mutex_enqueue_pi(task, waiter);
726 		rt_mutex_adjust_prio(task);
727 
728 	} else if (prerequeue_top_waiter == waiter) {
729 		/*
730 		 * The waiter was the top waiter on the lock, but is
731 		 * no longer the top prority waiter. Replace waiter in
732 		 * the owner tasks pi waiters tree with the new top
733 		 * (highest priority) waiter and adjust the priority
734 		 * of the owner.
735 		 * The new top waiter is stored in @waiter so that
736 		 * @waiter == @top_waiter evaluates to true below and
737 		 * we continue to deboost the rest of the chain.
738 		 */
739 		rt_mutex_dequeue_pi(task, waiter);
740 		waiter = rt_mutex_top_waiter(lock);
741 		rt_mutex_enqueue_pi(task, waiter);
742 		rt_mutex_adjust_prio(task);
743 	} else {
744 		/*
745 		 * Nothing changed. No need to do any priority
746 		 * adjustment.
747 		 */
748 	}
749 
750 	/*
751 	 * [12] check_exit_conditions_4() protected by task->pi_lock
752 	 * and lock->wait_lock. The actual decisions are made after we
753 	 * dropped the locks.
754 	 *
755 	 * Check whether the task which owns the current lock is pi
756 	 * blocked itself. If yes we store a pointer to the lock for
757 	 * the lock chain change detection above. After we dropped
758 	 * task->pi_lock next_lock cannot be dereferenced anymore.
759 	 */
760 	next_lock = task_blocked_on_lock(task);
761 	/*
762 	 * Store the top waiter of @lock for the end of chain walk
763 	 * decision below.
764 	 */
765 	top_waiter = rt_mutex_top_waiter(lock);
766 
767 	/* [13] Drop the locks */
768 	raw_spin_unlock(&task->pi_lock);
769 	raw_spin_unlock_irq(&lock->wait_lock);
770 
771 	/*
772 	 * Make the actual exit decisions [12], based on the stored
773 	 * values.
774 	 *
775 	 * We reached the end of the lock chain. Stop right here. No
776 	 * point to go back just to figure that out.
777 	 */
778 	if (!next_lock)
779 		goto out_put_task;
780 
781 	/*
782 	 * If the current waiter is not the top waiter on the lock,
783 	 * then we can stop the chain walk here if we are not in full
784 	 * deadlock detection mode.
785 	 */
786 	if (!detect_deadlock && waiter != top_waiter)
787 		goto out_put_task;
788 
789 	goto again;
790 
791  out_unlock_pi:
792 	raw_spin_unlock_irq(&task->pi_lock);
793  out_put_task:
794 	put_task_struct(task);
795 
796 	return ret;
797 }
798 
799 /*
800  * Try to take an rt-mutex
801  *
802  * Must be called with lock->wait_lock held and interrupts disabled
803  *
804  * @lock:   The lock to be acquired.
805  * @task:   The task which wants to acquire the lock
806  * @waiter: The waiter that is queued to the lock's wait tree if the
807  *	    callsite called task_blocked_on_lock(), otherwise NULL
808  */
809 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
810 				struct rt_mutex_waiter *waiter)
811 {
812 	lockdep_assert_held(&lock->wait_lock);
813 
814 	/*
815 	 * Before testing whether we can acquire @lock, we set the
816 	 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
817 	 * other tasks which try to modify @lock into the slow path
818 	 * and they serialize on @lock->wait_lock.
819 	 *
820 	 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
821 	 * as explained at the top of this file if and only if:
822 	 *
823 	 * - There is a lock owner. The caller must fixup the
824 	 *   transient state if it does a trylock or leaves the lock
825 	 *   function due to a signal or timeout.
826 	 *
827 	 * - @task acquires the lock and there are no other
828 	 *   waiters. This is undone in rt_mutex_set_owner(@task) at
829 	 *   the end of this function.
830 	 */
831 	mark_rt_mutex_waiters(lock);
832 
833 	/*
834 	 * If @lock has an owner, give up.
835 	 */
836 	if (rt_mutex_owner(lock))
837 		return 0;
838 
839 	/*
840 	 * If @waiter != NULL, @task has already enqueued the waiter
841 	 * into @lock waiter tree. If @waiter == NULL then this is a
842 	 * trylock attempt.
843 	 */
844 	if (waiter) {
845 		/*
846 		 * If waiter is not the highest priority waiter of
847 		 * @lock, give up.
848 		 */
849 		if (waiter != rt_mutex_top_waiter(lock))
850 			return 0;
851 
852 		/*
853 		 * We can acquire the lock. Remove the waiter from the
854 		 * lock waiters tree.
855 		 */
856 		rt_mutex_dequeue(lock, waiter);
857 
858 	} else {
859 		/*
860 		 * If the lock has waiters already we check whether @task is
861 		 * eligible to take over the lock.
862 		 *
863 		 * If there are no other waiters, @task can acquire
864 		 * the lock.  @task->pi_blocked_on is NULL, so it does
865 		 * not need to be dequeued.
