1 /* 2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support 3 * 4 * started by Ingo Molnar and Thomas Gleixner. 5 * 6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 7 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com> 8 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt 9 * Copyright (C) 2006 Esben Nielsen 10 * 11 * See Documentation/rt-mutex-design.txt for details. 12 */ 13 #include <linux/spinlock.h> 14 #include <linux/export.h> 15 #include <linux/sched.h> 16 #include <linux/sched/rt.h> 17 #include <linux/timer.h> 18 19 #include "rtmutex_common.h" 20 21 /* 22 * lock->owner state tracking: 23 * 24 * lock->owner holds the task_struct pointer of the owner. Bit 0 25 * is used to keep track of the "lock has waiters" state. 26 * 27 * owner bit0 28 * NULL 0 lock is free (fast acquire possible) 29 * NULL 1 lock is free and has waiters and the top waiter 30 * is going to take the lock* 31 * taskpointer 0 lock is held (fast release possible) 32 * taskpointer 1 lock is held and has waiters** 33 * 34 * The fast atomic compare exchange based acquire and release is only 35 * possible when bit 0 of lock->owner is 0. 36 * 37 * (*) It also can be a transitional state when grabbing the lock 38 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock, 39 * we need to set the bit0 before looking at the lock, and the owner may be 40 * NULL in this small time, hence this can be a transitional state. 41 * 42 * (**) There is a small time when bit 0 is set but there are no 43 * waiters. This can happen when grabbing the lock in the slow path. 44 * To prevent a cmpxchg of the owner releasing the lock, we need to 45 * set this bit before looking at the lock. 46 */ 47 48 static void 49 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner) 50 { 51 unsigned long val = (unsigned long)owner; 52 53 if (rt_mutex_has_waiters(lock)) 54 val |= RT_MUTEX_HAS_WAITERS; 55 56 lock->owner = (struct task_struct *)val; 57 } 58 59 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock) 60 { 61 lock->owner = (struct task_struct *) 62 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS); 63 } 64 65 static void fixup_rt_mutex_waiters(struct rt_mutex *lock) 66 { 67 if (!rt_mutex_has_waiters(lock)) 68 clear_rt_mutex_waiters(lock); 69 } 70 71 /* 72 * We can speed up the acquire/release, if the architecture 73 * supports cmpxchg and if there's no debugging state to be set up 74 */ 75 #if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES) 76 # define rt_mutex_cmpxchg(l,c,n) (cmpxchg(&l->owner, c, n) == c) 77 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock) 78 { 79 unsigned long owner, *p = (unsigned long *) &lock->owner; 80 81 do { 82 owner = *p; 83 } while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner); 84 } 85 #else 86 # define rt_mutex_cmpxchg(l,c,n) (0) 87 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock) 88 { 89 lock->owner = (struct task_struct *) 90 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS); 91 } 92 #endif 93 94 /* 95 * Calculate task priority from the waiter list priority 96 * 97 * Return task->normal_prio when the waiter list is empty or when 98 * the waiter is not allowed to do priority boosting 99 */ 100 int rt_mutex_getprio(struct task_struct *task) 101 { 102 if (likely(!task_has_pi_waiters(task))) 103 return task->normal_prio; 104 105 return min(task_top_pi_waiter(task)->pi_list_entry.prio, 106 task->normal_prio); 107 } 108 109 /* 110 * Adjust the priority of a task, after its pi_waiters got modified. 111 * 112 * This can be both boosting and unboosting. task->pi_lock must be held. 113 */ 114 static void __rt_mutex_adjust_prio(struct task_struct *task) 115 { 116 int prio = rt_mutex_getprio(task); 117 118 if (task->prio != prio) 119 rt_mutex_setprio(task, prio); 120 } 121 122 /* 123 * Adjust task priority (undo boosting). Called from the exit path of 124 * rt_mutex_slowunlock() and rt_mutex_slowlock(). 