xref: /openbmc/linux/kernel/locking/rtmutex.c (revision 8ffdff6a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
4  *
5  * started by Ingo Molnar and Thomas Gleixner.
6  *
7  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
8  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
9  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
10  *  Copyright (C) 2006 Esben Nielsen
11  *
12  *  See Documentation/locking/rt-mutex-design.rst for details.
13  */
14 #include <linux/spinlock.h>
15 #include <linux/export.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/rt.h>
18 #include <linux/sched/deadline.h>
19 #include <linux/sched/wake_q.h>
20 #include <linux/sched/debug.h>
21 #include <linux/timer.h>
22 
23 #include "rtmutex_common.h"
24 
25 /*
26  * lock->owner state tracking:
27  *
28  * lock->owner holds the task_struct pointer of the owner. Bit 0
29  * is used to keep track of the "lock has waiters" state.
30  *
31  * owner	bit0
32  * NULL		0	lock is free (fast acquire possible)
33  * NULL		1	lock is free and has waiters and the top waiter
34  *				is going to take the lock*
35  * taskpointer	0	lock is held (fast release possible)
36  * taskpointer	1	lock is held and has waiters**
37  *
38  * The fast atomic compare exchange based acquire and release is only
39  * possible when bit 0 of lock->owner is 0.
40  *
41  * (*) It also can be a transitional state when grabbing the lock
42  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
43  * we need to set the bit0 before looking at the lock, and the owner may be
44  * NULL in this small time, hence this can be a transitional state.
45  *
46  * (**) There is a small time when bit 0 is set but there are no
47  * waiters. This can happen when grabbing the lock in the slow path.
48  * To prevent a cmpxchg of the owner releasing the lock, we need to
49  * set this bit before looking at the lock.
50  */
51 
52 static void
53 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
54 {
55 	unsigned long val = (unsigned long)owner;
56 
57 	if (rt_mutex_has_waiters(lock))
58 		val |= RT_MUTEX_HAS_WAITERS;
59 
60 	WRITE_ONCE(lock->owner, (struct task_struct *)val);
61 }
62 
63 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
64 {
65 	lock->owner = (struct task_struct *)
66 			((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
67 }
68 
69 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
70 {
71 	unsigned long owner, *p = (unsigned long *) &lock->owner;
72 
73 	if (rt_mutex_has_waiters(lock))
74 		return;
75 
76 	/*
77 	 * The rbtree has no waiters enqueued, now make sure that the
78 	 * lock->owner still has the waiters bit set, otherwise the
79 	 * following can happen:
80 	 *
81 	 * CPU 0	CPU 1		CPU2
82 	 * l->owner=T1
83 	 *		rt_mutex_lock(l)
84 	 *		lock(l->lock)
85 	 *		l->owner = T1 | HAS_WAITERS;
86 	 *		enqueue(T2)
87 	 *		boost()
88 	 *		  unlock(l->lock)
89 	 *		block()
90 	 *
91 	 *				rt_mutex_lock(l)
92 	 *				lock(l->lock)
93 	 *				l->owner = T1 | HAS_WAITERS;
94 	 *				enqueue(T3)
95 	 *				boost()
96 	 *				  unlock(l->lock)
97 	 *				block()
98 	 *		signal(->T2)	signal(->T3)
99 	 *		lock(l->lock)
100 	 *		dequeue(T2)
101 	 *		deboost()
102 	 *		  unlock(l->lock)
103 	 *				lock(l->lock)
104 	 *				dequeue(T3)
105 	 *				 ==> wait list is empty
106 	 *				deboost()
107 	 *				 unlock(l->lock)
108 	 *		lock(l->lock)
109 	 *		fixup_rt_mutex_waiters()
110 	 *		  if (wait_list_empty(l) {
111 	 *		    l->owner = owner
112 	 *		    owner = l->owner & ~HAS_WAITERS;
113 	 *		      ==> l->owner = T1
114 	 *		  }
115 	 *				lock(l->lock)
116 	 * rt_mutex_unlock(l)		fixup_rt_mutex_waiters()
117 	 *				  if (wait_list_empty(l) {
118 	 *				    owner = l->owner & ~HAS_WAITERS;
119 	 * cmpxchg(l->owner, T1, NULL)
120 	 *  ===> Success (l->owner = NULL)
121 	 *
122 	 *				    l->owner = owner
123 	 *				      ==> l->owner = T1
124 	 *				  }
125 	 *
126 	 * With the check for the waiter bit in place T3 on CPU2 will not
127 	 * overwrite. All tasks fiddling with the waiters bit are
128 	 * serialized by l->lock, so nothing else can modify the waiters
129 	 * bit. If the bit is set then nothing can change l->owner either
130 	 * so the simple RMW is safe. The cmpxchg() will simply fail if it
131 	 * happens in the middle of the RMW because the waiters bit is
132 	 * still set.
133 	 */
134 	owner = READ_ONCE(*p);
135 	if (owner & RT_MUTEX_HAS_WAITERS)
136 		WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
137 }
138 
139 /*
140  * We can speed up the acquire/release, if there's no debugging state to be
141  * set up.
142  */
143 #ifndef CONFIG_DEBUG_RT_MUTEXES
144 # define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
145 # define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
146 
147 /*
148  * Callers must hold the ->wait_lock -- which is the whole purpose as we force
149  * all future threads that attempt to [Rmw] the lock to the slowpath. As such
150  * relaxed semantics suffice.
151  */
152 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
153 {
154 	unsigned long owner, *p = (unsigned long *) &lock->owner;
155 
156 	do {
157 		owner = *p;
158 	} while (cmpxchg_relaxed(p, owner,
159 				 owner | RT_MUTEX_HAS_WAITERS) != owner);
160 }
161 
162 /*
163  * Safe fastpath aware unlock:
164  * 1) Clear the waiters bit
165  * 2) Drop lock->wait_lock
166  * 3) Try to unlock the lock with cmpxchg
167  */
168 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
169 					unsigned long flags)
170 	__releases(lock->wait_lock)
171 {
172 	struct task_struct *owner = rt_mutex_owner(lock);
173 
174 	clear_rt_mutex_waiters(lock);
175 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
176 	/*
177 	 * If a new waiter comes in between the unlock and the cmpxchg
178 	 * we have two situations:
179 	 *
180 	 * unlock(wait_lock);
181 	 *					lock(wait_lock);
182 	 * cmpxchg(p, owner, 0) == owner
183 	 *					mark_rt_mutex_waiters(lock);
184 	 *					acquire(lock);
185 	 * or:
186 	 *
187 	 * unlock(wait_lock);
188 	 *					lock(wait_lock);
189 	 *					mark_rt_mutex_waiters(lock);
190 	 *
191 	 * cmpxchg(p, owner, 0) != owner
192 	 *					enqueue_waiter();
193 	 *					unlock(wait_lock);
194 	 * lock(wait_lock);
195 	 * wake waiter();
196 	 * unlock(wait_lock);
197 	 *					lock(wait_lock);
198 	 *					acquire(lock);
199 	 */
200 	return rt_mutex_cmpxchg_release(lock, owner, NULL);
201 }
202 
203 #else
204 # define rt_mutex_cmpxchg_acquire(l,c,n)	(0)
205 # define rt_mutex_cmpxchg_release(l,c,n)	(0)
206 
207 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
208 {
209 	lock->owner = (struct task_struct *)
210 			((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
211 }
212 
213 /*
214  * Simple slow path only version: lock->owner is protected by lock->wait_lock.
215  */
216 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
217 					unsigned long flags)
218 	__releases(lock->wait_lock)
219 {
220 	lock->owner = NULL;
221 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
222 	return true;
223 }
224 #endif
225 
226 /*
227  * Only use with rt_mutex_waiter_{less,equal}()
228  */
229 #define task_to_waiter(p)	\
230 	&(struct rt_mutex_waiter){ .prio = (p)->prio, .deadline = (p)->dl.deadline }
231 
232 static inline int
233 rt_mutex_waiter_less(struct rt_mutex_waiter *left,
234 		     struct rt_mutex_waiter *right)
235 {
236 	if (left->prio < right->prio)
237 		return 1;
238 
239 	/*
240 	 * If both waiters have dl_prio(), we check the deadlines of the
241 	 * associated tasks.
