xref: /openbmc/linux/kernel/locking/rtmutex.c (revision 65417d9f)
1 /*
2  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3  *
4  * started by Ingo Molnar and Thomas Gleixner.
5  *
6  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9  *  Copyright (C) 2006 Esben Nielsen
10  *
11  *  See Documentation/locking/rt-mutex-design.txt for details.
12  */
13 #include <linux/spinlock.h>
14 #include <linux/export.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/rt.h>
17 #include <linux/sched/deadline.h>
18 #include <linux/sched/wake_q.h>
19 #include <linux/sched/debug.h>
20 #include <linux/timer.h>
21 
22 #include "rtmutex_common.h"
23 
24 /*
25  * lock->owner state tracking:
26  *
27  * lock->owner holds the task_struct pointer of the owner. Bit 0
28  * is used to keep track of the "lock has waiters" state.
29  *
30  * owner	bit0
31  * NULL		0	lock is free (fast acquire possible)
32  * NULL		1	lock is free and has waiters and the top waiter
33  *				is going to take the lock*
34  * taskpointer	0	lock is held (fast release possible)
35  * taskpointer	1	lock is held and has waiters**
36  *
37  * The fast atomic compare exchange based acquire and release is only
38  * possible when bit 0 of lock->owner is 0.
39  *
40  * (*) It also can be a transitional state when grabbing the lock
41  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
42  * we need to set the bit0 before looking at the lock, and the owner may be
43  * NULL in this small time, hence this can be a transitional state.
44  *
45  * (**) There is a small time when bit 0 is set but there are no
46  * waiters. This can happen when grabbing the lock in the slow path.
47  * To prevent a cmpxchg of the owner releasing the lock, we need to
48  * set this bit before looking at the lock.
49  */
50 
51 static void
52 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
53 {
54 	unsigned long val = (unsigned long)owner;
55 
56 	if (rt_mutex_has_waiters(lock))
57 		val |= RT_MUTEX_HAS_WAITERS;
58 
59 	lock->owner = (struct task_struct *)val;
60 }
61 
62 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
63 {
64 	lock->owner = (struct task_struct *)
65 			((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
66 }
67 
68 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
69 {
70 	unsigned long owner, *p = (unsigned long *) &lock->owner;
71 
72 	if (rt_mutex_has_waiters(lock))
73 		return;
74 
75 	/*
76 	 * The rbtree has no waiters enqueued, now make sure that the
77 	 * lock->owner still has the waiters bit set, otherwise the
78 	 * following can happen:
79 	 *
80 	 * CPU 0	CPU 1		CPU2
81 	 * l->owner=T1
82 	 *		rt_mutex_lock(l)
83 	 *		lock(l->lock)
84 	 *		l->owner = T1 | HAS_WAITERS;
85 	 *		enqueue(T2)
86 	 *		boost()
87 	 *		  unlock(l->lock)
88 	 *		block()
89 	 *
90 	 *				rt_mutex_lock(l)
91 	 *				lock(l->lock)
92 	 *				l->owner = T1 | HAS_WAITERS;
93 	 *				enqueue(T3)
94 	 *				boost()
95 	 *				  unlock(l->lock)
96 	 *				block()
97 	 *		signal(->T2)	signal(->T3)
98 	 *		lock(l->lock)
99 	 *		dequeue(T2)
100 	 *		deboost()
101 	 *		  unlock(l->lock)
102 	 *				lock(l->lock)
103 	 *				dequeue(T3)
104 	 *				 ==> wait list is empty
105 	 *				deboost()
106 	 *				 unlock(l->lock)
107 	 *		lock(l->lock)
108 	 *		fixup_rt_mutex_waiters()
109 	 *		  if (wait_list_empty(l) {
110 	 *		    l->owner = owner
111 	 *		    owner = l->owner & ~HAS_WAITERS;
112 	 *		      ==> l->owner = T1
113 	 *		  }
114 	 *				lock(l->lock)
115 	 * rt_mutex_unlock(l)		fixup_rt_mutex_waiters()
116 	 *				  if (wait_list_empty(l) {
117 	 *				    owner = l->owner & ~HAS_WAITERS;
118 	 * cmpxchg(l->owner, T1, NULL)
119 	 *  ===> Success (l->owner = NULL)
120 	 *
121 	 *				    l->owner = owner
122 	 *				      ==> l->owner = T1
123 	 *				  }
124 	 *
125 	 * With the check for the waiter bit in place T3 on CPU2 will not
126 	 * overwrite. All tasks fiddling with the waiters bit are
127 	 * serialized by l->lock, so nothing else can modify the waiters
128 	 * bit. If the bit is set then nothing can change l->owner either
129 	 * so the simple RMW is safe. The cmpxchg() will simply fail if it
130 	 * happens in the middle of the RMW because the waiters bit is
131 	 * still set.
132 	 */
133 	owner = READ_ONCE(*p);
134 	if (owner & RT_MUTEX_HAS_WAITERS)
135 		WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
136 }
137 
138 /*
139  * We can speed up the acquire/release, if there's no debugging state to be
140  * set up.
141  */
142 #ifndef CONFIG_DEBUG_RT_MUTEXES
143 # define rt_mutex_cmpxchg_relaxed(l,c,n) (cmpxchg_relaxed(&l->owner, c, n) == c)
144 # define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
145 # define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
146 
147 /*
148  * Callers must hold the ->wait_lock -- which is the whole purpose as we force
149  * all future threads that attempt to [Rmw] the lock to the slowpath. As such
150  * relaxed semantics suffice.