125 * 126 * (Note: We do this outside of the protection of lock->wait_lock to 127 * allow the lock to be taken while or before we readjust the priority 128 * of task. We do not use the spin_xx_mutex() variants here as we are 129 * outside of the debug path.) 130 */ 131 static void rt_mutex_adjust_prio(struct task_struct *task) 132 { 133 unsigned long flags; 134 135 raw_spin_lock_irqsave(&task->pi_lock, flags); 136 __rt_mutex_adjust_prio(task); 137 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 138 } 139 140 /* 141 * Max number of times we'll walk the boosting chain: 142 */ 143 int max_lock_depth = 1024; 144 145 /* 146 * Adjust the priority chain. Also used for deadlock detection. 147 * Decreases task's usage by one - may thus free the task. 148 * 149 * @task: the task owning the mutex (owner) for which a chain walk is probably 150 * needed 151 * @deadlock_detect: do we have to carry out deadlock detection? 152 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck 153 * things for a task that has just got its priority adjusted, and 154 * is waiting on a mutex) 155 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated 156 * its priority to the mutex owner (can be NULL in the case 157 * depicted above or if the top waiter is gone away and we are 158 * actually deboosting the owner) 159 * @top_task: the current top waiter 160 * 161 * Returns 0 or -EDEADLK. 162 */ 163 static int rt_mutex_adjust_prio_chain(struct task_struct *task, 164 int deadlock_detect, 165 struct rt_mutex *orig_lock, 166 struct rt_mutex_waiter *orig_waiter, 167 struct task_struct *top_task) 168 { 169 struct rt_mutex *lock; 170 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter; 171 int detect_deadlock, ret = 0, depth = 0; 172 unsigned long flags; 173 174 detect_deadlock = debug_rt_mutex_detect_deadlock(orig_waiter, 175 deadlock_detect); 176 177 /* 178 * The (de)boosting is a step by step approach with a lot of 179 * pitfalls. We want this to be preemptible and we want hold a 180 * maximum of two locks per step. So we have to check 181 * carefully whether things change under us. 182 */ 183 again: 184 if (++depth > max_lock_depth) { 185 static int prev_max; 186 187 /* 188 * Print this only once. If the admin changes the limit, 189 * print a new message when reaching the limit again. 190 */ 191 if (prev_max != max_lock_depth) { 192 prev_max = max_lock_depth; 193 printk(KERN_WARNING "Maximum lock depth %d reached " 194 "task: %s (%d)\n", max_lock_depth, 195 top_task->comm, task_pid_nr(top_task)); 196 } 197 put_task_struct(task); 198 199 return deadlock_detect ? -EDEADLK : 0; 200 } 201 retry: 202 /* 203 * Task can not go away as we did a get_task() before ! 204 */ 205 raw_spin_lock_irqsave(&task->pi_lock, flags); 206 207 waiter = task->pi_blocked_on; 208 /* 209 * Check whether the end of the boosting chain has been 210 * reached or the state of the chain has changed while we 211 * dropped the locks. 212 */ 213 if (!waiter) 214 goto out_unlock_pi; 215 216 /* 217 * Check the orig_waiter state. After we dropped the locks, 218 * the previous owner of the lock might have released the lock. 219 */ 220 if (orig_waiter && !rt_mutex_owner(orig_lock)) 221 goto out_unlock_pi; 222 223 /* 224 * Drop out, when the task has no waiters. Note, 225 * top_waiter can be NULL, when we are in the deboosting 226 * mode! 227 */ 228 if (top_waiter && (!task_has_pi_waiters(task) || 229 top_waiter != task_top_pi_waiter(task))) 230 goto out_unlock_pi; 231 232 /* 233 * When deadlock detection is off then we check, if further 234 * priority adjustment is necessary. 