242 	 * If left waiter has a dl_prio(), and we didn't return 1 above,
243 	 * then right waiter has a dl_prio() too.
244 	 */
245 	if (dl_prio(left->prio))
246 		return dl_time_before(left->deadline, right->deadline);
247 
248 	return 0;
249 }
250 
251 static inline int
252 rt_mutex_waiter_equal(struct rt_mutex_waiter *left,
253 		      struct rt_mutex_waiter *right)
254 {
255 	if (left->prio != right->prio)
256 		return 0;
257 
258 	/*
259 	 * If both waiters have dl_prio(), we check the deadlines of the
260 	 * associated tasks.
261 	 * If left waiter has a dl_prio(), and we didn't return 0 above,
262 	 * then right waiter has a dl_prio() too.
263 	 */
264 	if (dl_prio(left->prio))
265 		return left->deadline == right->deadline;
266 
267 	return 1;
268 }
269 
270 #define __node_2_waiter(node) \
271 	rb_entry((node), struct rt_mutex_waiter, tree_entry)
272 
273 static inline bool __waiter_less(struct rb_node *a, const struct rb_node *b)
274 {
275 	return rt_mutex_waiter_less(__node_2_waiter(a), __node_2_waiter(b));
276 }
277 
278 static void
279 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
280 {
281 	rb_add_cached(&waiter->tree_entry, &lock->waiters, __waiter_less);
282 }
283 
284 static void
285 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
286 {
287 	if (RB_EMPTY_NODE(&waiter->tree_entry))
288 		return;
289 
290 	rb_erase_cached(&waiter->tree_entry, &lock->waiters);
291 	RB_CLEAR_NODE(&waiter->tree_entry);
292 }
293 
294 #define __node_2_pi_waiter(node) \
295 	rb_entry((node), struct rt_mutex_waiter, pi_tree_entry)
296 
297 static inline bool __pi_waiter_less(struct rb_node *a, const struct rb_node *b)
298 {
299 	return rt_mutex_waiter_less(__node_2_pi_waiter(a), __node_2_pi_waiter(b));
300 }
301 
302 static void
303 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
304 {
305 	rb_add_cached(&waiter->pi_tree_entry, &task->pi_waiters, __pi_waiter_less);
306 }
307 
308 static void
309 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
310 {
311 	if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
312 		return;
313 
314 	rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters);
315 	RB_CLEAR_NODE(&waiter->pi_tree_entry);
316 }
317 
318 static void rt_mutex_adjust_prio(struct task_struct *p)
319 {
320 	struct task_struct *pi_task = NULL;
321 
322 	lockdep_assert_held(&p->pi_lock);
323 
324 	if (task_has_pi_waiters(p))
325 		pi_task = task_top_pi_waiter(p)->task;
326 
327 	rt_mutex_setprio(p, pi_task);
328 }
329 
330 /*
331  * Deadlock detection is conditional:
332  *
333  * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
334  * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
335  *
336  * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
337  * conducted independent of the detect argument.
338  *
339  * If the waiter argument is NULL this indicates the deboost path and
340  * deadlock detection is disabled independent of the detect argument
341  * and the config settings.
342  */
343 static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
344 					  enum rtmutex_chainwalk chwalk)
345 {
346 	/*
347 	 * This is just a wrapper function for the following call,
348 	 * because debug_rt_mutex_detect_deadlock() smells like a magic
349 	 * debug feature and I wanted to keep the cond function in the
350 	 * main source file along with the comments instead of having
351 	 * two of the same in the headers.
352 	 */
353 	return debug_rt_mutex_detect_deadlock(waiter, chwalk);
354 }
355 
356 /*
357  * Max number of times we'll walk the boosting chain:
358  */
359 int max_lock_depth = 1024;
360 
361 static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
362 {
363 	return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
364 }
365 
366 /*
367  * Adjust the priority chain. Also used for deadlock detection.
368  * Decreases task's usage by one - may thus free the task.
369  *
370  * @task:	the task owning the mutex (owner) for which a chain walk is
371  *		probably needed
372  * @chwalk:	do we have to carry out deadlock detection?
373  * @orig_lock:	the mutex (can be NULL if we are walking the chain to recheck
374  *		things for a task that has just got its priority adjusted, and
375  *		is waiting on a mutex)
376  * @next_lock:	the mutex on which the owner of @orig_lock was blocked before
377  *		we dropped its pi_lock. Is never dereferenced, only used for
378  *		comparison to detect lock chain changes.
379  * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
380  *		its priority to the mutex owner (can be NULL in the case
381  *		depicted above or if the top waiter is gone away and we are
382  *		actually deboosting the owner)
383  * @top_task:	the current top waiter
384  *
385  * Returns 0 or -EDEADLK.
386  *
387  * Chain walk basics and protection scope
388  *
389  * [R] refcount on task
390  * [P] task->pi_lock held
391  * [L] rtmutex->wait_lock held
392  *
393  * Step	Description				Protected by
394  *	function arguments:
395  *	@task					[R]
396  *	@orig_lock if != NULL			@top_task is blocked on it
397  *	@next_lock				Unprotected. Cannot be
398  *						dereferenced. Only used for
399  *						comparison.
400  *	@orig_waiter if != NULL			@top_task is blocked on it
401  *	@top_task				current, or in case of proxy
402  *						locking protected by calling
403  *						code
404  *	again:
405  *	  loop_sanity_check();
406  *	retry:
407  * [1]	  lock(task->pi_lock);			[R] acquire [P]
408  * [2]	  waiter = task->pi_blocked_on;		[P]
409  * [3]	  check_exit_conditions_1();		[P]
410  * [4]	  lock = waiter->lock;			[P]
411  * [5]	  if (!try_lock(lock->wait_lock)) {	[P] try to acquire [L]
412  *	    unlock(task->pi_lock);		release [P]
413  *	    goto retry;
414  *	  }
415  * [6]	  check_exit_conditions_2();		[P] + [L]
416  * [7]	  requeue_lock_waiter(lock, waiter);	[P] + [L]
417  * [8]	  unlock(task->pi_lock);		release [P]
418  *	  put_task_struct(task);		release [R]
419  * [9]	  check_exit_conditions_3();		[L]
420  * [10]	  task = owner(lock);			[L]
421  *	  get_task_struct(task);		[L] acquire [R]
422  *	  lock(task->pi_lock);			[L] acquire [P]
423  * [11]	  requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
424  * [12]	  check_exit_conditions_4();		[P] + [L]
425  * [13]	  unlock(task->pi_lock);		release [P]
426  *	  unlock(lock->wait_lock);		release [L]
427  *	  goto again;
428  */
429 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
430 				      enum rtmutex_chainwalk chwalk,
431 				      struct rt_mutex *orig_lock,
432 				      struct rt_mutex *next_lock,
433 				      struct rt_mutex_waiter *orig_waiter,
434 				      struct task_struct *top_task)
435 {
436 	struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
437 	struct rt_mutex_waiter *prerequeue_top_waiter;
438 	int ret = 0, depth = 0;
439 	struct rt_mutex *lock;
440 	bool detect_deadlock;
441 	bool requeue = true;
442 
443 	detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
444 
445 	/*
446 	 * The (de)boosting is a step by step approach with a lot of
447 	 * pitfalls. We want this to be preemptible and we want hold a
448 	 * maximum of two locks per step. So we have to check
449 	 * carefully whether things change under us.
450 	 */
451  again:
452 	/*
453 	 * We limit the lock chain length for each invocation.
454 	 */
455 	if (++depth > max_lock_depth) {
456 		static int prev_max;
457 
458 		/*
459 		 * Print this only once. If the admin changes the limit,
460 		 * print a new message when reaching the limit again.