866 		 */
867 		if (rt_mutex_has_waiters(lock)) {
868 			/*
869 			 * If @task->prio is greater than or equal to
870 			 * the top waiter priority (kernel view),
871 			 * @task lost.
872 			 */
873 			if (!rt_mutex_waiter_less(task_to_waiter(task),
874 						  rt_mutex_top_waiter(lock)))
875 				return 0;
876 
877 			/*
878 			 * The current top waiter stays enqueued. We
879 			 * don't have to change anything in the lock
880 			 * waiters order.
881 			 */
882 		} else {
883 			/*
884 			 * No waiters. Take the lock without the
885 			 * pi_lock dance.@task->pi_blocked_on is NULL
886 			 * and we have no waiters to enqueue in @task
887 			 * pi waiters tree.
888 			 */
889 			goto takeit;
890 		}
891 	}
892 
893 	/*
894 	 * Clear @task->pi_blocked_on. Requires protection by
895 	 * @task->pi_lock. Redundant operation for the @waiter == NULL
896 	 * case, but conditionals are more expensive than a redundant
897 	 * store.
898 	 */
899 	raw_spin_lock(&task->pi_lock);
900 	task->pi_blocked_on = NULL;
901 	/*
902 	 * Finish the lock acquisition. @task is the new owner. If
903 	 * other waiters exist we have to insert the highest priority
904 	 * waiter into @task->pi_waiters tree.
905 	 */
906 	if (rt_mutex_has_waiters(lock))
907 		rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
908 	raw_spin_unlock(&task->pi_lock);
909 
910 takeit:
911 	/* We got the lock. */
912 	debug_rt_mutex_lock(lock);
913 
914 	/*
915 	 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
916 	 * are still waiters or clears it.
917 	 */
918 	rt_mutex_set_owner(lock, task);
919 
920 	return 1;
921 }
922 
923 /*
924  * Task blocks on lock.
925  *
926  * Prepare waiter and propagate pi chain
927  *
928  * This must be called with lock->wait_lock held and interrupts disabled
929  */
930 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
931 				   struct rt_mutex_waiter *waiter,
932 				   struct task_struct *task,
933 				   enum rtmutex_chainwalk chwalk)
934 {
935 	struct task_struct *owner = rt_mutex_owner(lock);
936 	struct rt_mutex_waiter *top_waiter = waiter;
937 	struct rt_mutex *next_lock;
938 	int chain_walk = 0, res;
939 
940 	lockdep_assert_held(&lock->wait_lock);
941 
942 	/*
943 	 * Early deadlock detection. We really don't want the task to
944 	 * enqueue on itself just to untangle the mess later. It's not
945 	 * only an optimization. We drop the locks, so another waiter
946 	 * can come in before the chain walk detects the deadlock. So
947 	 * the other will detect the deadlock and return -EDEADLOCK,
948 	 * which is wrong, as the other waiter is not in a deadlock
949 	 * situation.
950 	 */
951 	if (owner == task)
952 		return -EDEADLK;
953 
954 	raw_spin_lock(&task->pi_lock);
955 	waiter->task = task;
956 	waiter->lock = lock;
957 	waiter->prio = task->prio;
958 	waiter->deadline = task->dl.deadline;
959 
960 	/* Get the top priority waiter on the lock */
961 	if (rt_mutex_has_waiters(lock))
962 		top_waiter = rt_mutex_top_waiter(lock);
963 	rt_mutex_enqueue(lock, waiter);
964 
965 	task->pi_blocked_on = waiter;
966 
967 	raw_spin_unlock(&task->pi_lock);
968 
969 	if (!owner)
970 		return 0;
971 
972 	raw_spin_lock(&owner->pi_lock);
973 	if (waiter == rt_mutex_top_waiter(lock)) {
974 		rt_mutex_dequeue_pi(owner, top_waiter);
975 		rt_mutex_enqueue_pi(owner, waiter);
976 
977 		rt_mutex_adjust_prio(owner);
978 		if (owner->pi_blocked_on)
979 			chain_walk = 1;
980 	} else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
981 		chain_walk = 1;
982 	}
983 
984 	/* Store the lock on which owner is blocked or NULL */
985 	next_lock = task_blocked_on_lock(owner);
986 
987 	raw_spin_unlock(&owner->pi_lock);
988 	/*
989 	 * Even if full deadlock detection is on, if the owner is not
990 	 * blocked itself, we can avoid finding this out in the chain
991 	 * walk.
992 	 */
993 	if (!chain_walk || !next_lock)
994 		return 0;
995 
996 	/*
997 	 * The owner can't disappear while holding a lock,
998 	 * so the owner struct is protected by wait_lock.
999 	 * Gets dropped in rt_mutex_adjust_prio_chain()!
1000 	 */
1001 	get_task_struct(owner);
1002 
1003 	raw_spin_unlock_irq(&lock->wait_lock);
1004 
1005 	res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1006 					 next_lock, waiter, task);
1007 
1008 	raw_spin_lock_irq(&lock->wait_lock);
1009 
1010 	return res;
1011 }
1012 
1013 /*
1014  * Remove the top waiter from the current tasks pi waiter tree and
1015  * queue it up.