235 */ 236 if (!detect_deadlock && waiter->list_entry.prio == task->prio) 237 goto out_unlock_pi; 238 239 lock = waiter->lock; 240 if (!raw_spin_trylock(&lock->wait_lock)) { 241 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 242 cpu_relax(); 243 goto retry; 244 } 245 246 /* Deadlock detection */ 247 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) { 248 debug_rt_mutex_deadlock(deadlock_detect, orig_waiter, lock); 249 raw_spin_unlock(&lock->wait_lock); 250 ret = deadlock_detect ? -EDEADLK : 0; 251 goto out_unlock_pi; 252 } 253 254 top_waiter = rt_mutex_top_waiter(lock); 255 256 /* Requeue the waiter */ 257 plist_del(&waiter->list_entry, &lock->wait_list); 258 waiter->list_entry.prio = task->prio; 259 plist_add(&waiter->list_entry, &lock->wait_list); 260 261 /* Release the task */ 262 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 263 if (!rt_mutex_owner(lock)) { 264 /* 265 * If the requeue above changed the top waiter, then we need 266 * to wake the new top waiter up to try to get the lock. 267 */ 268 269 if (top_waiter != rt_mutex_top_waiter(lock)) 270 wake_up_process(rt_mutex_top_waiter(lock)->task); 271 raw_spin_unlock(&lock->wait_lock); 272 goto out_put_task; 273 } 274 put_task_struct(task); 275 276 /* Grab the next task */ 277 task = rt_mutex_owner(lock); 278 get_task_struct(task); 279 raw_spin_lock_irqsave(&task->pi_lock, flags); 280 281 if (waiter == rt_mutex_top_waiter(lock)) { 282 /* Boost the owner */ 283 plist_del(&top_waiter->pi_list_entry, &task->pi_waiters); 284 waiter->pi_list_entry.prio = waiter->list_entry.prio; 285 plist_add(&waiter->pi_list_entry, &task->pi_waiters); 286 __rt_mutex_adjust_prio(task); 287 288 } else if (top_waiter == waiter) { 289 /* Deboost the owner */ 290 plist_del(&waiter->pi_list_entry, &task->pi_waiters); 291 waiter = rt_mutex_top_waiter(lock); 292 waiter->pi_list_entry.prio = waiter->list_entry.prio; 293 plist_add(&waiter->pi_list_entry, &task->pi_waiters); 294 __rt_mutex_adjust_prio(task); 295 } 296 297 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 298 299 top_waiter = rt_mutex_top_waiter(lock); 300 raw_spin_unlock(&lock->wait_lock); 301 302 if (!detect_deadlock && waiter != top_waiter) 303 goto out_put_task; 304 305 goto again; 306 307 out_unlock_pi: 308 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 309 out_put_task: 310 put_task_struct(task); 311 312 return ret; 313 } 314 315 /* 316 * Try to take an rt-mutex 317 * 318 * Must be called with lock->wait_lock held. 319 * 320 * @lock: the lock to be acquired. 321 * @task: the task which wants to acquire the lock 322 * @waiter: the waiter that is queued to the lock's wait list. (could be NULL) 323 */ 324 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task, 325 struct rt_mutex_waiter *waiter) 326 { 327 /* 328 * We have to be careful here if the atomic speedups are 329 * enabled, such that, when 330 * - no other waiter is on the lock 331 * - the lock has been released since we did the cmpxchg 332 * the lock can be released or taken while we are doing the 333 * checks and marking the lock with RT_MUTEX_HAS_WAITERS. 334 * 335 * The atomic acquire/release aware variant of 336 * mark_rt_mutex_waiters uses a cmpxchg loop. After setting 337 * the WAITERS bit, the atomic release / acquire can not 338 * happen anymore and lock->wait_lock protects us from the 339 * non-atomic case. 340 * 341 * Note, that this might set lock->owner = 342 * RT_MUTEX_HAS_WAITERS in the case the lock is not contended 343 * any more. This is fixed up when we take the ownership. 