461 		 */
462 		if (prev_max != max_lock_depth) {
463 			prev_max = max_lock_depth;
464 			printk(KERN_WARNING "Maximum lock depth %d reached "
465 			       "task: %s (%d)\n", max_lock_depth,
466 			       top_task->comm, task_pid_nr(top_task));
467 		}
468 		put_task_struct(task);
469 
470 		return -EDEADLK;
471 	}
472 
473 	/*
474 	 * We are fully preemptible here and only hold the refcount on
475 	 * @task. So everything can have changed under us since the
476 	 * caller or our own code below (goto retry/again) dropped all
477 	 * locks.
478 	 */
479  retry:
480 	/*
481 	 * [1] Task cannot go away as we did a get_task() before !
482 	 */
483 	raw_spin_lock_irq(&task->pi_lock);
484 
485 	/*
486 	 * [2] Get the waiter on which @task is blocked on.
487 	 */
488 	waiter = task->pi_blocked_on;
489 
490 	/*
491 	 * [3] check_exit_conditions_1() protected by task->pi_lock.
492 	 */
493 
494 	/*
495 	 * Check whether the end of the boosting chain has been
496 	 * reached or the state of the chain has changed while we
497 	 * dropped the locks.
498 	 */
499 	if (!waiter)
500 		goto out_unlock_pi;
501 
502 	/*
503 	 * Check the orig_waiter state. After we dropped the locks,
504 	 * the previous owner of the lock might have released the lock.
505 	 */
506 	if (orig_waiter && !rt_mutex_owner(orig_lock))
507 		goto out_unlock_pi;
508 
509 	/*
510 	 * We dropped all locks after taking a refcount on @task, so
511 	 * the task might have moved on in the lock chain or even left
512 	 * the chain completely and blocks now on an unrelated lock or
513 	 * on @orig_lock.
514 	 *
515 	 * We stored the lock on which @task was blocked in @next_lock,
516 	 * so we can detect the chain change.
517 	 */
518 	if (next_lock != waiter->lock)
519 		goto out_unlock_pi;
520 
521 	/*
522 	 * Drop out, when the task has no waiters. Note,
523 	 * top_waiter can be NULL, when we are in the deboosting
524 	 * mode!
525 	 */
526 	if (top_waiter) {
527 		if (!task_has_pi_waiters(task))
528 			goto out_unlock_pi;
529 		/*
530 		 * If deadlock detection is off, we stop here if we
531 		 * are not the top pi waiter of the task. If deadlock
532 		 * detection is enabled we continue, but stop the
533 		 * requeueing in the chain walk.
534 		 */
535 		if (top_waiter != task_top_pi_waiter(task)) {
536 			if (!detect_deadlock)
537 				goto out_unlock_pi;
538 			else
539 				requeue = false;
540 		}
541 	}
542 
543 	/*
544 	 * If the waiter priority is the same as the task priority
545 	 * then there is no further priority adjustment necessary.  If
546 	 * deadlock detection is off, we stop the chain walk. If its
547 	 * enabled we continue, but stop the requeueing in the chain
548 	 * walk.
549 	 */
550 	if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
551 		if (!detect_deadlock)
552 			goto out_unlock_pi;
553 		else
554 			requeue = false;
555 	}
556 
557 	/*
558 	 * [4] Get the next lock
559 	 */
560 	lock = waiter->lock;
561 	/*
562 	 * [5] We need to trylock here as we are holding task->pi_lock,
563 	 * which is the reverse lock order versus the other rtmutex
564 	 * operations.
565 	 */
566 	if (!raw_spin_trylock(&lock->wait_lock)) {
567 		raw_spin_unlock_irq(&task->pi_lock);
568 		cpu_relax();
569 		goto retry;
570 	}
571 
572 	/*
573 	 * [6] check_exit_conditions_2() protected by task->pi_lock and
574 	 * lock->wait_lock.
575 	 *
576 	 * Deadlock detection. If the lock is the same as the original
577 	 * lock which caused us to walk the lock chain or if the
578 	 * current lock is owned by the task which initiated the chain
579 	 * walk, we detected a deadlock.
580 	 */
581 	if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
582 		debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
583 		raw_spin_unlock(&lock->wait_lock);
584 		ret = -EDEADLK;
585 		goto out_unlock_pi;
586 	}
587 
588 	/*
589 	 * If we just follow the lock chain for deadlock detection, no
590 	 * need to do all the requeue operations. To avoid a truckload
591 	 * of conditionals around the various places below, just do the
592 	 * minimum chain walk checks.
593 	 */
594 	if (!requeue) {
595 		/*
596 		 * No requeue[7] here. Just release @task [8]
597 		 */
598 		raw_spin_unlock(&task->pi_lock);
599 		put_task_struct(task);
600 
601 		/*
602 		 * [9] check_exit_conditions_3 protected by lock->wait_lock.
603 		 * If there is no owner of the lock, end of chain.
604 		 */
605 		if (!rt_mutex_owner(lock)) {
606 			raw_spin_unlock_irq(&lock->wait_lock);
607 			return 0;
608 		}
609 
610 		/* [10] Grab the next task, i.e. owner of @lock */
611 		task = get_task_struct(rt_mutex_owner(lock));
612 		raw_spin_lock(&task->pi_lock);
613 
614 		/*
615 		 * No requeue [11] here. We just do deadlock detection.
616 		 *
617 		 * [12] Store whether owner is blocked
618 		 * itself. Decision is made after dropping the locks
619 		 */
620 		next_lock = task_blocked_on_lock(task);
621 		/*
622 		 * Get the top waiter for the next iteration
623 		 */
624 		top_waiter = rt_mutex_top_waiter(lock);
625 
626 		/* [13] Drop locks */
627 		raw_spin_unlock(&task->pi_lock);
628 		raw_spin_unlock_irq(&lock->wait_lock);
629 
630 		/* If owner is not blocked, end of chain. */
631 		if (!next_lock)
632 			goto out_put_task;
633 		goto again;
634 	}
635 
636 	/*
637 	 * Store the current top waiter before doing the requeue
638 	 * operation on @lock. We need it for the boost/deboost
639 	 * decision below.
640 	 */
641 	prerequeue_top_waiter = rt_mutex_top_waiter(lock);
642 
643 	/* [7] Requeue the waiter in the lock waiter tree. */
644 	rt_mutex_dequeue(lock, waiter);
645 
646 	/*
647 	 * Update the waiter prio fields now that we're dequeued.
648 	 *
649 	 * These values can have changed through either:
650 	 *
651 	 *   sys_sched_set_scheduler() / sys_sched_setattr()
652 	 *
653 	 * or
654 	 *
655 	 *   DL CBS enforcement advancing the effective deadline.
656 	 *
657 	 * Even though pi_waiters also uses these fields, and that tree is only
658 	 * updated in [11], we can do this here, since we hold [L], which
659 	 * serializes all pi_waiters access and rb_erase() does not care about
660 	 * the values of the node being removed.
661 	 */
662 	waiter->prio = task->prio;
663 	waiter->deadline = task->dl.deadline;
664 
665 	rt_mutex_enqueue(lock, waiter);
666 
667 	/* [8] Release the task */
668 	raw_spin_unlock(&task->pi_lock);
669 	put_task_struct(task);
670 
671 	/*
672 	 * [9] check_exit_conditions_3 protected by lock->wait_lock.
673 	 *
674 	 * We must abort the chain walk if there is no lock owner even
675 	 * in the dead lock detection case, as we have nothing to
676 	 * follow here. This is the end of the chain we are walking.
677 	 */
678 	if (!rt_mutex_owner(lock)) {
679 		/*
680 		 * If the requeue [7] above changed the top waiter,
681 		 * then we need to wake the new top waiter up to try
682 		 * to get the lock.
683 		 */
684 		if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
685 			wake_up_process(rt_mutex_top_waiter(lock)->task);
686 		raw_spin_unlock_irq(&lock->wait_lock);
687 		return 0;
688 	}
689 
690 	/* [10] Grab the next task, i.e. the owner of @lock */
691 	task = get_task_struct(rt_mutex_owner(lock));
692 	raw_spin_lock(&task->pi_lock);
693 
694 	/* [11] requeue the pi waiters if necessary */
695 	if (waiter == rt_mutex_top_waiter(lock)) {
696 		/*
697 		 * The waiter became the new top (highest priority)
698 		 * waiter on the lock. Replace the previous top waiter
699 		 * in the owner tasks pi waiters tree with this waiter
700 		 * and adjust the priority of the owner.