151  */
152 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
153 {
154 	unsigned long owner, *p = (unsigned long *) &lock->owner;
155 
156 	do {
157 		owner = *p;
158 	} while (cmpxchg_relaxed(p, owner,
159 				 owner | RT_MUTEX_HAS_WAITERS) != owner);
160 }
161 
162 /*
163  * Safe fastpath aware unlock:
164  * 1) Clear the waiters bit
165  * 2) Drop lock->wait_lock
166  * 3) Try to unlock the lock with cmpxchg
167  */
168 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
169 					unsigned long flags)
170 	__releases(lock->wait_lock)
171 {
172 	struct task_struct *owner = rt_mutex_owner(lock);
173 
174 	clear_rt_mutex_waiters(lock);
175 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
176 	/*
177 	 * If a new waiter comes in between the unlock and the cmpxchg
178 	 * we have two situations:
179 	 *
180 	 * unlock(wait_lock);
181 	 *					lock(wait_lock);
182 	 * cmpxchg(p, owner, 0) == owner
183 	 *					mark_rt_mutex_waiters(lock);
184 	 *					acquire(lock);
185 	 * or:
186 	 *
187 	 * unlock(wait_lock);
188 	 *					lock(wait_lock);
189 	 *					mark_rt_mutex_waiters(lock);
190 	 *
191 	 * cmpxchg(p, owner, 0) != owner
192 	 *					enqueue_waiter();
193 	 *					unlock(wait_lock);
194 	 * lock(wait_lock);
195 	 * wake waiter();
196 	 * unlock(wait_lock);
197 	 *					lock(wait_lock);
198 	 *					acquire(lock);
199 	 */
200 	return rt_mutex_cmpxchg_release(lock, owner, NULL);
201 }
202 
203 #else
204 # define rt_mutex_cmpxchg_relaxed(l,c,n)	(0)
205 # define rt_mutex_cmpxchg_acquire(l,c,n)	(0)
206 # define rt_mutex_cmpxchg_release(l,c,n)	(0)
207 
208 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
209 {
210 	lock->owner = (struct task_struct *)
211 			((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
212 }
213 
214 /*
215  * Simple slow path only version: lock->owner is protected by lock->wait_lock.
216  */
217 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
218 					unsigned long flags)
219 	__releases(lock->wait_lock)
220 {
221 	lock->owner = NULL;
222 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
223 	return true;
224 }
225 #endif
226 
227 /*
228  * Only use with rt_mutex_waiter_{less,equal}()
229  */
230 #define task_to_waiter(p)	\
231 	&(struct rt_mutex_waiter){ .prio = (p)->prio, .deadline = (p)->dl.deadline }
232 
233 static inline int
234 rt_mutex_waiter_less(struct rt_mutex_waiter *left,
235 		     struct rt_mutex_waiter *right)
236 {
237 	if (left->prio < right->prio)
238 		return 1;
239 
240 	/*
241 	 * If both waiters have dl_prio(), we check the deadlines of the
242 	 * associated tasks.
243 	 * If left waiter has a dl_prio(), and we didn't return 1 above,
244 	 * then right waiter has a dl_prio() too.
245 	 */
246 	if (dl_prio(left->prio))
247 		return dl_time_before(left->deadline, right->deadline);
248 
249 	return 0;
250 }
251 
252 static inline int
253 rt_mutex_waiter_equal(struct rt_mutex_waiter *left,
254 		      struct rt_mutex_waiter *right)
255 {
256 	if (left->prio != right->prio)
257 		return 0;
258 
259 	/*
260 	 * If both waiters have dl_prio(), we check the deadlines of the
261 	 * associated tasks.
262 	 * If left waiter has a dl_prio(), and we didn't return 0 above,
263 	 * then right waiter has a dl_prio() too.
264 	 */
265 	if (dl_prio(left->prio))
266 		return left->deadline == right->deadline;
267 
268 	return 1;
269 }
270 
271 static void
272 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
273 {
274 	struct rb_node **link = &lock->waiters.rb_root.rb_node;
275 	struct rb_node *parent = NULL;
276 	struct rt_mutex_waiter *entry;
277 	bool leftmost = true;
278 
279 	while (*link) {
280 		parent = *link;
281 		entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
282 		if (rt_mutex_waiter_less(waiter, entry)) {
283 			link = &parent->rb_left;
284 		} else {
285 			link = &parent->rb_right;
286 			leftmost = false;
287 		}
288 	}
289 
290 	rb_link_node(&waiter->tree_entry, parent, link);
291 	rb_insert_color_cached(&waiter->tree_entry, &lock->waiters, leftmost);
292 }
293 
294 static void
295 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
296 {
297 	if (RB_EMPTY_NODE(&waiter->tree_entry))
298 		return;
299 
300 	rb_erase_cached(&waiter->tree_entry, &lock->waiters);
301 	RB_CLEAR_NODE(&waiter->tree_entry);
302 }
303 
304 static void
305 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
306 {
307 	struct rb_node **link = &task->pi_waiters.rb_root.rb_node;
308 	struct rb_node *parent = NULL;
309 	struct rt_mutex_waiter *entry;
310 	bool leftmost = true;
311 
312 	while (*link) {
313 		parent = *link;
314 		entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
315 		if (rt_mutex_waiter_less(waiter, entry)) {
316 			link = &parent->rb_left;
317 		} else {
318 			link = &parent->rb_right;
319 			leftmost = false;
320 		}
321 	}
322 
323 	rb_link_node(&waiter->pi_tree_entry, parent, link);
324 	rb_insert_color_cached(&waiter->pi_tree_entry, &task->pi_waiters, leftmost);
325 }
326 
327 static void
328 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
329 {
330 	if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
331 		return;
332 
333 	rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters);
334 	RB_CLEAR_NODE(&waiter->pi_tree_entry);
335 }
336 
337 static void rt_mutex_adjust_prio(struct task_struct *p)
338 {
339 	struct task_struct *pi_task = NULL;
340 
341 	lockdep_assert_held(&p->pi_lock);
342 
343 	if (task_has_pi_waiters(p))
344 		pi_task = task_top_pi_waiter(p)->task;
345 
346 	rt_mutex_setprio(p, pi_task);
347 }
348 
349 /*
350  * Deadlock detection is conditional:
351  *
352  * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
353  * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
354  *
355  * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
356  * conducted independent of the detect argument.