1016  *
1017  * Called with lock->wait_lock held and interrupts disabled.
1018  */
1019 static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
1020 				    struct rt_mutex *lock)
1021 {
1022 	struct rt_mutex_waiter *waiter;
1023 
1024 	raw_spin_lock(&current->pi_lock);
1025 
1026 	waiter = rt_mutex_top_waiter(lock);
1027 
1028 	/*
1029 	 * Remove it from current->pi_waiters and deboost.
1030 	 *
1031 	 * We must in fact deboost here in order to ensure we call
1032 	 * rt_mutex_setprio() to update p->pi_top_task before the
1033 	 * task unblocks.
1034 	 */
1035 	rt_mutex_dequeue_pi(current, waiter);
1036 	rt_mutex_adjust_prio(current);
1037 
1038 	/*
1039 	 * As we are waking up the top waiter, and the waiter stays
1040 	 * queued on the lock until it gets the lock, this lock
1041 	 * obviously has waiters. Just set the bit here and this has
1042 	 * the added benefit of forcing all new tasks into the
1043 	 * slow path making sure no task of lower priority than
1044 	 * the top waiter can steal this lock.
1045 	 */
1046 	lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1047 
1048 	/*
1049 	 * We deboosted before waking the top waiter task such that we don't
1050 	 * run two tasks with the 'same' priority (and ensure the
1051 	 * p->pi_top_task pointer points to a blocked task). This however can
1052 	 * lead to priority inversion if we would get preempted after the
1053 	 * deboost but before waking our donor task, hence the preempt_disable()
1054 	 * before unlock.
1055 	 *
1056 	 * Pairs with preempt_enable() in rt_mutex_postunlock();
1057 	 */
1058 	preempt_disable();
1059 	wake_q_add(wake_q, waiter->task);
1060 	raw_spin_unlock(&current->pi_lock);
1061 }
1062 
1063 /*
1064  * Remove a waiter from a lock and give up
1065  *
1066  * Must be called with lock->wait_lock held and interrupts disabled. I must
1067  * have just failed to try_to_take_rt_mutex().
1068  */
1069 static void remove_waiter(struct rt_mutex *lock,
1070 			  struct rt_mutex_waiter *waiter)
1071 {
1072 	bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1073 	struct task_struct *owner = rt_mutex_owner(lock);
1074 	struct rt_mutex *next_lock;
1075 
1076 	lockdep_assert_held(&lock->wait_lock);
1077 
1078 	raw_spin_lock(&current->pi_lock);
1079 	rt_mutex_dequeue(lock, waiter);
1080 	current->pi_blocked_on = NULL;
1081 	raw_spin_unlock(&current->pi_lock);
1082 
1083 	/*
1084 	 * Only update priority if the waiter was the highest priority
1085 	 * waiter of the lock and there is an owner to update.
1086 	 */
1087 	if (!owner || !is_top_waiter)
1088 		return;
1089 
1090 	raw_spin_lock(&owner->pi_lock);
1091 
1092 	rt_mutex_dequeue_pi(owner, waiter);
1093 
1094 	if (rt_mutex_has_waiters(lock))
1095 		rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1096 
1097 	rt_mutex_adjust_prio(owner);
1098 
1099 	/* Store the lock on which owner is blocked or NULL */
1100 	next_lock = task_blocked_on_lock(owner);
1101 
1102 	raw_spin_unlock(&owner->pi_lock);
1103 
1104 	/*
1105 	 * Don't walk the chain, if the owner task is not blocked
1106 	 * itself.
1107 	 */
1108 	if (!next_lock)
1109 		return;
1110 
1111 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1112 	get_task_struct(owner);
1113 
1114 	raw_spin_unlock_irq(&lock->wait_lock);
1115 
1116 	rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1117 				   next_lock, NULL, current);
1118 
1119 	raw_spin_lock_irq(&lock->wait_lock);
1120 }
1121 
1122 /*
1123  * Recheck the pi chain, in case we got a priority setting
1124  *
1125  * Called from sched_setscheduler
1126  */
1127 void rt_mutex_adjust_pi(struct task_struct *task)
1128 {
1129 	struct rt_mutex_waiter *waiter;
1130 	struct rt_mutex *next_lock;
1131 	unsigned long flags;
1132 
1133 	raw_spin_lock_irqsave(&task->pi_lock, flags);
1134 
1135 	waiter = task->pi_blocked_on;
1136 	if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
1137 		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1138 		return;
1139 	}
1140 	next_lock = waiter->lock;
1141 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1142 
1143 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1144 	get_task_struct(task);
1145 
1146 	rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1147 				   next_lock, NULL, task);
1148 }
1149 
1150 void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter)
1151 {
1152 	debug_rt_mutex_init_waiter(waiter);
1153 	RB_CLEAR_NODE(&waiter->pi_tree_entry);
1154 	RB_CLEAR_NODE(&waiter->tree_entry);
1155 	waiter->task = NULL;
1156 }
1157 
1158 /**
1159  * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1160  * @lock:		 the rt_mutex to take
1161  * @state:		 the state the task should block in (TASK_INTERRUPTIBLE
1162  *			 or TASK_UNINTERRUPTIBLE)
1163  * @timeout:		 the pre-initialized and started timer, or NULL for none
1164  * @waiter:		 the pre-initialized rt_mutex_waiter
1165  *
1166  * Must be called with lock->wait_lock held and interrupts disabled
1167  */
1168 static int __sched
1169 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
1170 		    struct hrtimer_sleeper *timeout,
1171 		    struct rt_mutex_waiter *waiter)
1172 {
1173 	int ret = 0;
1174 
1175 	for (;;) {
1176 		/* Try to acquire the lock: */
1177 		if (try_to_take_rt_mutex(lock, current, waiter))
1178 			break;
1179 
1180 		/*
1181 		 * TASK_INTERRUPTIBLE checks for signals and
1182 		 * timeout. Ignored otherwise.