701 		 */
702 		rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
703 		rt_mutex_enqueue_pi(task, waiter);
704 		rt_mutex_adjust_prio(task);
705 
706 	} else if (prerequeue_top_waiter == waiter) {
707 		/*
708 		 * The waiter was the top waiter on the lock, but is
709 		 * no longer the top prority waiter. Replace waiter in
710 		 * the owner tasks pi waiters tree with the new top
711 		 * (highest priority) waiter and adjust the priority
712 		 * of the owner.
713 		 * The new top waiter is stored in @waiter so that
714 		 * @waiter == @top_waiter evaluates to true below and
715 		 * we continue to deboost the rest of the chain.
716 		 */
717 		rt_mutex_dequeue_pi(task, waiter);
718 		waiter = rt_mutex_top_waiter(lock);
719 		rt_mutex_enqueue_pi(task, waiter);
720 		rt_mutex_adjust_prio(task);
721 	} else {
722 		/*
723 		 * Nothing changed. No need to do any priority
724 		 * adjustment.
725 		 */
726 	}
727 
728 	/*
729 	 * [12] check_exit_conditions_4() protected by task->pi_lock
730 	 * and lock->wait_lock. The actual decisions are made after we
731 	 * dropped the locks.
732 	 *
733 	 * Check whether the task which owns the current lock is pi
734 	 * blocked itself. If yes we store a pointer to the lock for
735 	 * the lock chain change detection above. After we dropped
736 	 * task->pi_lock next_lock cannot be dereferenced anymore.
737 	 */
738 	next_lock = task_blocked_on_lock(task);
739 	/*
740 	 * Store the top waiter of @lock for the end of chain walk
741 	 * decision below.
742 	 */
743 	top_waiter = rt_mutex_top_waiter(lock);
744 
745 	/* [13] Drop the locks */
746 	raw_spin_unlock(&task->pi_lock);
747 	raw_spin_unlock_irq(&lock->wait_lock);
748 
749 	/*
750 	 * Make the actual exit decisions [12], based on the stored
751 	 * values.
752 	 *
753 	 * We reached the end of the lock chain. Stop right here. No
754 	 * point to go back just to figure that out.
755 	 */
756 	if (!next_lock)
757 		goto out_put_task;
758 
759 	/*
760 	 * If the current waiter is not the top waiter on the lock,
761 	 * then we can stop the chain walk here if we are not in full
762 	 * deadlock detection mode.
763 	 */
764 	if (!detect_deadlock && waiter != top_waiter)
765 		goto out_put_task;
766 
767 	goto again;
768 
769  out_unlock_pi:
770 	raw_spin_unlock_irq(&task->pi_lock);
771  out_put_task:
772 	put_task_struct(task);
773 
774 	return ret;
775 }
776 
777 /*
778  * Try to take an rt-mutex
779  *
780  * Must be called with lock->wait_lock held and interrupts disabled
781  *
782  * @lock:   The lock to be acquired.
783  * @task:   The task which wants to acquire the lock
784  * @waiter: The waiter that is queued to the lock's wait tree if the
785  *	    callsite called task_blocked_on_lock(), otherwise NULL
786  */
787 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
788 				struct rt_mutex_waiter *waiter)
789 {
790 	lockdep_assert_held(&lock->wait_lock);
791 
792 	/*
793 	 * Before testing whether we can acquire @lock, we set the
794 	 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
795 	 * other tasks which try to modify @lock into the slow path
796 	 * and they serialize on @lock->wait_lock.
797 	 *
798 	 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
799 	 * as explained at the top of this file if and only if:
800 	 *
801 	 * - There is a lock owner. The caller must fixup the
802 	 *   transient state if it does a trylock or leaves the lock
803 	 *   function due to a signal or timeout.
804 	 *
805 	 * - @task acquires the lock and there are no other
806 	 *   waiters. This is undone in rt_mutex_set_owner(@task) at
807 	 *   the end of this function.
808 	 */
809 	mark_rt_mutex_waiters(lock);
810 
811 	/*
812 	 * If @lock has an owner, give up.
813 	 */
814 	if (rt_mutex_owner(lock))
815 		return 0;
816 
817 	/*
818 	 * If @waiter != NULL, @task has already enqueued the waiter
819 	 * into @lock waiter tree. If @waiter == NULL then this is a
820 	 * trylock attempt.
821 	 */
822 	if (waiter) {
823 		/*
824 		 * If waiter is not the highest priority waiter of
825 		 * @lock, give up.
826 		 */
827 		if (waiter != rt_mutex_top_waiter(lock))
828 			return 0;
829 
830 		/*
831 		 * We can acquire the lock. Remove the waiter from the
832 		 * lock waiters tree.
833 		 */
834 		rt_mutex_dequeue(lock, waiter);
835 
836 	} else {
837 		/*
838 		 * If the lock has waiters already we check whether @task is
839 		 * eligible to take over the lock.
840 		 *
841 		 * If there are no other waiters, @task can acquire
842 		 * the lock.  @task->pi_blocked_on is NULL, so it does
843 		 * not need to be dequeued.
844 		 */
845 		if (rt_mutex_has_waiters(lock)) {
846 			/*
847 			 * If @task->prio is greater than or equal to
848 			 * the top waiter priority (kernel view),
849 			 * @task lost.
850 			 */
851 			if (!rt_mutex_waiter_less(task_to_waiter(task),
852 						  rt_mutex_top_waiter(lock)))
853 				return 0;
854 
855 			/*
856 			 * The current top waiter stays enqueued. We
857 			 * don't have to change anything in the lock
858 			 * waiters order.
859 			 */
860 		} else {
861 			/*
862 			 * No waiters. Take the lock without the
863 			 * pi_lock dance.@task->pi_blocked_on is NULL
864 			 * and we have no waiters to enqueue in @task
865 			 * pi waiters tree.
866 			 */
867 			goto takeit;
868 		}
869 	}
870 
871 	/*
872 	 * Clear @task->pi_blocked_on. Requires protection by
873 	 * @task->pi_lock. Redundant operation for the @waiter == NULL
874 	 * case, but conditionals are more expensive than a redundant
875 	 * store.
876 	 */
877 	raw_spin_lock(&task->pi_lock);
878 	task->pi_blocked_on = NULL;
879 	/*
880 	 * Finish the lock acquisition. @task is the new owner. If
881 	 * other waiters exist we have to insert the highest priority
882 	 * waiter into @task->pi_waiters tree.
883 	 */
884 	if (rt_mutex_has_waiters(lock))
885 		rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
886 	raw_spin_unlock(&task->pi_lock);
887 
888 takeit:
889 	/* We got the lock. */
890 	debug_rt_mutex_lock(lock);
891 
892 	/*
893 	 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
894 	 * are still waiters or clears it.
895 	 */
896 	rt_mutex_set_owner(lock, task);
897 
898 	return 1;
899 }
900 
901 /*
902  * Task blocks on lock.
903  *
904  * Prepare waiter and propagate pi chain
905  *
906  * This must be called with lock->wait_lock held and interrupts disabled
907  */
908 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
909 				   struct rt_mutex_waiter *waiter,
910 				   struct task_struct *task,
911 				   enum rtmutex_chainwalk chwalk)
912 {
913 	struct task_struct *owner = rt_mutex_owner(lock);
914 	struct rt_mutex_waiter *top_waiter = waiter;
915 	struct rt_mutex *next_lock;
916 	int chain_walk = 0, res;
917 
918 	lockdep_assert_held(&lock->wait_lock);
919 
920 	/*
921 	 * Early deadlock detection. We really don't want the task to
922 	 * enqueue on itself just to untangle the mess later. It's not
923 	 * only an optimization. We drop the locks, so another waiter
924 	 * can come in before the chain walk detects the deadlock. So
925 	 * the other will detect the deadlock and return -EDEADLOCK,
926 	 * which is wrong, as the other waiter is not in a deadlock
927 	 * situation.