357  *
358  * If the waiter argument is NULL this indicates the deboost path and
359  * deadlock detection is disabled independent of the detect argument
360  * and the config settings.
361  */
362 static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
363 					  enum rtmutex_chainwalk chwalk)
364 {
365 	/*
366 	 * This is just a wrapper function for the following call,
367 	 * because debug_rt_mutex_detect_deadlock() smells like a magic
368 	 * debug feature and I wanted to keep the cond function in the
369 	 * main source file along with the comments instead of having
370 	 * two of the same in the headers.
371 	 */
372 	return debug_rt_mutex_detect_deadlock(waiter, chwalk);
373 }
374 
375 /*
376  * Max number of times we'll walk the boosting chain:
377  */
378 int max_lock_depth = 1024;
379 
380 static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
381 {
382 	return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
383 }
384 
385 /*
386  * Adjust the priority chain. Also used for deadlock detection.
387  * Decreases task's usage by one - may thus free the task.
388  *
389  * @task:	the task owning the mutex (owner) for which a chain walk is
390  *		probably needed
391  * @chwalk:	do we have to carry out deadlock detection?
392  * @orig_lock:	the mutex (can be NULL if we are walking the chain to recheck
393  *		things for a task that has just got its priority adjusted, and
394  *		is waiting on a mutex)
395  * @next_lock:	the mutex on which the owner of @orig_lock was blocked before
396  *		we dropped its pi_lock. Is never dereferenced, only used for
397  *		comparison to detect lock chain changes.
398  * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
399  *		its priority to the mutex owner (can be NULL in the case
400  *		depicted above or if the top waiter is gone away and we are
401  *		actually deboosting the owner)
402  * @top_task:	the current top waiter
403  *
404  * Returns 0 or -EDEADLK.
405  *
406  * Chain walk basics and protection scope
407  *
408  * [R] refcount on task
409  * [P] task->pi_lock held
410  * [L] rtmutex->wait_lock held
411  *
412  * Step	Description				Protected by
413  *	function arguments:
414  *	@task					[R]
415  *	@orig_lock if != NULL			@top_task is blocked on it
416  *	@next_lock				Unprotected. Cannot be
417  *						dereferenced. Only used for
418  *						comparison.
419  *	@orig_waiter if != NULL			@top_task is blocked on it
420  *	@top_task				current, or in case of proxy
421  *						locking protected by calling
422  *						code
423  *	again:
424  *	  loop_sanity_check();
425  *	retry:
426  * [1]	  lock(task->pi_lock);			[R] acquire [P]
427  * [2]	  waiter = task->pi_blocked_on;		[P]
428  * [3]	  check_exit_conditions_1();		[P]
429  * [4]	  lock = waiter->lock;			[P]
430  * [5]	  if (!try_lock(lock->wait_lock)) {	[P] try to acquire [L]
431  *	    unlock(task->pi_lock);		release [P]
432  *	    goto retry;
433  *	  }
434  * [6]	  check_exit_conditions_2();		[P] + [L]
435  * [7]	  requeue_lock_waiter(lock, waiter);	[P] + [L]
436  * [8]	  unlock(task->pi_lock);		release [P]
437  *	  put_task_struct(task);		release [R]
438  * [9]	  check_exit_conditions_3();		[L]
439  * [10]	  task = owner(lock);			[L]
440  *	  get_task_struct(task);		[L] acquire [R]
441  *	  lock(task->pi_lock);			[L] acquire [P]
442  * [11]	  requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
443  * [12]	  check_exit_conditions_4();		[P] + [L]
444  * [13]	  unlock(task->pi_lock);		release [P]
445  *	  unlock(lock->wait_lock);		release [L]
446  *	  goto again;
447  */
448 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
449 				      enum rtmutex_chainwalk chwalk,
450 				      struct rt_mutex *orig_lock,
451 				      struct rt_mutex *next_lock,
452 				      struct rt_mutex_waiter *orig_waiter,
453 				      struct task_struct *top_task)
454 {
455 	struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
456 	struct rt_mutex_waiter *prerequeue_top_waiter;
457 	int ret = 0, depth = 0;
458 	struct rt_mutex *lock;
459 	bool detect_deadlock;
460 	bool requeue = true;
461 
462 	detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
463 
464 	/*
465 	 * The (de)boosting is a step by step approach with a lot of
466 	 * pitfalls. We want this to be preemptible and we want hold a
467 	 * maximum of two locks per step. So we have to check
468 	 * carefully whether things change under us.