344 * This is the transitional state explained at the top of this file. 345 */ 346 mark_rt_mutex_waiters(lock); 347 348 if (rt_mutex_owner(lock)) 349 return 0; 350 351 /* 352 * It will get the lock because of one of these conditions: 353 * 1) there is no waiter 354 * 2) higher priority than waiters 355 * 3) it is top waiter 356 */ 357 if (rt_mutex_has_waiters(lock)) { 358 if (task->prio >= rt_mutex_top_waiter(lock)->list_entry.prio) { 359 if (!waiter || waiter != rt_mutex_top_waiter(lock)) 360 return 0; 361 } 362 } 363 364 if (waiter || rt_mutex_has_waiters(lock)) { 365 unsigned long flags; 366 struct rt_mutex_waiter *top; 367 368 raw_spin_lock_irqsave(&task->pi_lock, flags); 369 370 /* remove the queued waiter. */ 371 if (waiter) { 372 plist_del(&waiter->list_entry, &lock->wait_list); 373 task->pi_blocked_on = NULL; 374 } 375 376 /* 377 * We have to enqueue the top waiter(if it exists) into 378 * task->pi_waiters list. 379 */ 380 if (rt_mutex_has_waiters(lock)) { 381 top = rt_mutex_top_waiter(lock); 382 top->pi_list_entry.prio = top->list_entry.prio; 383 plist_add(&top->pi_list_entry, &task->pi_waiters); 384 } 385 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 386 } 387 388 /* We got the lock. */ 389 debug_rt_mutex_lock(lock); 390 391 rt_mutex_set_owner(lock, task); 392 393 rt_mutex_deadlock_account_lock(lock, task); 394 395 return 1; 396 } 397 398 /* 399 * Task blocks on lock. 400 * 401 * Prepare waiter and propagate pi chain 402 * 403 * This must be called with lock->wait_lock held. 404 */ 405 static int task_blocks_on_rt_mutex(struct rt_mutex *lock, 406 struct rt_mutex_waiter *waiter, 407 struct task_struct *task, 408 int detect_deadlock) 409 { 410 struct task_struct *owner = rt_mutex_owner(lock); 411 struct rt_mutex_waiter *top_waiter = waiter; 412 unsigned long flags; 413 int chain_walk = 0, res; 414 415 raw_spin_lock_irqsave(&task->pi_lock, flags); 416 __rt_mutex_adjust_prio(task); 417 waiter->task = task; 418 waiter->lock = lock; 419 plist_node_init(&waiter->list_entry, task->prio); 420 plist_node_init(&waiter->pi_list_entry, task->prio); 421 422 /* Get the top priority waiter on the lock */ 423 if (rt_mutex_has_waiters(lock)) 424 top_waiter = rt_mutex_top_waiter(lock); 425 plist_add(&waiter->list_entry, &lock->wait_list); 426 427 task->pi_blocked_on = waiter; 428 429 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 430 431 if (!owner) 432 return 0; 433 434 if (waiter == rt_mutex_top_waiter(lock)) { 435 raw_spin_lock_irqsave(&owner->pi_lock, flags); 436 plist_del(&top_waiter->pi_list_entry, &owner->pi_waiters); 437 plist_add(&waiter->pi_list_entry, &owner->pi_waiters); 438 439 __rt_mutex_adjust_prio(owner); 440 if (owner->pi_blocked_on) 441 chain_walk = 1; 442 raw_spin_unlock_irqrestore(&owner->pi_lock, flags); 443 } 444 else if (debug_rt_mutex_detect_deadlock(waiter, detect_deadlock)) 445 chain_walk = 1; 446 447 if (!chain_walk) 448 return 0; 449 450 /* 451 * The owner can't disappear while holding a lock, 452 * so the owner struct is protected by wait_lock. 453 * Gets dropped in rt_mutex_adjust_prio_chain()! 454 */ 455 get_task_struct(owner); 456 457 raw_spin_unlock(&lock->wait_lock); 458 459 res = rt_mutex_adjust_prio_chain(owner, detect_deadlock, lock, waiter, 460 task); 461 462 raw_spin_lock(&lock->wait_lock); 463 464 return res; 465 } 466 467 /* 468 * Wake up the next waiter on the lock. 469 * 470 * Remove the top waiter from the current tasks waiter list and wake it up. 471 * 472 * Called with lock->wait_lock held. 473 */ 474 static void wakeup_next_waiter(struct rt_mutex *lock) 475 { 476 struct rt_mutex_waiter *waiter; 477 unsigned long flags; 478 479 raw_spin_lock_irqsave(¤t->pi_lock, flags); 480 481 waiter = rt_mutex_top_waiter(lock); 482 483 /* 484 * Remove it from current->pi_waiters. We do not adjust a 485 * possible priority boost right now. We execute wakeup in the 486 * boosted mode and go back to normal after releasing 487 * lock->wait_lock. 488 */ 489 plist_del(&waiter->pi_list_entry, ¤t->pi_waiters); 490 491 rt_mutex_set_owner(lock, NULL); 492 493 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); 494 495 wake_up_process(waiter->task); 496 } 497 498 /* 499 * Remove a waiter from a lock and give up 500 * 501 * Must be called with lock->wait_lock held and 502 * have just failed to try_to_take_rt_mutex(). 