928 	 */
929 	if (owner == task)
930 		return -EDEADLK;
931 
932 	raw_spin_lock(&task->pi_lock);
933 	waiter->task = task;
934 	waiter->lock = lock;
935 	waiter->prio = task->prio;
936 	waiter->deadline = task->dl.deadline;
937 
938 	/* Get the top priority waiter on the lock */
939 	if (rt_mutex_has_waiters(lock))
940 		top_waiter = rt_mutex_top_waiter(lock);
941 	rt_mutex_enqueue(lock, waiter);
942 
943 	task->pi_blocked_on = waiter;
944 
945 	raw_spin_unlock(&task->pi_lock);
946 
947 	if (!owner)
948 		return 0;
949 
950 	raw_spin_lock(&owner->pi_lock);
951 	if (waiter == rt_mutex_top_waiter(lock)) {
952 		rt_mutex_dequeue_pi(owner, top_waiter);
953 		rt_mutex_enqueue_pi(owner, waiter);
954 
955 		rt_mutex_adjust_prio(owner);
956 		if (owner->pi_blocked_on)
957 			chain_walk = 1;
958 	} else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
959 		chain_walk = 1;
960 	}
961 
962 	/* Store the lock on which owner is blocked or NULL */
963 	next_lock = task_blocked_on_lock(owner);
964 
965 	raw_spin_unlock(&owner->pi_lock);
966 	/*
967 	 * Even if full deadlock detection is on, if the owner is not
968 	 * blocked itself, we can avoid finding this out in the chain
969 	 * walk.
970 	 */
971 	if (!chain_walk || !next_lock)
972 		return 0;
973 
974 	/*
975 	 * The owner can't disappear while holding a lock,
976 	 * so the owner struct is protected by wait_lock.
977 	 * Gets dropped in rt_mutex_adjust_prio_chain()!
978 	 */
979 	get_task_struct(owner);
980 
981 	raw_spin_unlock_irq(&lock->wait_lock);
982 
983 	res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
984 					 next_lock, waiter, task);
985 
986 	raw_spin_lock_irq(&lock->wait_lock);
987 
988 	return res;
989 }
990 
991 /*
992  * Remove the top waiter from the current tasks pi waiter tree and
993  * queue it up.
994  *
995  * Called with lock->wait_lock held and interrupts disabled.
996  */
997 static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
998 				    struct rt_mutex *lock)
999 {
1000 	struct rt_mutex_waiter *waiter;
1001 
1002 	raw_spin_lock(&current->pi_lock);
1003 
1004 	waiter = rt_mutex_top_waiter(lock);
1005 
1006 	/*
1007 	 * Remove it from current->pi_waiters and deboost.
1008 	 *
1009 	 * We must in fact deboost here in order to ensure we call
1010 	 * rt_mutex_setprio() to update p->pi_top_task before the
1011 	 * task unblocks.
1012 	 */
1013 	rt_mutex_dequeue_pi(current, waiter);
1014 	rt_mutex_adjust_prio(current);
1015 
1016 	/*
1017 	 * As we are waking up the top waiter, and the waiter stays
1018 	 * queued on the lock until it gets the lock, this lock
1019 	 * obviously has waiters. Just set the bit here and this has
1020 	 * the added benefit of forcing all new tasks into the
1021 	 * slow path making sure no task of lower priority than
1022 	 * the top waiter can steal this lock.
1023 	 */
1024 	lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1025 
1026 	/*
1027 	 * We deboosted before waking the top waiter task such that we don't
1028 	 * run two tasks with the 'same' priority (and ensure the
1029 	 * p->pi_top_task pointer points to a blocked task). This however can
1030 	 * lead to priority inversion if we would get preempted after the
1031 	 * deboost but before waking our donor task, hence the preempt_disable()
1032 	 * before unlock.
1033 	 *
1034 	 * Pairs with preempt_enable() in rt_mutex_postunlock();
1035 	 */
1036 	preempt_disable();
1037 	wake_q_add(wake_q, waiter->task);
1038 	raw_spin_unlock(&current->pi_lock);
1039 }
1040 
1041 /*
1042  * Remove a waiter from a lock and give up
1043  *
1044  * Must be called with lock->wait_lock held and interrupts disabled. I must
1045  * have just failed to try_to_take_rt_mutex().
1046  */
1047 static void remove_waiter(struct rt_mutex *lock,
1048 			  struct rt_mutex_waiter *waiter)
1049 {
1050 	bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1051 	struct task_struct *owner = rt_mutex_owner(lock);
1052 	struct rt_mutex *next_lock;
1053 
1054 	lockdep_assert_held(&lock->wait_lock);
1055 
1056 	raw_spin_lock(&current->pi_lock);
1057 	rt_mutex_dequeue(lock, waiter);
1058 	current->pi_blocked_on = NULL;
1059 	raw_spin_unlock(&current->pi_lock);
1060 
1061 	/*
1062 	 * Only update priority if the waiter was the highest priority
1063 	 * waiter of the lock and there is an owner to update.
1064 	 */
1065 	if (!owner || !is_top_waiter)
1066 		return;
1067 
1068 	raw_spin_lock(&owner->pi_lock);
1069 
1070 	rt_mutex_dequeue_pi(owner, waiter);
1071 
1072 	if (rt_mutex_has_waiters(lock))
1073 		rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1074 
1075 	rt_mutex_adjust_prio(owner);
1076 
1077 	/* Store the lock on which owner is blocked or NULL */
1078 	next_lock = task_blocked_on_lock(owner);
1079 
1080 	raw_spin_unlock(&owner->pi_lock);
1081 
1082 	/*
1083 	 * Don't walk the chain, if the owner task is not blocked
1084 	 * itself.
1085 	 */
1086 	if (!next_lock)
1087 		return;
1088 
1089 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1090 	get_task_struct(owner);
1091 
1092 	raw_spin_unlock_irq(&lock->wait_lock);
1093 
1094 	rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1095 				   next_lock, NULL, current);
1096 
1097 	raw_spin_lock_irq(&lock->wait_lock);
1098 }
1099 
1100 /*
1101  * Recheck the pi chain, in case we got a priority setting
1102  *
1103  * Called from sched_setscheduler
1104  */
1105 void rt_mutex_adjust_pi(struct task_struct *task)
1106 {
1107 	struct rt_mutex_waiter *waiter;
1108 	struct rt_mutex *next_lock;
1109 	unsigned long flags;
1110 
1111 	raw_spin_lock_irqsave(&task->pi_lock, flags);
1112 
1113 	waiter = task->pi_blocked_on;
1114 	if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
1115 		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1116 		return;
1117 	}
1118 	next_lock = waiter->lock;
1119 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1120 
1121 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1122 	get_task_struct(task);
1123 
1124 	rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1125 				   next_lock, NULL, task);
1126 }
1127 
1128 void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter)
1129 {
1130 	debug_rt_mutex_init_waiter(waiter);
1131 	RB_CLEAR_NODE(&waiter->pi_tree_entry);
1132 	RB_CLEAR_NODE(&waiter->tree_entry);
1133 	waiter->task = NULL;
1134 }
1135 
1136 /**
1137  * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1138  * @lock:		 the rt_mutex to take
1139  * @state:		 the state the task should block in (TASK_INTERRUPTIBLE
1140  *			 or TASK_UNINTERRUPTIBLE)
1141  * @timeout:		 the pre-initialized and started timer, or NULL for none
1142  * @waiter:		 the pre-initialized rt_mutex_waiter
1143  *
1144  * Must be called with lock->wait_lock held and interrupts disabled
1145  */
1146 static int __sched
1147 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
1148 		    struct hrtimer_sleeper *timeout,
1149 		    struct rt_mutex_waiter *waiter)
1150 {
1151 	int ret = 0;
1152 
1153 	for (;;) {
1154 		/* Try to acquire the lock: */
1155 		if (try_to_take_rt_mutex(lock, current, waiter))
1156 			break;
1157 
1158 		/*
1159 		 * TASK_INTERRUPTIBLE checks for signals and
1160 		 * timeout. Ignored otherwise.