1183 		 */
1184 		if (likely(state == TASK_INTERRUPTIBLE)) {
1185 			/* Signal pending? */
1186 			if (signal_pending(current))
1187 				ret = -EINTR;
1188 			if (timeout && !timeout->task)
1189 				ret = -ETIMEDOUT;
1190 			if (ret)
1191 				break;
1192 		}
1193 
1194 		raw_spin_unlock_irq(&lock->wait_lock);
1195 
1196 		debug_rt_mutex_print_deadlock(waiter);
1197 
1198 		schedule();
1199 
1200 		raw_spin_lock_irq(&lock->wait_lock);
1201 		set_current_state(state);
1202 	}
1203 
1204 	__set_current_state(TASK_RUNNING);
1205 	return ret;
1206 }
1207 
1208 static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1209 				     struct rt_mutex_waiter *w)
1210 {
1211 	/*
1212 	 * If the result is not -EDEADLOCK or the caller requested
1213 	 * deadlock detection, nothing to do here.
1214 	 */
1215 	if (res != -EDEADLOCK || detect_deadlock)
1216 		return;
1217 
1218 	/*
1219 	 * Yell lowdly and stop the task right here.
1220 	 */
1221 	rt_mutex_print_deadlock(w);
1222 	while (1) {
1223 		set_current_state(TASK_INTERRUPTIBLE);
1224 		schedule();
1225 	}
1226 }
1227 
1228 /*
1229  * Slow path lock function:
1230  */
1231 static int __sched
1232 rt_mutex_slowlock(struct rt_mutex *lock, int state,
1233 		  struct hrtimer_sleeper *timeout,
1234 		  enum rtmutex_chainwalk chwalk)
1235 {
1236 	struct rt_mutex_waiter waiter;
1237 	unsigned long flags;
1238 	int ret = 0;
1239 
1240 	rt_mutex_init_waiter(&waiter);
1241 
1242 	/*
1243 	 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1244 	 * be called in early boot if the cmpxchg() fast path is disabled
1245 	 * (debug, no architecture support). In this case we will acquire the
1246 	 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1247 	 * enable interrupts in that early boot case. So we need to use the
1248 	 * irqsave/restore variants.
1249 	 */
1250 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1251 
1252 	/* Try to acquire the lock again: */
1253 	if (try_to_take_rt_mutex(lock, current, NULL)) {
1254 		raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1255 		return 0;
1256 	}
1257 
1258 	set_current_state(state);
1259 
1260 	/* Setup the timer, when timeout != NULL */
1261 	if (unlikely(timeout))
1262 		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1263 
1264 	ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1265 
1266 	if (likely(!ret))
1267 		/* sleep on the mutex */
1268 		ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1269 
1270 	if (unlikely(ret)) {
1271 		__set_current_state(TASK_RUNNING);
1272 		remove_waiter(lock, &waiter);
1273 		rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1274 	}
1275 
1276 	/*
1277 	 * try_to_take_rt_mutex() sets the waiter bit
1278 	 * unconditionally. We might have to fix that up.
1279 	 */
1280 	fixup_rt_mutex_waiters(lock);
1281 
1282 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1283 
1284 	/* Remove pending timer: */
1285 	if (unlikely(timeout))
1286 		hrtimer_cancel(&timeout->timer);
1287 
1288 	debug_rt_mutex_free_waiter(&waiter);
1289 
1290 	return ret;
1291 }
1292 
1293 static inline int __rt_mutex_slowtrylock(struct rt_mutex *lock)
1294 {
1295 	int ret = try_to_take_rt_mutex(lock, current, NULL);
1296 
1297 	/*
1298 	 * try_to_take_rt_mutex() sets the lock waiters bit
1299 	 * unconditionally. Clean this up.
1300 	 */
1301 	fixup_rt_mutex_waiters(lock);
1302 
1303 	return ret;
1304 }
1305 
1306 /*
1307  * Slow path try-lock function:
1308  */
1309 static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1310 {
1311 	unsigned long flags;
1312 	int ret;
1313 
1314 	/*
1315 	 * If the lock already has an owner we fail to get the lock.