469 	 */
470  again:
471 	/*
472 	 * We limit the lock chain length for each invocation.
473 	 */
474 	if (++depth > max_lock_depth) {
475 		static int prev_max;
476 
477 		/*
478 		 * Print this only once. If the admin changes the limit,
479 		 * print a new message when reaching the limit again.
480 		 */
481 		if (prev_max != max_lock_depth) {
482 			prev_max = max_lock_depth;
483 			printk(KERN_WARNING "Maximum lock depth %d reached "
484 			       "task: %s (%d)\n", max_lock_depth,
485 			       top_task->comm, task_pid_nr(top_task));
486 		}
487 		put_task_struct(task);
488 
489 		return -EDEADLK;
490 	}
491 
492 	/*
493 	 * We are fully preemptible here and only hold the refcount on
494 	 * @task. So everything can have changed under us since the
495 	 * caller or our own code below (goto retry/again) dropped all
496 	 * locks.
497 	 */
498  retry:
499 	/*
500 	 * [1] Task cannot go away as we did a get_task() before !
501 	 */
502 	raw_spin_lock_irq(&task->pi_lock);
503 
504 	/*
505 	 * [2] Get the waiter on which @task is blocked on.
506 	 */
507 	waiter = task->pi_blocked_on;
508 
509 	/*
510 	 * [3] check_exit_conditions_1() protected by task->pi_lock.
511 	 */
512 
513 	/*
514 	 * Check whether the end of the boosting chain has been
515 	 * reached or the state of the chain has changed while we
516 	 * dropped the locks.
517 	 */
518 	if (!waiter)
519 		goto out_unlock_pi;
520 
521 	/*
522 	 * Check the orig_waiter state. After we dropped the locks,
523 	 * the previous owner of the lock might have released the lock.
524 	 */
525 	if (orig_waiter && !rt_mutex_owner(orig_lock))
526 		goto out_unlock_pi;
527 
528 	/*
529 	 * We dropped all locks after taking a refcount on @task, so
530 	 * the task might have moved on in the lock chain or even left
531 	 * the chain completely and blocks now on an unrelated lock or
532 	 * on @orig_lock.
533 	 *
534 	 * We stored the lock on which @task was blocked in @next_lock,
535 	 * so we can detect the chain change.
536 	 */
537 	if (next_lock != waiter->lock)
538 		goto out_unlock_pi;
539 
540 	/*
541 	 * Drop out, when the task has no waiters. Note,
542 	 * top_waiter can be NULL, when we are in the deboosting
543 	 * mode!
544 	 */
545 	if (top_waiter) {
546 		if (!task_has_pi_waiters(task))
547 			goto out_unlock_pi;
548 		/*
549 		 * If deadlock detection is off, we stop here if we
550 		 * are not the top pi waiter of the task. If deadlock
551 		 * detection is enabled we continue, but stop the
552 		 * requeueing in the chain walk.
553 		 */
554 		if (top_waiter != task_top_pi_waiter(task)) {
555 			if (!detect_deadlock)
556 				goto out_unlock_pi;
557 			else
558 				requeue = false;
559 		}
560 	}
561 
562 	/*
563 	 * If the waiter priority is the same as the task priority
564 	 * then there is no further priority adjustment necessary.  If
565 	 * deadlock detection is off, we stop the chain walk. If its
566 	 * enabled we continue, but stop the requeueing in the chain
567 	 * walk.
568 	 */
569 	if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
570 		if (!detect_deadlock)
571 			goto out_unlock_pi;
572 		else
573 			requeue = false;
574 	}
575 
576 	/*
577 	 * [4] Get the next lock
578 	 */
579 	lock = waiter->lock;
580 	/*
581 	 * [5] We need to trylock here as we are holding task->pi_lock,
582 	 * which is the reverse lock order versus the other rtmutex
583 	 * operations.
584 	 */
585 	if (!raw_spin_trylock(&lock->wait_lock)) {
586 		raw_spin_unlock_irq(&task->pi_lock);
587 		cpu_relax();
588 		goto retry;
589 	}
590 
591 	/*
592 	 * [6] check_exit_conditions_2() protected by task->pi_lock and
593 	 * lock->wait_lock.
594 	 *
595 	 * Deadlock detection. If the lock is the same as the original
596 	 * lock which caused us to walk the lock chain or if the
597 	 * current lock is owned by the task which initiated the chain
598 	 * walk, we detected a deadlock.
599 	 */
600 	if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
601 		debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
602 		raw_spin_unlock(&lock->wait_lock);
603 		ret = -EDEADLK;
604 		goto out_unlock_pi;
605 	}
606 
607 	/*
608 	 * If we just follow the lock chain for deadlock detection, no
609 	 * need to do all the requeue operations. To avoid a truckload
610 	 * of conditionals around the various places below, just do the
611 	 * minimum chain walk checks.
612 	 */
613 	if (!requeue) {
614 		/*
615 		 * No requeue[7] here. Just release @task [8]
616 		 */
617 		raw_spin_unlock(&task->pi_lock);
618 		put_task_struct(task);
619 
620 		/*
621 		 * [9] check_exit_conditions_3 protected by lock->wait_lock.