1161 		 */
1162 		if (likely(state == TASK_INTERRUPTIBLE)) {
1163 			/* Signal pending? */
1164 			if (signal_pending(current))
1165 				ret = -EINTR;
1166 			if (timeout && !timeout->task)
1167 				ret = -ETIMEDOUT;
1168 			if (ret)
1169 				break;
1170 		}
1171 
1172 		raw_spin_unlock_irq(&lock->wait_lock);
1173 
1174 		debug_rt_mutex_print_deadlock(waiter);
1175 
1176 		schedule();
1177 
1178 		raw_spin_lock_irq(&lock->wait_lock);
1179 		set_current_state(state);
1180 	}
1181 
1182 	__set_current_state(TASK_RUNNING);
1183 	return ret;
1184 }
1185 
1186 static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1187 				     struct rt_mutex_waiter *w)
1188 {
1189 	/*
1190 	 * If the result is not -EDEADLOCK or the caller requested
1191 	 * deadlock detection, nothing to do here.
1192 	 */
1193 	if (res != -EDEADLOCK || detect_deadlock)
1194 		return;
1195 
1196 	/*
1197 	 * Yell lowdly and stop the task right here.
1198 	 */
1199 	rt_mutex_print_deadlock(w);
1200 	while (1) {
1201 		set_current_state(TASK_INTERRUPTIBLE);
1202 		schedule();
1203 	}
1204 }
1205 
1206 /*
1207  * Slow path lock function:
1208  */
1209 static int __sched
1210 rt_mutex_slowlock(struct rt_mutex *lock, int state,
1211 		  struct hrtimer_sleeper *timeout,
1212 		  enum rtmutex_chainwalk chwalk)
1213 {
1214 	struct rt_mutex_waiter waiter;
1215 	unsigned long flags;
1216 	int ret = 0;
1217 
1218 	rt_mutex_init_waiter(&waiter);
1219 
1220 	/*
1221 	 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1222 	 * be called in early boot if the cmpxchg() fast path is disabled
1223 	 * (debug, no architecture support). In this case we will acquire the
1224 	 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1225 	 * enable interrupts in that early boot case. So we need to use the
1226 	 * irqsave/restore variants.
1227 	 */
1228 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1229 
1230 	/* Try to acquire the lock again: */
1231 	if (try_to_take_rt_mutex(lock, current, NULL)) {
1232 		raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1233 		return 0;
1234 	}
1235 
1236 	set_current_state(state);
1237 
1238 	/* Setup the timer, when timeout != NULL */
1239 	if (unlikely(timeout))
1240 		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1241 
1242 	ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1243 
1244 	if (likely(!ret))
1245 		/* sleep on the mutex */
1246 		ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1247 
1248 	if (unlikely(ret)) {
1249 		__set_current_state(TASK_RUNNING);
1250 		remove_waiter(lock, &waiter);
1251 		rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1252 	}
1253 
1254 	/*
1255 	 * try_to_take_rt_mutex() sets the waiter bit
1256 	 * unconditionally. We might have to fix that up.
1257 	 */
1258 	fixup_rt_mutex_waiters(lock);
1259 
1260 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1261 
1262 	/* Remove pending timer: */
1263 	if (unlikely(timeout))
1264 		hrtimer_cancel(&timeout->timer);
1265 
1266 	debug_rt_mutex_free_waiter(&waiter);
1267 
1268 	return ret;
1269 }
1270 
1271 static inline int __rt_mutex_slowtrylock(struct rt_mutex *lock)
1272 {
1273 	int ret = try_to_take_rt_mutex(lock, current, NULL);
1274 
1275 	/*
1276 	 * try_to_take_rt_mutex() sets the lock waiters bit
1277 	 * unconditionally. Clean this up.
1278 	 */
1279 	fixup_rt_mutex_waiters(lock);
1280 
1281 	return ret;
1282 }
1283 
1284 /*
1285  * Slow path try-lock function:
1286  */
1287 static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1288 {
1289 	unsigned long flags;
1290 	int ret;
1291 
1292 	/*
1293 	 * If the lock already has an owner we fail to get the lock.
1294 	 * This can be done without taking the @lock->wait_lock as
1295 	 * it is only being read, and this is a trylock anyway.
1296 	 */
1297 	if (rt_mutex_owner(lock))
1298 		return 0;
1299 
1300 	/*
1301 	 * The mutex has currently no owner. Lock the wait lock and try to
1302 	 * acquire the lock. We use irqsave here to support early boot calls.
1303 	 */
1304 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1305 
1306 	ret = __rt_mutex_slowtrylock(lock);
1307 
1308 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1309 
1310 	return ret;
1311 }
1312 
1313 /*
1314  * Slow path to release a rt-mutex.
1315  *
1316  * Return whether the current task needs to call rt_mutex_postunlock().
1317  */
1318 static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1319 					struct wake_q_head *wake_q)
1320 {
1321 	unsigned long flags;
1322 
1323 	/* irqsave required to support early boot calls */
1324 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1325 
1326 	debug_rt_mutex_unlock(lock);
1327 
1328 	/*
1329 	 * We must be careful here if the fast path is enabled. If we
1330 	 * have no waiters queued we cannot set owner to NULL here
1331 	 * because of:
1332 	 *
1333 	 * foo->lock->owner = NULL;
1334 	 *			rtmutex_lock(foo->lock);   <- fast path
1335 	 *			free = atomic_dec_and_test(foo->refcnt);
1336 	 *			rtmutex_unlock(foo->lock); <- fast path
1337 	 *			if (free)
1338 	 *				kfree(foo);
1339 	 * raw_spin_unlock(foo->lock->wait_lock);
1340 	 *
1341 	 * So for the fastpath enabled kernel:
1342 	 *
1343 	 * Nothing can set the waiters bit as long as we hold
1344 	 * lock->wait_lock. So we do the following sequence:
1345 	 *
1346 	 *	owner = rt_mutex_owner(lock);
1347 	 *	clear_rt_mutex_waiters(lock);
1348 	 *	raw_spin_unlock(&lock->wait_lock);
1349 	 *	if (cmpxchg(&lock->owner, owner, 0) == owner)
1350 	 *		return;
1351 	 *	goto retry;
1352 	 *
1353 	 * The fastpath disabled variant is simple as all access to
1354 	 * lock->owner is serialized by lock->wait_lock:
1355 	 *
1356 	 *	lock->owner = NULL;
1357 	 *	raw_spin_unlock(&lock->wait_lock);
1358 	 */
1359 	while (!rt_mutex_has_waiters(lock)) {
1360 		/* Drops lock->wait_lock ! */
1361 		if (unlock_rt_mutex_safe(lock, flags) == true)
1362 			return false;
1363 		/* Relock the rtmutex and try again */
1364 		raw_spin_lock_irqsave(&lock->wait_lock, flags);
1365 	}
1366 
1367 	/*
1368 	 * The wakeup next waiter path does not suffer from the above
1369 	 * race. See the comments there.
1370 	 *
1371 	 * Queue the next waiter for wakeup once we release the wait_lock.
1372 	 */
1373 	mark_wakeup_next_waiter(wake_q, lock);
1374 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1375 
1376 	return true; /* call rt_mutex_postunlock() */
1377 }
1378 
1379 /*
1380  * debug aware fast / slowpath lock,trylock,unlock
1381  *
1382  * The atomic acquire/release ops are compiled away, when either the
1383  * architecture does not support cmpxchg or when debugging is enabled.
1384  */
1385 static inline int
1386 rt_mutex_fastlock(struct rt_mutex *lock, int state,
1387 		  int (*slowfn)(struct rt_mutex *lock, int state,
1388 				struct hrtimer_sleeper *timeout,
1389 				enum rtmutex_chainwalk chwalk))
1390 {
1391 	if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1392 		return 0;
1393 
1394 	return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1395 }
1396 
1397 static inline int
1398 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1399 			struct hrtimer_sleeper *timeout,
1400 			enum rtmutex_chainwalk chwalk,
1401 			int (*slowfn)(struct rt_mutex *lock, int state,
1402 				      struct hrtimer_sleeper *timeout,
1403 				      enum rtmutex_chainwalk chwalk))
1404 {
1405 	if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1406 	    likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1407 		return 0;
1408 
1409 	return slowfn(lock, state, timeout, chwalk);
1410 }
1411 
1412 static inline int
1413 rt_mutex_fasttrylock(struct rt_mutex *lock,
1414 		     int (*slowfn)(struct rt_mutex *lock))
1415 {
1416 	if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1417 		return 1;
1418 
1419 	return slowfn(lock);
1420 }
1421 
1422 /*
1423  * Performs the wakeup of the top-waiter and re-enables preemption.