1316 	 * This can be done without taking the @lock->wait_lock as
1317 	 * it is only being read, and this is a trylock anyway.
1318 	 */
1319 	if (rt_mutex_owner(lock))
1320 		return 0;
1321 
1322 	/*
1323 	 * The mutex has currently no owner. Lock the wait lock and try to
1324 	 * acquire the lock. We use irqsave here to support early boot calls.
1325 	 */
1326 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1327 
1328 	ret = __rt_mutex_slowtrylock(lock);
1329 
1330 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1331 
1332 	return ret;
1333 }
1334 
1335 /*
1336  * Slow path to release a rt-mutex.
1337  *
1338  * Return whether the current task needs to call rt_mutex_postunlock().
1339  */
1340 static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1341 					struct wake_q_head *wake_q)
1342 {
1343 	unsigned long flags;
1344 
1345 	/* irqsave required to support early boot calls */
1346 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1347 
1348 	debug_rt_mutex_unlock(lock);
1349 
1350 	/*
1351 	 * We must be careful here if the fast path is enabled. If we
1352 	 * have no waiters queued we cannot set owner to NULL here
1353 	 * because of:
1354 	 *
1355 	 * foo->lock->owner = NULL;
1356 	 *			rtmutex_lock(foo->lock);   <- fast path
1357 	 *			free = atomic_dec_and_test(foo->refcnt);
1358 	 *			rtmutex_unlock(foo->lock); <- fast path
1359 	 *			if (free)
1360 	 *				kfree(foo);
1361 	 * raw_spin_unlock(foo->lock->wait_lock);
1362 	 *
1363 	 * So for the fastpath enabled kernel:
1364 	 *
1365 	 * Nothing can set the waiters bit as long as we hold
1366 	 * lock->wait_lock. So we do the following sequence:
1367 	 *
1368 	 *	owner = rt_mutex_owner(lock);
1369 	 *	clear_rt_mutex_waiters(lock);
1370 	 *	raw_spin_unlock(&lock->wait_lock);
1371 	 *	if (cmpxchg(&lock->owner, owner, 0) == owner)
1372 	 *		return;
1373 	 *	goto retry;
1374 	 *
1375 	 * The fastpath disabled variant is simple as all access to
1376 	 * lock->owner is serialized by lock->wait_lock:
1377 	 *
1378 	 *	lock->owner = NULL;
1379 	 *	raw_spin_unlock(&lock->wait_lock);
1380 	 */
1381 	while (!rt_mutex_has_waiters(lock)) {
1382 		/* Drops lock->wait_lock ! */
1383 		if (unlock_rt_mutex_safe(lock, flags) == true)
1384 			return false;
1385 		/* Relock the rtmutex and try again */
1386 		raw_spin_lock_irqsave(&lock->wait_lock, flags);
1387 	}
1388 
1389 	/*
1390 	 * The wakeup next waiter path does not suffer from the above
1391 	 * race. See the comments there.
1392 	 *
1393 	 * Queue the next waiter for wakeup once we release the wait_lock.
1394 	 */
1395 	mark_wakeup_next_waiter(wake_q, lock);
1396 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1397 
1398 	return true; /* call rt_mutex_postunlock() */
1399 }
1400 
1401 /*
1402  * debug aware fast / slowpath lock,trylock,unlock
1403  *
1404  * The atomic acquire/release ops are compiled away, when either the
1405  * architecture does not support cmpxchg or when debugging is enabled.
1406  */
1407 static inline int
1408 rt_mutex_fastlock(struct rt_mutex *lock, int state,
1409 		  int (*slowfn)(struct rt_mutex *lock, int state,
1410 				struct hrtimer_sleeper *timeout,
1411 				enum rtmutex_chainwalk chwalk))
1412 {
1413 	if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1414 		return 0;
1415 
1416 	return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1417 }
1418 
1419 static inline int
1420 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1421 			struct hrtimer_sleeper *timeout,
1422 			enum rtmutex_chainwalk chwalk,
1423 			int (*slowfn)(struct rt_mutex *lock, int state,
1424 				      struct hrtimer_sleeper *timeout,
1425 				      enum rtmutex_chainwalk chwalk))
1426 {
1427 	if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1428 	    likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1429 		return 0;
1430 
1431 	return slowfn(lock, state, timeout, chwalk);
1432 }
1433 
1434 static inline int
1435 rt_mutex_fasttrylock(struct rt_mutex *lock,
1436 		     int (*slowfn)(struct rt_mutex *lock))
1437 {
1438 	if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1439 		return 1;
1440 
1441 	return slowfn(lock);
1442 }
1443 
1444 /*
1445  * Performs the wakeup of the the top-waiter and re-enables preemption.