622 		 * If there is no owner of the lock, end of chain.
623 		 */
624 		if (!rt_mutex_owner(lock)) {
625 			raw_spin_unlock_irq(&lock->wait_lock);
626 			return 0;
627 		}
628 
629 		/* [10] Grab the next task, i.e. owner of @lock */
630 		task = rt_mutex_owner(lock);
631 		get_task_struct(task);
632 		raw_spin_lock(&task->pi_lock);
633 
634 		/*
635 		 * No requeue [11] here. We just do deadlock detection.
636 		 *
637 		 * [12] Store whether owner is blocked
638 		 * itself. Decision is made after dropping the locks
639 		 */
640 		next_lock = task_blocked_on_lock(task);
641 		/*
642 		 * Get the top waiter for the next iteration
643 		 */
644 		top_waiter = rt_mutex_top_waiter(lock);
645 
646 		/* [13] Drop locks */
647 		raw_spin_unlock(&task->pi_lock);
648 		raw_spin_unlock_irq(&lock->wait_lock);
649 
650 		/* If owner is not blocked, end of chain. */
651 		if (!next_lock)
652 			goto out_put_task;
653 		goto again;
654 	}
655 
656 	/*
657 	 * Store the current top waiter before doing the requeue
658 	 * operation on @lock. We need it for the boost/deboost
659 	 * decision below.
660 	 */
661 	prerequeue_top_waiter = rt_mutex_top_waiter(lock);
662 
663 	/* [7] Requeue the waiter in the lock waiter tree. */
664 	rt_mutex_dequeue(lock, waiter);
665 
666 	/*
667 	 * Update the waiter prio fields now that we're dequeued.
668 	 *
669 	 * These values can have changed through either:
670 	 *
671 	 *   sys_sched_set_scheduler() / sys_sched_setattr()
672 	 *
673 	 * or
674 	 *
675 	 *   DL CBS enforcement advancing the effective deadline.
676 	 *
677 	 * Even though pi_waiters also uses these fields, and that tree is only
678 	 * updated in [11], we can do this here, since we hold [L], which
679 	 * serializes all pi_waiters access and rb_erase() does not care about
680 	 * the values of the node being removed.
681 	 */
682 	waiter->prio = task->prio;
683 	waiter->deadline = task->dl.deadline;
684 
685 	rt_mutex_enqueue(lock, waiter);
686 
687 	/* [8] Release the task */
688 	raw_spin_unlock(&task->pi_lock);
689 	put_task_struct(task);
690 
691 	/*
692 	 * [9] check_exit_conditions_3 protected by lock->wait_lock.
693 	 *
694 	 * We must abort the chain walk if there is no lock owner even
695 	 * in the dead lock detection case, as we have nothing to
696 	 * follow here. This is the end of the chain we are walking.
697 	 */
698 	if (!rt_mutex_owner(lock)) {
699 		/*
700 		 * If the requeue [7] above changed the top waiter,
701 		 * then we need to wake the new top waiter up to try
702 		 * to get the lock.
703 		 */
704 		if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
705 			wake_up_process(rt_mutex_top_waiter(lock)->task);
706 		raw_spin_unlock_irq(&lock->wait_lock);
707 		return 0;
708 	}
709 
710 	/* [10] Grab the next task, i.e. the owner of @lock */
711 	task = rt_mutex_owner(lock);
712 	get_task_struct(task);
713 	raw_spin_lock(&task->pi_lock);
714 
715 	/* [11] requeue the pi waiters if necessary */
716 	if (waiter == rt_mutex_top_waiter(lock)) {
717 		/*
718 		 * The waiter became the new top (highest priority)
719 		 * waiter on the lock. Replace the previous top waiter
720 		 * in the owner tasks pi waiters tree with this waiter
721 		 * and adjust the priority of the owner.
722 		 */
723 		rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
724 		rt_mutex_enqueue_pi(task, waiter);
725 		rt_mutex_adjust_prio(task);
726 
727 	} else if (prerequeue_top_waiter == waiter) {
728 		/*
729 		 * The waiter was the top waiter on the lock, but is
730 		 * no longer the top prority waiter. Replace waiter in
731 		 * the owner tasks pi waiters tree with the new top
732 		 * (highest priority) waiter and adjust the priority
733 		 * of the owner.
734 		 * The new top waiter is stored in @waiter so that
735 		 * @waiter == @top_waiter evaluates to true below and
736 		 * we continue to deboost the rest of the chain.
737 		 */
738 		rt_mutex_dequeue_pi(task, waiter);
739 		waiter = rt_mutex_top_waiter(lock);
740 		rt_mutex_enqueue_pi(task, waiter);
741 		rt_mutex_adjust_prio(task);
742 	} else {
743 		/*
744 		 * Nothing changed. No need to do any priority
745 		 * adjustment.
746 		 */
747 	}
748 
749 	/*
750 	 * [12] check_exit_conditions_4() protected by task->pi_lock
751 	 * and lock->wait_lock. The actual decisions are made after we
752 	 * dropped the locks.
753 	 *
754 	 * Check whether the task which owns the current lock is pi
755 	 * blocked itself. If yes we store a pointer to the lock for
756 	 * the lock chain change detection above. After we dropped
757 	 * task->pi_lock next_lock cannot be dereferenced anymore.