1424  */
1425 void rt_mutex_postunlock(struct wake_q_head *wake_q)
1426 {
1427 	wake_up_q(wake_q);
1428 
1429 	/* Pairs with preempt_disable() in rt_mutex_slowunlock() */
1430 	preempt_enable();
1431 }
1432 
1433 static inline void
1434 rt_mutex_fastunlock(struct rt_mutex *lock,
1435 		    bool (*slowfn)(struct rt_mutex *lock,
1436 				   struct wake_q_head *wqh))
1437 {
1438 	DEFINE_WAKE_Q(wake_q);
1439 
1440 	if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1441 		return;
1442 
1443 	if (slowfn(lock, &wake_q))
1444 		rt_mutex_postunlock(&wake_q);
1445 }
1446 
1447 static inline void __rt_mutex_lock(struct rt_mutex *lock, unsigned int subclass)
1448 {
1449 	might_sleep();
1450 
1451 	mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_);
1452 	rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1453 }
1454 
1455 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1456 /**
1457  * rt_mutex_lock_nested - lock a rt_mutex
1458  *
1459  * @lock: the rt_mutex to be locked
1460  * @subclass: the lockdep subclass
1461  */
1462 void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass)
1463 {
1464 	__rt_mutex_lock(lock, subclass);
1465 }
1466 EXPORT_SYMBOL_GPL(rt_mutex_lock_nested);
1467 
1468 #else /* !CONFIG_DEBUG_LOCK_ALLOC */
1469 
1470 /**
1471  * rt_mutex_lock - lock a rt_mutex
1472  *
1473  * @lock: the rt_mutex to be locked
1474  */
1475 void __sched rt_mutex_lock(struct rt_mutex *lock)
1476 {
1477 	__rt_mutex_lock(lock, 0);
1478 }
1479 EXPORT_SYMBOL_GPL(rt_mutex_lock);
1480 #endif
1481 
1482 /**
1483  * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1484  *
1485  * @lock:		the rt_mutex to be locked
1486  *
1487  * Returns:
1488  *  0		on success
1489  * -EINTR	when interrupted by a signal
1490  */
1491 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1492 {
1493 	int ret;
1494 
1495 	might_sleep();
1496 
1497 	mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1498 	ret = rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1499 	if (ret)
1500 		mutex_release(&lock->dep_map, _RET_IP_);
1501 
1502 	return ret;
1503 }
1504 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1505 
1506 /*
1507  * Futex variant, must not use fastpath.
1508  */
1509 int __sched rt_mutex_futex_trylock(struct rt_mutex *lock)
1510 {
1511 	return rt_mutex_slowtrylock(lock);
1512 }
1513 
1514 int __sched __rt_mutex_futex_trylock(struct rt_mutex *lock)
1515 {
1516 	return __rt_mutex_slowtrylock(lock);
1517 }
1518 
1519 /**
1520  * rt_mutex_timed_lock - lock a rt_mutex interruptible
1521  *			the timeout structure is provided
1522  *			by the caller
1523  *
1524  * @lock:		the rt_mutex to be locked
1525  * @timeout:		timeout structure or NULL (no timeout)
1526  *
1527  * Returns:
1528  *  0		on success
1529  * -EINTR	when interrupted by a signal
1530  * -ETIMEDOUT	when the timeout expired
1531  */
1532 int
1533 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1534 {
1535 	int ret;
1536 
1537 	might_sleep();
1538 
1539 	mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1540 	ret = rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1541 				       RT_MUTEX_MIN_CHAINWALK,
1542 				       rt_mutex_slowlock);
1543 	if (ret)
1544 		mutex_release(&lock->dep_map, _RET_IP_);
1545 
1546 	return ret;
1547 }
1548 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1549 
1550 /**
1551  * rt_mutex_trylock - try to lock a rt_mutex
1552  *
1553  * @lock:	the rt_mutex to be locked
1554  *
1555  * This function can only be called in thread context. It's safe to
1556  * call it from atomic regions, but not from hard interrupt or soft
1557  * interrupt context.
1558  *
1559  * Returns 1 on success and 0 on contention
1560  */
1561 int __sched rt_mutex_trylock(struct rt_mutex *lock)
1562 {
1563 	int ret;
1564 
1565 	if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq()))
1566 		return 0;
1567 
1568 	ret = rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1569 	if (ret)
1570 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1571 
1572 	return ret;
1573 }
1574 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1575 
1576 /**
1577  * rt_mutex_unlock - unlock a rt_mutex
1578  *
1579  * @lock: the rt_mutex to be unlocked
1580  */
1581 void __sched rt_mutex_unlock(struct rt_mutex *lock)
1582 {
1583 	mutex_release(&lock->dep_map, _RET_IP_);
1584 	rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1585 }
1586 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1587 
1588 /**
1589  * __rt_mutex_futex_unlock - Futex variant, that since futex variants
1590  * do not use the fast-path, can be simple and will not need to retry.
1591  *
1592  * @lock:	The rt_mutex to be unlocked
1593  * @wake_q:	The wake queue head from which to get the next lock waiter
1594  */
1595 bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock,
1596 				    struct wake_q_head *wake_q)
1597 {
1598 	lockdep_assert_held(&lock->wait_lock);
1599 
1600 	debug_rt_mutex_unlock(lock);
1601 
1602 	if (!rt_mutex_has_waiters(lock)) {
1603 		lock->owner = NULL;
1604 		return false; /* done */
1605 	}
1606 
1607 	/*
1608 	 * We've already deboosted, mark_wakeup_next_waiter() will
1609 	 * retain preempt_disabled when we drop the wait_lock, to
1610 	 * avoid inversion prior to the wakeup.  preempt_disable()
1611 	 * therein pairs with rt_mutex_postunlock().
1612 	 */
1613 	mark_wakeup_next_waiter(wake_q, lock);
1614 
1615 	return true; /* call postunlock() */
1616 }
1617 
1618 void __sched rt_mutex_futex_unlock(struct rt_mutex *lock)
1619 {
1620 	DEFINE_WAKE_Q(wake_q);
1621 	unsigned long flags;
1622 	bool postunlock;
1623 
1624 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1625 	postunlock = __rt_mutex_futex_unlock(lock, &wake_q);
1626 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1627 
1628 	if (postunlock)
1629 		rt_mutex_postunlock(&wake_q);
1630 }
1631 
1632 /**
1633  * rt_mutex_destroy - mark a mutex unusable
1634  * @lock: the mutex to be destroyed
1635  *
1636  * This function marks the mutex uninitialized, and any subsequent
1637  * use of the mutex is forbidden. The mutex must not be locked when
1638  * this function is called.
1639  */
1640 void rt_mutex_destroy(struct rt_mutex *lock)
1641 {
1642 	WARN_ON(rt_mutex_is_locked(lock));
1643 #ifdef CONFIG_DEBUG_RT_MUTEXES
1644 	lock->magic = NULL;
1645 #endif
1646 }
1647 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1648 
1649 /**
1650  * __rt_mutex_init - initialize the rt_mutex
1651  *
1652  * @lock:	The rt_mutex to be initialized
1653  * @name:	The lock name used for debugging
1654  * @key:	The lock class key used for debugging
1655  *
1656  * Initialize the rt_mutex to unlocked state.