1446  */
1447 void rt_mutex_postunlock(struct wake_q_head *wake_q)
1448 {
1449 	wake_up_q(wake_q);
1450 
1451 	/* Pairs with preempt_disable() in rt_mutex_slowunlock() */
1452 	preempt_enable();
1453 }
1454 
1455 static inline void
1456 rt_mutex_fastunlock(struct rt_mutex *lock,
1457 		    bool (*slowfn)(struct rt_mutex *lock,
1458 				   struct wake_q_head *wqh))
1459 {
1460 	DEFINE_WAKE_Q(wake_q);
1461 
1462 	if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1463 		return;
1464 
1465 	if (slowfn(lock, &wake_q))
1466 		rt_mutex_postunlock(&wake_q);
1467 }
1468 
1469 static inline void __rt_mutex_lock(struct rt_mutex *lock, unsigned int subclass)
1470 {
1471 	might_sleep();
1472 
1473 	mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_);
1474 	rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1475 }
1476 
1477 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1478 /**
1479  * rt_mutex_lock_nested - lock a rt_mutex
1480  *
1481  * @lock: the rt_mutex to be locked
1482  * @subclass: the lockdep subclass
1483  */
1484 void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass)
1485 {
1486 	__rt_mutex_lock(lock, subclass);
1487 }
1488 EXPORT_SYMBOL_GPL(rt_mutex_lock_nested);
1489 
1490 #else /* !CONFIG_DEBUG_LOCK_ALLOC */
1491 
1492 /**
1493  * rt_mutex_lock - lock a rt_mutex
1494  *
1495  * @lock: the rt_mutex to be locked
1496  */
1497 void __sched rt_mutex_lock(struct rt_mutex *lock)
1498 {
1499 	__rt_mutex_lock(lock, 0);
1500 }
1501 EXPORT_SYMBOL_GPL(rt_mutex_lock);
1502 #endif
1503 
1504 /**
1505  * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1506  *
1507  * @lock:		the rt_mutex to be locked
1508  *
1509  * Returns:
1510  *  0		on success
1511  * -EINTR	when interrupted by a signal
1512  */
1513 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1514 {
1515 	int ret;
1516 
1517 	might_sleep();
1518 
1519 	mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1520 	ret = rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1521 	if (ret)
1522 		mutex_release(&lock->dep_map, 1, _RET_IP_);
1523 
1524 	return ret;
1525 }
1526 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1527 
1528 /*
1529  * Futex variant, must not use fastpath.
1530  */
1531 int __sched rt_mutex_futex_trylock(struct rt_mutex *lock)
1532 {
1533 	return rt_mutex_slowtrylock(lock);
1534 }
1535 
1536 int __sched __rt_mutex_futex_trylock(struct rt_mutex *lock)
1537 {
1538 	return __rt_mutex_slowtrylock(lock);
1539 }
1540 
1541 /**
1542  * rt_mutex_timed_lock - lock a rt_mutex interruptible
1543  *			the timeout structure is provided
1544  *			by the caller
1545  *
1546  * @lock:		the rt_mutex to be locked
1547  * @timeout:		timeout structure or NULL (no timeout)
1548  *
1549  * Returns:
1550  *  0		on success
1551  * -EINTR	when interrupted by a signal
1552  * -ETIMEDOUT	when the timeout expired
1553  */
1554 int
1555 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1556 {
1557 	int ret;
1558 
1559 	might_sleep();
1560 
1561 	mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1562 	ret = rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1563 				       RT_MUTEX_MIN_CHAINWALK,
1564 				       rt_mutex_slowlock);
1565 	if (ret)
1566 		mutex_release(&lock->dep_map, 1, _RET_IP_);
1567 
1568 	return ret;
1569 }
1570 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1571 
1572 /**
1573  * rt_mutex_trylock - try to lock a rt_mutex
1574  *
1575  * @lock:	the rt_mutex to be locked
1576  *
1577  * This function can only be called in thread context. It's safe to
1578  * call it from atomic regions, but not from hard interrupt or soft
1579  * interrupt context.
1580  *
1581  * Returns 1 on success and 0 on contention
1582  */
1583 int __sched rt_mutex_trylock(struct rt_mutex *lock)
1584 {
1585 	int ret;
1586 
1587 	if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq()))
1588 		return 0;
1589 
1590 	ret = rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1591 	if (ret)
1592 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1593 
1594 	return ret;
1595 }
1596 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1597 
1598 /**
1599  * rt_mutex_unlock - unlock a rt_mutex
1600  *
1601  * @lock: the rt_mutex to be unlocked
1602  */
1603 void __sched rt_mutex_unlock(struct rt_mutex *lock)
1604 {
1605 	mutex_release(&lock->dep_map, 1, _RET_IP_);
1606 	rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1607 }
1608 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1609 
1610 /**
1611  * Futex variant, that since futex variants do not use the fast-path, can be
1612  * simple and will not need to retry.
1613  */
1614 bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock,
1615 				    struct wake_q_head *wake_q)
1616 {
1617 	lockdep_assert_held(&lock->wait_lock);
1618 
1619 	debug_rt_mutex_unlock(lock);
1620 
1621 	if (!rt_mutex_has_waiters(lock)) {
1622 		lock->owner = NULL;
1623 		return false; /* done */
1624 	}
1625 
1626 	/*
1627 	 * We've already deboosted, mark_wakeup_next_waiter() will
1628 	 * retain preempt_disabled when we drop the wait_lock, to
1629 	 * avoid inversion prior to the wakeup.  preempt_disable()
1630 	 * therein pairs with rt_mutex_postunlock().