758 	 */
759 	next_lock = task_blocked_on_lock(task);
760 	/*
761 	 * Store the top waiter of @lock for the end of chain walk
762 	 * decision below.
763 	 */
764 	top_waiter = rt_mutex_top_waiter(lock);
765 
766 	/* [13] Drop the locks */
767 	raw_spin_unlock(&task->pi_lock);
768 	raw_spin_unlock_irq(&lock->wait_lock);
769 
770 	/*
771 	 * Make the actual exit decisions [12], based on the stored
772 	 * values.
773 	 *
774 	 * We reached the end of the lock chain. Stop right here. No
775 	 * point to go back just to figure that out.
776 	 */
777 	if (!next_lock)
778 		goto out_put_task;
779 
780 	/*
781 	 * If the current waiter is not the top waiter on the lock,
782 	 * then we can stop the chain walk here if we are not in full
783 	 * deadlock detection mode.
784 	 */
785 	if (!detect_deadlock && waiter != top_waiter)
786 		goto out_put_task;
787 
788 	goto again;
789 
790  out_unlock_pi:
791 	raw_spin_unlock_irq(&task->pi_lock);
792  out_put_task:
793 	put_task_struct(task);
794 
795 	return ret;
796 }
797 
798 /*
799  * Try to take an rt-mutex
800  *
801  * Must be called with lock->wait_lock held and interrupts disabled
802  *
803  * @lock:   The lock to be acquired.
804  * @task:   The task which wants to acquire the lock
805  * @waiter: The waiter that is queued to the lock's wait tree if the
806  *	    callsite called task_blocked_on_lock(), otherwise NULL
807  */
808 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
809 				struct rt_mutex_waiter *waiter)
810 {
811 	lockdep_assert_held(&lock->wait_lock);
812 
813 	/*
814 	 * Before testing whether we can acquire @lock, we set the
815 	 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
816 	 * other tasks which try to modify @lock into the slow path
817 	 * and they serialize on @lock->wait_lock.
818 	 *
819 	 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
820 	 * as explained at the top of this file if and only if:
821 	 *
822 	 * - There is a lock owner. The caller must fixup the
823 	 *   transient state if it does a trylock or leaves the lock
824 	 *   function due to a signal or timeout.
825 	 *
826 	 * - @task acquires the lock and there are no other
827 	 *   waiters. This is undone in rt_mutex_set_owner(@task) at
828 	 *   the end of this function.
829 	 */
830 	mark_rt_mutex_waiters(lock);
831 
832 	/*
833 	 * If @lock has an owner, give up.
834 	 */
835 	if (rt_mutex_owner(lock))
836 		return 0;
837 
838 	/*
839 	 * If @waiter != NULL, @task has already enqueued the waiter
840 	 * into @lock waiter tree. If @waiter == NULL then this is a
841 	 * trylock attempt.
842 	 */
843 	if (waiter) {
844 		/*
845 		 * If waiter is not the highest priority waiter of
846 		 * @lock, give up.
847 		 */
848 		if (waiter != rt_mutex_top_waiter(lock))
849 			return 0;
850 
851 		/*
852 		 * We can acquire the lock. Remove the waiter from the
853 		 * lock waiters tree.
854 		 */
855 		rt_mutex_dequeue(lock, waiter);
856 
857 	} else {
858 		/*
859 		 * If the lock has waiters already we check whether @task is
860 		 * eligible to take over the lock.
861 		 *
862 		 * If there are no other waiters, @task can acquire
863 		 * the lock.  @task->pi_blocked_on is NULL, so it does
864 		 * not need to be dequeued.
865 		 */
866 		if (rt_mutex_has_waiters(lock)) {
867 			/*
868 			 * If @task->prio is greater than or equal to
869 			 * the top waiter priority (kernel view),
870 			 * @task lost.
871 			 */
872 			if (!rt_mutex_waiter_less(task_to_waiter(task),
873 						  rt_mutex_top_waiter(lock)))
874 				return 0;
875 
876 			/*
877 			 * The current top waiter stays enqueued. We
878 			 * don't have to change anything in the lock
879 			 * waiters order.
880 			 */
881 		} else {
882 			/*
883 			 * No waiters. Take the lock without the
884 			 * pi_lock dance.@task->pi_blocked_on is NULL
885 			 * and we have no waiters to enqueue in @task
886 			 * pi waiters tree.
887 			 */
888 			goto takeit;
889 		}
890 	}
891 
892 	/*
893 	 * Clear @task->pi_blocked_on. Requires protection by
894 	 * @task->pi_lock. Redundant operation for the @waiter == NULL
895 	 * case, but conditionals are more expensive than a redundant
896 	 * store.
897 	 */
898 	raw_spin_lock(&task->pi_lock);
899 	task->pi_blocked_on = NULL;
900 	/*
901 	 * Finish the lock acquisition. @task is the new owner. If
902 	 * other waiters exist we have to insert the highest priority
903 	 * waiter into @task->pi_waiters tree.
904 	 */
905 	if (rt_mutex_has_waiters(lock))
906 		rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
907 	raw_spin_unlock(&task->pi_lock);
908 
909 takeit:
910 	/* We got the lock. */
911 	debug_rt_mutex_lock(lock);
912 
913 	/*
914 	 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
915 	 * are still waiters or clears it.
916 	 */
917 	rt_mutex_set_owner(lock, task);
918 
919 	return 1;
920 }
921 
922 /*
923  * Task blocks on lock.