503 */ 504 static void remove_waiter(struct rt_mutex *lock, 505 struct rt_mutex_waiter *waiter) 506 { 507 int first = (waiter == rt_mutex_top_waiter(lock)); 508 struct task_struct *owner = rt_mutex_owner(lock); 509 unsigned long flags; 510 int chain_walk = 0; 511 512 raw_spin_lock_irqsave(¤t->pi_lock, flags); 513 plist_del(&waiter->list_entry, &lock->wait_list); 514 current->pi_blocked_on = NULL; 515 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); 516 517 if (!owner) 518 return; 519 520 if (first) { 521 522 raw_spin_lock_irqsave(&owner->pi_lock, flags); 523 524 plist_del(&waiter->pi_list_entry, &owner->pi_waiters); 525 526 if (rt_mutex_has_waiters(lock)) { 527 struct rt_mutex_waiter *next; 528 529 next = rt_mutex_top_waiter(lock); 530 plist_add(&next->pi_list_entry, &owner->pi_waiters); 531 } 532 __rt_mutex_adjust_prio(owner); 533 534 if (owner->pi_blocked_on) 535 chain_walk = 1; 536 537 raw_spin_unlock_irqrestore(&owner->pi_lock, flags); 538 } 539 540 WARN_ON(!plist_node_empty(&waiter->pi_list_entry)); 541 542 if (!chain_walk) 543 return; 544 545 /* gets dropped in rt_mutex_adjust_prio_chain()! */ 546 get_task_struct(owner); 547 548 raw_spin_unlock(&lock->wait_lock); 549 550 rt_mutex_adjust_prio_chain(owner, 0, lock, NULL, current); 551 552 raw_spin_lock(&lock->wait_lock); 553 } 554 555 /* 556 * Recheck the pi chain, in case we got a priority setting 557 * 558 * Called from sched_setscheduler 559 */ 560 void rt_mutex_adjust_pi(struct task_struct *task) 561 { 562 struct rt_mutex_waiter *waiter; 563 unsigned long flags; 564 565 raw_spin_lock_irqsave(&task->pi_lock, flags); 566 567 waiter = task->pi_blocked_on; 568 if (!waiter || waiter->list_entry.prio == task->prio) { 569 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 570 return; 571 } 572 573 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 574 575 /* gets dropped in rt_mutex_adjust_prio_chain()! */ 576 get_task_struct(task); 577 rt_mutex_adjust_prio_chain(task, 0, NULL, NULL, task); 578 } 579 580 /** 581 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop 582 * @lock: the rt_mutex to take 583 * @state: the state the task should block in (TASK_INTERRUPTIBLE 584 * or TASK_UNINTERRUPTIBLE) 585 * @timeout: the pre-initialized and started timer, or NULL for none 586 * @waiter: the pre-initialized rt_mutex_waiter 587 * 588 * lock->wait_lock must be held by the caller. 589 */ 590 static int __sched 591 __rt_mutex_slowlock(struct rt_mutex *lock, int state, 592 struct hrtimer_sleeper *timeout, 593 struct rt_mutex_waiter *waiter) 594 { 595 int ret = 0; 596 597 for (;;) { 598 /* Try to acquire the lock: */ 599 if (try_to_take_rt_mutex(lock, current, waiter)) 600 break; 601 602 /* 603 * TASK_INTERRUPTIBLE checks for signals and 604 * timeout. Ignored otherwise. 605 */ 606 if (unlikely(state == TASK_INTERRUPTIBLE)) { 607 /* Signal pending? */ 608 if (signal_pending(current)) 609 ret = -EINTR; 610 if (timeout && !timeout->task) 611 ret = -ETIMEDOUT; 612 if (ret) 613 break; 614 } 615 616 raw_spin_unlock(&lock->wait_lock); 617 618 debug_rt_mutex_print_deadlock(waiter); 619 620 schedule_rt_mutex(lock); 621 622 raw_spin_lock(&lock->wait_lock); 623 set_current_state(state); 624 } 625 626 return ret; 627 } 628 629 /* 630 * Slow path lock function: 631 */ 632 static int __sched 633 rt_mutex_slowlock(struct rt_mutex *lock, int state, 634 struct hrtimer_sleeper *timeout, 635 int detect_deadlock) 636 { 637 struct