1631 	 */
1632 	mark_wakeup_next_waiter(wake_q, lock);
1633 
1634 	return true; /* call postunlock() */
1635 }
1636 
1637 void __sched rt_mutex_futex_unlock(struct rt_mutex *lock)
1638 {
1639 	DEFINE_WAKE_Q(wake_q);
1640 	unsigned long flags;
1641 	bool postunlock;
1642 
1643 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1644 	postunlock = __rt_mutex_futex_unlock(lock, &wake_q);
1645 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1646 
1647 	if (postunlock)
1648 		rt_mutex_postunlock(&wake_q);
1649 }
1650 
1651 /**
1652  * rt_mutex_destroy - mark a mutex unusable
1653  * @lock: the mutex to be destroyed
1654  *
1655  * This function marks the mutex uninitialized, and any subsequent
1656  * use of the mutex is forbidden. The mutex must not be locked when
1657  * this function is called.
1658  */
1659 void rt_mutex_destroy(struct rt_mutex *lock)
1660 {
1661 	WARN_ON(rt_mutex_is_locked(lock));
1662 #ifdef CONFIG_DEBUG_RT_MUTEXES
1663 	lock->magic = NULL;
1664 #endif
1665 }
1666 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1667 
1668 /**
1669  * __rt_mutex_init - initialize the rt lock
1670  *
1671  * @lock: the rt lock to be initialized
1672  *
1673  * Initialize the rt lock to unlocked state.
1674  *
1675  * Initializing of a locked rt lock is not allowed
1676  */
1677 void __rt_mutex_init(struct rt_mutex *lock, const char *name,
1678 		     struct lock_class_key *key)
1679 {
1680 	lock->owner = NULL;
1681 	raw_spin_lock_init(&lock->wait_lock);
1682 	lock->waiters = RB_ROOT_CACHED;
1683 
1684 	if (name && key)
1685 		debug_rt_mutex_init(lock, name, key);
1686 }
1687 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1688 
1689 /**
1690  * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1691  *				proxy owner
1692  *
1693  * @lock:	the rt_mutex to be locked
1694  * @proxy_owner:the task to set as owner
1695  *
1696  * No locking. Caller has to do serializing itself
1697  *
1698  * Special API call for PI-futex support. This initializes the rtmutex and
1699  * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
1700  * possible at this point because the pi_state which contains the rtmutex
1701  * is not yet visible to other tasks.
1702  */
1703 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1704 				struct task_struct *proxy_owner)
1705 {
1706 	__rt_mutex_init(lock, NULL, NULL);
1707 	debug_rt_mutex_proxy_lock(lock, proxy_owner);
1708 	rt_mutex_set_owner(lock, proxy_owner);
1709 }
1710 
1711 /**
1712  * rt_mutex_proxy_unlock - release a lock on behalf of owner
1713  *
1714  * @lock:	the rt_mutex to be locked
1715  *
1716  * No locking. Caller has to do serializing itself
1717  *
1718  * Special API call for PI-futex support. This merrily cleans up the rtmutex
1719  * (debugging) state. Concurrent operations on this rt_mutex are not
1720  * possible because it belongs to the pi_state which is about to be freed
1721  * and it is not longer visible to other tasks.
1722  */
1723 void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1724 			   struct task_struct *proxy_owner)
1725 {
1726 	debug_rt_mutex_proxy_unlock(lock);
1727 	rt_mutex_set_owner(lock, NULL);
1728 }
1729 
1730 /**
1731  * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1732  * @lock:		the rt_mutex to take
1733  * @waiter:		the pre-initialized rt_mutex_waiter
1734  * @task:		the task to prepare
1735  *
1736  * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1737  * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1738  *
1739  * NOTE: does _NOT_ remove the @waiter on failure; must either call
1740  * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this.
1741  *
1742  * Returns:
1743  *  0 - task blocked on lock
1744  *  1 - acquired the lock for task, caller should wake it up
1745  * <0 - error
1746  *
1747  * Special API call for PI-futex support.
1748  */
1749 int __rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1750 			      struct rt_mutex_waiter *waiter,
1751 			      struct task_struct *task)
1752 {
1753 	int ret;
1754 
1755 	lockdep_assert_held(&lock->wait_lock);
1756 
1757 	if (try_to_take_rt_mutex(lock, task, NULL))
1758 		return 1;
1759 
1760 	/* We enforce deadlock detection for futexes */
1761 	ret = task_blocks_on_rt_mutex(lock, waiter, task,
1762 				      RT_MUTEX_FULL_CHAINWALK);
1763 
1764 	if (ret && !rt_mutex_owner(lock)) {
1765 		/*
1766 		 * Reset the return value. We might have
1767 		 * returned with -EDEADLK and the owner
1768 		 * released the lock while we were walking the
1769 		 * pi chain.  Let the waiter sort it out.