1657  *
1658  * Initializing of a locked rt_mutex is not allowed
1659  */
1660 void __rt_mutex_init(struct rt_mutex *lock, const char *name,
1661 		     struct lock_class_key *key)
1662 {
1663 	lock->owner = NULL;
1664 	raw_spin_lock_init(&lock->wait_lock);
1665 	lock->waiters = RB_ROOT_CACHED;
1666 
1667 	if (name && key)
1668 		debug_rt_mutex_init(lock, name, key);
1669 }
1670 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1671 
1672 /**
1673  * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1674  *				proxy owner
1675  *
1676  * @lock:	the rt_mutex to be locked
1677  * @proxy_owner:the task to set as owner
1678  *
1679  * No locking. Caller has to do serializing itself
1680  *
1681  * Special API call for PI-futex support. This initializes the rtmutex and
1682  * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
1683  * possible at this point because the pi_state which contains the rtmutex
1684  * is not yet visible to other tasks.
1685  */
1686 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1687 				struct task_struct *proxy_owner)
1688 {
1689 	__rt_mutex_init(lock, NULL, NULL);
1690 	debug_rt_mutex_proxy_lock(lock, proxy_owner);
1691 	rt_mutex_set_owner(lock, proxy_owner);
1692 }
1693 
1694 /**
1695  * rt_mutex_proxy_unlock - release a lock on behalf of owner
1696  *
1697  * @lock:	the rt_mutex to be locked
1698  *
1699  * No locking. Caller has to do serializing itself
1700  *
1701  * Special API call for PI-futex support. This merrily cleans up the rtmutex
1702  * (debugging) state. Concurrent operations on this rt_mutex are not
1703  * possible because it belongs to the pi_state which is about to be freed
1704  * and it is not longer visible to other tasks.
1705  */
1706 void rt_mutex_proxy_unlock(struct rt_mutex *lock)
1707 {
1708 	debug_rt_mutex_proxy_unlock(lock);
1709 	rt_mutex_set_owner(lock, NULL);
1710 }
1711 
1712 /**
1713  * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1714  * @lock:		the rt_mutex to take
1715  * @waiter:		the pre-initialized rt_mutex_waiter
1716  * @task:		the task to prepare
1717  *
1718  * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1719  * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1720  *
1721  * NOTE: does _NOT_ remove the @waiter on failure; must either call
1722  * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this.
1723  *
1724  * Returns:
1725  *  0 - task blocked on lock
1726  *  1 - acquired the lock for task, caller should wake it up
1727  * <0 - error
1728  *
1729  * Special API call for PI-futex support.
1730  */
1731 int __rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1732 			      struct rt_mutex_waiter *waiter,
1733 			      struct task_struct *task)
1734 {
1735 	int ret;
1736 
1737 	lockdep_assert_held(&lock->wait_lock);
1738 
1739 	if (try_to_take_rt_mutex(lock, task, NULL))
1740 		return 1;
1741 
1742 	/* We enforce deadlock detection for futexes */
1743 	ret = task_blocks_on_rt_mutex(lock, waiter, task,
1744 				      RT_MUTEX_FULL_CHAINWALK);
1745 
1746 	if (ret && !rt_mutex_owner(lock)) {
1747 		/*
1748 		 * Reset the return value. We might have
1749 		 * returned with -EDEADLK and the owner
1750 		 * released the lock while we were walking the
1751 		 * pi chain.  Let the waiter sort it out.
1752 		 */
1753 		ret = 0;
1754 	}
1755 
1756 	debug_rt_mutex_print_deadlock(waiter);
1757 
1758 	return ret;
1759 }
1760 
1761 /**
1762  * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1763  * @lock:		the rt_mutex to take
1764  * @waiter:		the pre-initialized rt_mutex_waiter
1765  * @task:		the task to prepare
1766  *
1767  * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1768  * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1769  *
1770  * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter
1771  * on failure.
1772  *
1773  * Returns:
1774  *  0 - task blocked on lock
1775  *  1 - acquired the lock for task, caller should wake it up
1776  * <0 - error
1777  *
1778  * Special API call for PI-futex support.
1779  */
1780 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1781 			      struct rt_mutex_waiter *waiter,
1782 			      struct task_struct *task)
1783 {
1784 	int ret;
1785 
1786 	raw_spin_lock_irq(&lock->wait_lock);
1787 	ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
1788 	if (unlikely(ret))
1789 		remove_waiter(lock, waiter);
1790 	raw_spin_unlock_irq(&lock->wait_lock);
1791 
1792 	return ret;
1793 }
1794 
1795 /**
1796  * rt_mutex_next_owner - return the next owner of the lock
1797  *
1798  * @lock: the rt lock query
1799  *
1800  * Returns the next owner of the lock or NULL
1801  *
1802  * Caller has to serialize against other accessors to the lock
1803  * itself.
1804  *
1805  * Special API call for PI-futex support
1806  */
1807 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1808 {
1809 	if (!rt_mutex_has_waiters(lock))
1810 		return NULL;
1811 
1812 	return rt_mutex_top_waiter(lock)->task;
1813 }
1814 
1815 /**
1816  * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
1817  * @lock:		the rt_mutex we were woken on
1818  * @to:			the timeout, null if none. hrtimer should already have
1819  *			been started.
1820  * @waiter:		the pre-initialized rt_mutex_waiter
1821  *
1822  * Wait for the lock acquisition started on our behalf by
1823  * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
1824  * rt_mutex_cleanup_proxy_lock().
1825  *
1826  * Returns:
1827  *  0 - success
1828  * <0 - error, one of -EINTR, -ETIMEDOUT
1829  *
1830  * Special API call for PI-futex support
1831  */
1832 int rt_mutex_wait_proxy_lock(struct rt_mutex *lock,
1833 			       struct hrtimer_sleeper *to,
1834 			       struct rt_mutex_waiter *waiter)
1835 {
1836 	int ret;
1837 
1838 	raw_spin_lock_irq(&lock->wait_lock);
1839 	/* sleep on the mutex */
1840 	set_current_state(TASK_INTERRUPTIBLE);
1841 	ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1842 	/*
1843 	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1844 	 * have to fix that up.
1845 	 */
1846 	fixup_rt_mutex_waiters(lock);
1847 	raw_spin_unlock_irq(&lock->wait_lock);
1848 
1849 	return ret;
1850 }
1851 
1852 /**
1853  * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
1854  * @lock:		the rt_mutex we were woken on
1855  * @waiter:		the pre-initialized rt_mutex_waiter
1856  *
1857  * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or
1858  * rt_mutex_wait_proxy_lock().
1859  *
1860  * Unless we acquired the lock; we're still enqueued on the wait-list and can
1861  * in fact still be granted ownership until we're removed. Therefore we can
1862  * find we are in fact the owner and must disregard the
1863  * rt_mutex_wait_proxy_lock() failure.
1864  *
1865  * Returns:
1866  *  true  - did the cleanup, we done.
1867  *  false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
1868  *          caller should disregards its return value.
1869  *
1870  * Special API call for PI-futex support
1871  */
1872 bool rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock,
1873 				 struct rt_mutex_waiter *waiter)
1874 {
1875 	bool cleanup = false;
1876 
1877 	raw_spin_lock_irq(&lock->wait_lock);
1878 	/*
1879 	 * Do an unconditional try-lock, this deals with the lock stealing
1880 	 * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
1881 	 * sets a NULL owner.
1882 	 *
1883 	 * We're not interested in the return value, because the subsequent
1884 	 * test on rt_mutex_owner() will infer that. If the trylock succeeded,
1885 	 * we will own the lock and it will have removed the waiter. If we
1886 	 * failed the trylock, we're still not owner and we need to remove
1887 	 * ourselves.
1888 	 */
1889 	try_to_take_rt_mutex(lock, current, waiter);
1890 	/*
1891 	 * Unless we're the owner; we're still enqueued on the wait_list.
1892 	 * So check if we became owner, if not, take us off the wait_list.
1893 	 */
1894 	if (rt_mutex_owner(lock) != current) {
1895 		remove_waiter(lock, waiter);
1896 		cleanup = true;
1897 	}
1898 	/*
1899 	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1900 	 * have to fix that up.
1901 	 */
1902 	fixup_rt_mutex_waiters(lock);
1903 
1904 	raw_spin_unlock_irq(&lock->wait_lock);
1905 
1906 	return cleanup;
1907 }
1908