924  *
925  * Prepare waiter and propagate pi chain
926  *
927  * This must be called with lock->wait_lock held and interrupts disabled
928  */
929 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
930 				   struct rt_mutex_waiter *waiter,
931 				   struct task_struct *task,
932 				   enum rtmutex_chainwalk chwalk)
933 {
934 	struct task_struct *owner = rt_mutex_owner(lock);
935 	struct rt_mutex_waiter *top_waiter = waiter;
936 	struct rt_mutex *next_lock;
937 	int chain_walk = 0, res;
938 
939 	lockdep_assert_held(&lock->wait_lock);
940 
941 	/*
942 	 * Early deadlock detection. We really don't want the task to
943 	 * enqueue on itself just to untangle the mess later. It's not
944 	 * only an optimization. We drop the locks, so another waiter
945 	 * can come in before the chain walk detects the deadlock. So
946 	 * the other will detect the deadlock and return -EDEADLOCK,
947 	 * which is wrong, as the other waiter is not in a deadlock
948 	 * situation.
949 	 */
950 	if (owner == task)
951 		return -EDEADLK;
952 
953 	raw_spin_lock(&task->pi_lock);
954 	waiter->task = task;
955 	waiter->lock = lock;
956 	waiter->prio = task->prio;
957 	waiter->deadline = task->dl.deadline;
958 
959 	/* Get the top priority waiter on the lock */
960 	if (rt_mutex_has_waiters(lock))
961 		top_waiter = rt_mutex_top_waiter(lock);
962 	rt_mutex_enqueue(lock, waiter);
963 
964 	task->pi_blocked_on = waiter;
965 
966 	raw_spin_unlock(&task->pi_lock);
967 
968 	if (!owner)
969 		return 0;
970 
971 	raw_spin_lock(&owner->pi_lock);
972 	if (waiter == rt_mutex_top_waiter(lock)) {
973 		rt_mutex_dequeue_pi(owner, top_waiter);
974 		rt_mutex_enqueue_pi(owner, waiter);
975 
976 		rt_mutex_adjust_prio(owner);
977 		if (owner->pi_blocked_on)
978 			chain_walk = 1;
979 	} else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
980 		chain_walk = 1;
981 	}
982 
983 	/* Store the lock on which owner is blocked or NULL */
984 	next_lock = task_blocked_on_lock(owner);
985 
986 	raw_spin_unlock(&owner->pi_lock);
987 	/*
988 	 * Even if full deadlock detection is on, if the owner is not
989 	 * blocked itself, we can avoid finding this out in the chain
990 	 * walk.
991 	 */
992 	if (!chain_walk || !next_lock)
993 		return 0;
994 
995 	/*
996 	 * The owner can't disappear while holding a lock,
997 	 * so the owner struct is protected by wait_lock.
998 	 * Gets dropped in rt_mutex_adjust_prio_chain()!
999 	 */
1000 	get_task_struct(owner);
1001 
1002 	raw_spin_unlock_irq(&lock->wait_lock);
1003 
1004 	res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1005 					 next_lock, waiter, task);
1006 
1007 	raw_spin_lock_irq(&lock->wait_lock);
1008 
1009 	return res;
1010 }
1011 
1012 /*
1013  * Remove the top waiter from the current tasks pi waiter tree and
1014  * queue it up.
1015  *
1016  * Called with lock->wait_lock held and interrupts disabled.
1017  */
1018 static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
1019 				    struct rt_mutex *lock)
1020 {
1021 	struct rt_mutex_waiter *waiter;
1022 
1023 	raw_spin_lock(&current->pi_lock);
1024 
1025 	waiter = rt_mutex_top_waiter(lock);
1026 
1027 	/*
1028 	 * Remove it from current->pi_waiters and deboost.
1029 	 *
1030 	 * We must in fact deboost here in order to ensure we call
1031 	 * rt_mutex_setprio() to update p->pi_top_task before the
1032 	 * task unblocks.
1033 	 */
1034 	rt_mutex_dequeue_pi(current, waiter);
1035 	rt_mutex_adjust_prio(current);
1036 
1037 	/*
1038 	 * As we are waking up the top waiter, and the waiter stays
1039 	 * queued on the lock until it gets the lock, this lock
1040 	 * obviously has waiters. Just set the bit here and this has
1041 	 * the added benefit of forcing all new tasks into the
1042 	 * slow path making sure no task of lower priority than
1043 	 * the top waiter can steal this lock.
1044 	 */
1045 	lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1046 
1047 	/*
1048 	 * We deboosted before waking the top waiter task such that we don't
1049 	 * run two tasks with the 'same' priority (and ensure the
1050 	 * p->pi_top_task pointer points to a blocked task). This however can
1051 	 * lead to priority inversion if we would get preempted after the
1052 	 * deboost but before waking our donor task, hence the preempt_disable()
1053 	 * before unlock.
1054 	 *
1055 	 * Pairs with preempt_enable() in rt_mutex_postunlock();
1056 	 */
1057 	preempt_disable();
1058 	wake_q_add(wake_q, waiter->task);
1059 	raw_spin_unlock(&current->pi_lock);
1060 }
1061 
1062 /*
1063  * Remove a waiter from a lock and give up
1064  *
1065  * Must be called with lock->wait_lock held and interrupts disabled. I must
1066  * have just failed to try_to_take_rt_mutex().