1770 		 */
1771 		ret = 0;
1772 	}
1773 
1774 	debug_rt_mutex_print_deadlock(waiter);
1775 
1776 	return ret;
1777 }
1778 
1779 /**
1780  * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1781  * @lock:		the rt_mutex to take
1782  * @waiter:		the pre-initialized rt_mutex_waiter
1783  * @task:		the task to prepare
1784  *
1785  * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1786  * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1787  *
1788  * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter
1789  * on failure.
1790  *
1791  * Returns:
1792  *  0 - task blocked on lock
1793  *  1 - acquired the lock for task, caller should wake it up
1794  * <0 - error
1795  *
1796  * Special API call for PI-futex support.
1797  */
1798 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1799 			      struct rt_mutex_waiter *waiter,
1800 			      struct task_struct *task)
1801 {
1802 	int ret;
1803 
1804 	raw_spin_lock_irq(&lock->wait_lock);
1805 	ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
1806 	if (unlikely(ret))
1807 		remove_waiter(lock, waiter);
1808 	raw_spin_unlock_irq(&lock->wait_lock);
1809 
1810 	return ret;
1811 }
1812 
1813 /**
1814  * rt_mutex_next_owner - return the next owner of the lock
1815  *
1816  * @lock: the rt lock query
1817  *
1818  * Returns the next owner of the lock or NULL
1819  *
1820  * Caller has to serialize against other accessors to the lock
1821  * itself.
1822  *
1823  * Special API call for PI-futex support
1824  */
1825 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1826 {
1827 	if (!rt_mutex_has_waiters(lock))
1828 		return NULL;
1829 
1830 	return rt_mutex_top_waiter(lock)->task;
1831 }
1832 
1833 /**
1834  * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
1835  * @lock:		the rt_mutex we were woken on
1836  * @to:			the timeout, null if none. hrtimer should already have
1837  *			been started.
1838  * @waiter:		the pre-initialized rt_mutex_waiter
1839  *
1840  * Wait for the the lock acquisition started on our behalf by
1841  * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
1842  * rt_mutex_cleanup_proxy_lock().
1843  *
1844  * Returns:
1845  *  0 - success
1846  * <0 - error, one of -EINTR, -ETIMEDOUT
1847  *
1848  * Special API call for PI-futex support
1849  */
1850 int rt_mutex_wait_proxy_lock(struct rt_mutex *lock,
1851 			       struct hrtimer_sleeper *to,
1852 			       struct rt_mutex_waiter *waiter)
1853 {
1854 	int ret;
1855 
1856 	raw_spin_lock_irq(&lock->wait_lock);
1857 	/* sleep on the mutex */
1858 	set_current_state(TASK_INTERRUPTIBLE);
1859 	ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1860 	/*
1861 	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1862 	 * have to fix that up.
1863 	 */
1864 	fixup_rt_mutex_waiters(lock);
1865 	raw_spin_unlock_irq(&lock->wait_lock);
1866 
1867 	return ret;
1868 }
1869 
1870 /**
1871  * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
1872  * @lock:		the rt_mutex we were woken on
1873  * @waiter:		the pre-initialized rt_mutex_waiter
1874  *
1875  * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or
1876  * rt_mutex_wait_proxy_lock().
1877  *
1878  * Unless we acquired the lock; we're still enqueued on the wait-list and can
1879  * in fact still be granted ownership until we're removed. Therefore we can
1880  * find we are in fact the owner and must disregard the
1881  * rt_mutex_wait_proxy_lock() failure.
1882  *
1883  * Returns:
1884  *  true  - did the cleanup, we done.
1885  *  false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
1886  *          caller should disregards its return value.
1887  *
1888  * Special API call for PI-futex support
1889  */
1890 bool rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock,
1891 				 struct rt_mutex_waiter *waiter)
1892 {
1893 	bool cleanup = false;
1894 
1895 	raw_spin_lock_irq(&lock->wait_lock);
1896 	/*
1897 	 * Do an unconditional try-lock, this deals with the lock stealing
1898 	 * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
1899 	 * sets a NULL owner.
1900 	 *
1901 	 * We're not interested in the return value, because the subsequent
1902 	 * test on rt_mutex_owner() will infer that. If the trylock succeeded,
1903 	 * we will own the lock and it will have removed the waiter. If we
1904 	 * failed the trylock, we're still not owner and we need to remove
1905 	 * ourselves.
1906 	 */
1907 	try_to_take_rt_mutex(lock, current, waiter);
1908 	/*
1909 	 * Unless we're the owner; we're still enqueued on the wait_list.
1910 	 * So check if we became owner, if not, take us off the wait_list.
1911 	 */
1912 	if (rt_mutex_owner(lock) != current) {
1913 		remove_waiter(lock, waiter);
1914 		cleanup = true;
1915 	}
1916 	/*
1917 	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1918 	 * have to fix that up.
1919 	 */
1920 	fixup_rt_mutex_waiters(lock);
1921 
1922 	raw_spin_unlock_irq(&lock->wait_lock);
1923 
1924 	return cleanup;
1925 }
1926