rt_mutex_waiter waiter; 638 int ret = 0; 639 640 debug_rt_mutex_init_waiter(&waiter); 641 642 raw_spin_lock(&lock->wait_lock); 643 644 /* Try to acquire the lock again: */ 645 if (try_to_take_rt_mutex(lock, current, NULL)) { 646 raw_spin_unlock(&lock->wait_lock); 647 return 0; 648 } 649 650 set_current_state(state); 651 652 /* Setup the timer, when timeout != NULL */ 653 if (unlikely(timeout)) { 654 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS); 655 if (!hrtimer_active(&timeout->timer)) 656 timeout->task = NULL; 657 } 658 659 ret = task_blocks_on_rt_mutex(lock, &waiter, current, detect_deadlock); 660 661 if (likely(!ret)) 662 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter); 663 664 set_current_state(TASK_RUNNING); 665 666 if (unlikely(ret)) 667 remove_waiter(lock, &waiter); 668 669 /* 670 * try_to_take_rt_mutex() sets the waiter bit 671 * unconditionally. We might have to fix that up. 672 */ 673 fixup_rt_mutex_waiters(lock); 674 675 raw_spin_unlock(&lock->wait_lock); 676 677 /* Remove pending timer: */ 678 if (unlikely(timeout)) 679 hrtimer_cancel(&timeout->timer); 680 681 debug_rt_mutex_free_waiter(&waiter); 682 683 return ret; 684 } 685 686 /* 687 * Slow path try-lock function: 688 */ 689 static inline int 690 rt_mutex_slowtrylock(struct rt_mutex *lock) 691 { 692 int ret = 0; 693 694 raw_spin_lock(&lock->wait_lock); 695 696 if (likely(rt_mutex_owner(lock) != current)) { 697 698 ret = try_to_take_rt_mutex(lock, current, NULL); 699 /* 700 * try_to_take_rt_mutex() sets the lock waiters 701 * bit unconditionally. Clean this up. 702 */ 703 fixup_rt_mutex_waiters(lock); 704 } 705 706 raw_spin_unlock(&lock->wait_lock); 707 708 return ret; 709 } 710 711 /* 712 * Slow path to release a rt-mutex: 713 */ 714 static void __sched 715 rt_mutex_slowunlock(struct rt_mutex *lock) 716 { 717 raw_spin_lock(&lock->wait_lock); 718 719 debug_rt_mutex_unlock(lock); 720 721 rt_mutex_deadlock_account_unlock(current); 722 723 if (!rt_mutex_has_waiters(lock)) { 724 lock->owner = NULL; 725 raw_spin_unlock(&lock->wait_lock); 726 return; 727 } 728 729 wakeup_next_waiter(lock); 730 731 raw_spin_unlock(&lock->wait_lock); 732 733 /* Undo pi boosting if necessary: */ 734 rt_mutex_adjust_prio(current); 735 } 736 737 /* 738 * debug aware fast / slowpath lock,trylock,unlock 739 * 740 * The atomic acquire/release ops are compiled away, when either the 741 * architecture does not support cmpxchg or when debugging is enabled. 742 */ 743 static inline int 744 rt_mutex_fastlock(struct rt_mutex *lock, int state, 745 int detect_deadlock, 746 int (*slowfn)(struct rt_mutex *lock, int state, 747 struct hrtimer_sleeper *timeout, 748 int detect_deadlock)) 749 { 750 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) { 751 rt_mutex_deadlock_account_lock(lock, current); 752 return 0; 753 } else 754 return slowfn(lock, state, NULL, detect_deadlock); 755 } 756 757 static inline int 758 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state, 759 struct hrtimer_sleeper *timeout, int detect_deadlock, 760 int (*slowfn)(struct rt_mutex *lock, int state, 761 struct hrtimer_sleeper *timeout, 762 int detect_deadlock)) 763 { 764 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) { 765 rt_mutex_deadlock_account_lock(lock, current); 766 return 0; 767 } else 768 return slowfn(lock, state, timeout, detect_deadlock); 769 } 770 771 static inline int 772 rt_mutex_fasttrylock(struct rt_mutex *lock, 773 int (*slowfn)(struct rt_mutex *lock)) 774 { 775 if (likely(rt_mutex_cmpxchg(lock, NULL, current))) { 776 rt_mutex_deadlock_account_lock(lock, current); 777 return 1; 778 } 779 return slowfn(lock); 780 } 781 782 static inline void 783 rt_mutex_fastunlock(struct rt_mutex *lock, 784 void (*slowfn)(struct rt_mutex *lock)) 785 { 786 if (likely(rt_mutex_cmpxchg(lock, current, NULL))) 787 rt_mutex_deadlock_account_unlock(current); 788 else 789 slowfn(lock); 790 } 791 792 /** 793 * rt_mutex_lock - lock a rt_mutex 794 * 795 * @lock: the rt_mutex to be locked 796 */ 797 void __sched rt_mutex_lock(struct rt_mutex *lock) 798 { 799 might_sleep(); 800 801 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, 0, rt_mutex_slowlock); 802 } 803 EXPORT_SYMBOL_GPL(rt_mutex_lock); 804 805 /** 806 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible 807 * 808 * @lock: the rt_mutex to be locked 809 * @detect_deadlock: deadlock detection on/off 810 * 811 * Returns: 812 * 0 on success 813 * -EINTR when interrupted by a signal 814 * -EDEADLK when the lock would deadlock (when deadlock detection is on) 815 */ 816 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock, 817 int detect_deadlock) 818 { 819 might_sleep(); 820 821 return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, 822 detect_deadlock, rt_mutex_slowlock); 823 } 824 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible); 825 826 /** 827 * rt_mutex_timed_lock - lock a rt_mutex interruptible 828 * the timeout structure is provided 829 * by the caller 830 * 831 * @lock: the rt_mutex to be locked 832 * @timeout: timeout structure or NULL (no timeout) 833 * @detect_deadlock: deadlock detection on/off 834 * 835 * Returns: 836 * 0 on success 837 * -EINTR when interrupted by a signal 838 * -ETIMEDOUT when the timeout expired 839 * -EDEADLK when the lock would deadlock (when deadlock detection is on) 840 */ 841 int 842 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout, 843 int detect_deadlock) 844 { 845 might_sleep(); 846 847 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout, 848 detect_deadlock, rt_mutex_slowlock); 849 } 850 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock); 851 852 /** 853 * rt_mutex_trylock - try to lock a rt_mutex 854 * 855 * @lock: the rt_mutex to be locked 856 * 857 * Returns 1 on success and 0 on contention 858 */ 859 int __sched rt_mutex_trylock(struct rt_mutex *lock) 860 { 861 return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock); 862 } 863 EXPORT_SYMBOL_GPL(rt_mutex_trylock); 864 865 /** 866 * rt_mutex_unlock - unlock a rt_mutex 867 * 868 * @lock: the rt_mutex to be unlocked 869 */ 870 void __sched rt_mutex_unlock(struct rt_mutex *lock) 871 { 872 rt_mutex_fastunlock(lock, rt_mutex_slowunlock); 873 } 874 EXPORT_SYMBOL_GPL(rt_mutex_unlock); 875 876 /** 877 * rt_mutex_destroy - mark a mutex unusable 878 * @lock: the mutex to be destroyed 879 * 880 * This function marks the mutex uninitialized, and any subsequent 881 * use of the mutex is forbidden. The mutex must not be locked when 882 * this function is called. 883 */ 884 void rt_mutex_destroy(struct rt_mutex *lock) 885 { 886 WARN_ON(rt_mutex_is_locked(lock)); 887 #ifdef CONFIG_DEBUG_RT_MUTEXES 888 lock->magic = NULL; 889 #endif 890 } 891 892 EXPORT_SYMBOL_GPL(rt_mutex_destroy); 893 894 /** 895 * __rt_mutex_init - initialize the rt lock 896 * 897 * @lock: the rt lock to be initialized 898 * 899 * Initialize the rt lock to unlocked state. 900 * 901 * Initializing of a locked rt lock is not allowed 902 */ 903 void __rt_mutex_init(struct rt_mutex *lock, const char *name) 904 { 905 lock->owner = NULL; 906 raw_spin_lock_init(&lock->wait_lock); 907 plist_head_init(&lock->wait_list); 908 909 debug_rt_mutex_init(lock, name); 910 } 911 EXPORT_SYMBOL_GPL(__rt_mutex_init); 912 913 /** 914 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a 915 * proxy owner 916 * 917 * @lock: the rt_mutex to be locked 918 * @proxy_owner:the task to set as owner 919 * 920 * No locking. Caller has to do serializing itself 921 * Special API call for PI-futex support 922 */ 923 void rt_mutex_init_proxy_locked(struct rt_mutex *lock, 924 struct task_struct *proxy_owner) 925 { 926 __rt_mutex_init(lock, NULL); 927 debug_rt_mutex_proxy_lock(lock, proxy_owner); 928 rt_mutex_set_owner(lock, proxy_owner); 929 rt_mutex_deadlock_account_lock(lock, proxy_owner); 930 } 931 932 /** 933 * rt_mutex_proxy_unlock - release a lock on behalf of owner 934 * 935 * @lock: the rt_mutex to be locked 936 * 937 * No locking. Caller has to do serializing itself 938 * Special API call for PI-futex support 939 */ 940 void rt_mutex_proxy_unlock(struct rt_mutex *lock, 941 struct task_struct *proxy_owner) 942 { 943 debug_rt_mutex_proxy_unlock(lock); 944 rt_mutex_set_owner(lock, NULL); 945 rt_mutex_deadlock_account_unlock(proxy_owner); 946 } 947 948 /** 949 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task 950 * @lock: the rt_mutex to take 951 * @waiter: the pre-initialized rt_mutex_waiter 952 * @task: the task to prepare 953 * @detect_deadlock: perform deadlock detection (1) or not (0) 954 * 955 * Returns: 956 * 0 - task blocked on lock 957 * 1 - acquired the lock for task, caller should wake it up 958 * <0 - error 959 * 960 * Special API call for FUTEX_REQUEUE_PI support. 961 */ 962 int rt_mutex_start_proxy_lock(struct rt_mutex *lock, 963 struct rt_mutex_waiter *waiter, 964 struct task_struct *task, int detect_deadlock) 965 { 966 int ret; 967 968 raw_spin_lock(&lock->wait_lock); 969 970 if (try_to_take_rt_mutex(lock, task, NULL)) { 971 raw_spin_unlock(&lock->wait_lock); 972 return 1; 973 } 974 975 ret = task_blocks_on_rt_mutex(lock, waiter, task, detect_deadlock); 976 977 if (ret && !rt_mutex_owner(lock)) { 978 /* 979 * Reset the return value. We might have 980 * returned with -EDEADLK and the owner 981 * released the lock while we were walking the 982 * pi chain. Let the waiter sort it out. 983 */ 984 ret = 0; 985 } 986 987 if (unlikely(ret)) 988 remove_waiter(lock, waiter); 989 990 raw_spin_unlock(&lock->wait_lock); 991 992 debug_rt_mutex_print_deadlock(waiter); 993 994 return ret; 995 } 996 997 /** 998 * rt_mutex_next_owner - return the next owner of the lock 999 * 1000 * @lock: the rt lock query 1001 * 1002 * Returns the next owner of the lock or NULL 1003 * 1004 * Caller has to serialize against other accessors to the lock 1005 * itself. 1006 * 1007 * Special API call for PI-futex support 1008 */ 1009 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock) 1010 { 1011 if (!rt_mutex_has_waiters(lock)) 1012 return NULL; 1013 1014 return rt_mutex_top_waiter(lock)->task; 1015 } 1016 1017 /** 1018 * rt_mutex_finish_proxy_lock() - Complete lock acquisition 1019 * @lock: the rt_mutex we were woken on 1020 * @to: the timeout, null if none. hrtimer should already have 1021 * been started. 1022 * @waiter: the pre-initialized rt_mutex_waiter 1023 * @detect_deadlock: perform deadlock detection (1) or not (0) 1024 * 1025 * Complete the lock acquisition started our behalf by another thread. 1026 * 1027 * Returns: 1028 * 0 - success 1029 * <0 - error, one of -EINTR, -ETIMEDOUT, or -EDEADLK 1030 * 1031 * Special API call for PI-futex requeue support 1032 */ 1033 int rt_mutex_finish_proxy_lock(struct rt_mutex *lock, 1034 struct hrtimer_sleeper *to, 1035 struct rt_mutex_waiter *waiter, 1036 int detect_deadlock) 1037 { 1038 int ret; 1039 1040 raw_spin_lock(&lock->wait_lock); 1041 1042 set_current_state(TASK_INTERRUPTIBLE); 1043 1044 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter); 1045 1046 set_current_state(TASK_RUNNING); 1047 1048 if (unlikely(ret)) 1049 remove_waiter(lock, waiter); 1050 1051 /* 1052 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might 1053 * have to fix that up. 1054 */ 1055 fixup_rt_mutex_waiters(lock); 1056 1057 raw_spin_unlock(&lock->wait_lock); 1058 1059 return ret; 1060 } 1061