1067  */
1068 static void remove_waiter(struct rt_mutex *lock,
1069 			  struct rt_mutex_waiter *waiter)
1070 {
1071 	bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1072 	struct task_struct *owner = rt_mutex_owner(lock);
1073 	struct rt_mutex *next_lock;
1074 
1075 	lockdep_assert_held(&lock->wait_lock);
1076 
1077 	raw_spin_lock(&current->pi_lock);
1078 	rt_mutex_dequeue(lock, waiter);
1079 	current->pi_blocked_on = NULL;
1080 	raw_spin_unlock(&current->pi_lock);
1081 
1082 	/*
1083 	 * Only update priority if the waiter was the highest priority
1084 	 * waiter of the lock and there is an owner to update.
1085 	 */
1086 	if (!owner || !is_top_waiter)
1087 		return;
1088 
1089 	raw_spin_lock(&owner->pi_lock);
1090 
1091 	rt_mutex_dequeue_pi(owner, waiter);
1092 
1093 	if (rt_mutex_has_waiters(lock))
1094 		rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1095 
1096 	rt_mutex_adjust_prio(owner);
1097 
1098 	/* Store the lock on which owner is blocked or NULL */
1099 	next_lock = task_blocked_on_lock(owner);
1100 
1101 	raw_spin_unlock(&owner->pi_lock);
1102 
1103 	/*
1104 	 * Don't walk the chain, if the owner task is not blocked
1105 	 * itself.
1106 	 */
1107 	if (!next_lock)
1108 		return;
1109 
1110 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1111 	get_task_struct(owner);
1112 
1113 	raw_spin_unlock_irq(&lock->wait_lock);
1114 
1115 	rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1116 				   next_lock, NULL, current);
1117 
1118 	raw_spin_lock_irq(&lock->wait_lock);
1119 }
1120 
1121 /*
1122  * Recheck the pi chain, in case we got a priority setting
1123  *
1124  * Called from sched_setscheduler
1125  */
1126 void rt_mutex_adjust_pi(struct task_struct *task)
1127 {
1128 	struct rt_mutex_waiter *waiter;
1129 	struct rt_mutex *next_lock;
1130 	unsigned long flags;
1131 
1132 	raw_spin_lock_irqsave(&task->pi_lock, flags);
1133 
1134 	waiter = task->pi_blocked_on;
1135 	if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
1136 		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1137 		return;
1138 	}
1139 	next_lock = waiter->lock;
1140 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1141 
1142 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1143 	get_task_struct(task);
1144 
1145 	rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1146 				   next_lock, NULL, task);
1147 }
1148 
1149 void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter)
1150 {
1151 	debug_rt_mutex_init_waiter(waiter);
1152 	RB_CLEAR_NODE(&waiter->pi_tree_entry);
1153 	RB_CLEAR_NODE(&waiter->tree_entry);
1154 	waiter->task = NULL;
1155 }
1156 
1157 /**
1158  * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1159  * @lock:		 the rt_mutex to take
1160  * @state:		 the state the task should block in (TASK_INTERRUPTIBLE
1161  *			 or TASK_UNINTERRUPTIBLE)
1162  * @timeout:		 the pre-initialized and started timer, or NULL for none
1163  * @waiter:		 the pre-initialized rt_mutex_waiter
1164  *
1165  * Must be called with lock->wait_lock held and interrupts disabled
1166  */
1167 static int __sched
1168 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
1169 		    struct hrtimer_sleeper *timeout,
1170 		    struct rt_mutex_waiter *waiter)
1171 {
1172 	int ret = 0;
1173 
1174 	for (;;) {
1175 		/* Try to acquire the lock: */
1176 		if (try_to_take_rt_mutex(lock, current, waiter))
1177 			break;
1178 
1179 		/*
1180 		 * TASK_INTERRUPTIBLE checks for signals and
1181 		 * timeout. Ignored otherwise.
1182 		 */
1183 		if (likely(state == TASK_INTERRUPTIBLE)) {
1184 			/* Signal pending? */
1185 			if (signal_pending(current))
1186 				ret = -EINTR;
1187 			if (timeout && !timeout->task)
1188 				ret = -ETIMEDOUT;
1189 			if (ret)
1190 				break;
1191 		}
1192 
1193 		raw_spin_unlock_irq(&lock->wait_lock);
1194 
1195 		debug_rt_mutex_print_deadlock(waiter);
1196 
1197 		schedule();
1198 
1199 		raw_spin_lock_irq(&lock->wait_lock);
1200 		set_current_state(state);
1201 	}
1202 
1203 	__set_current_state(TASK_RUNNING);
1204 	return ret;
1205 }
1206 
1207 static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1208 				     struct rt_mutex_waiter *w)
1209 {
1210 	/*
1211 	 * If the result is not -EDEADLOCK or the caller requested
1212 	 * deadlock detection, nothing to do here.
1213 	 */
1214 	if (res != -EDEADLOCK || detect_deadlock)
1215 		return;
1216 
1217 	/*
1218 	 * Yell lowdly and stop the task right here.
1219 	 */
1220 	rt_mutex_print_deadlock(w);
1221 	while (1) {
1222 		set_current_state(TASK_INTERRUPTIBLE);
1223 		schedule();
1224 	}
1225 }
1226 
1227 /*
1228  * Slow path lock function:
1229  */
1230 static int __sched
1231 rt_mutex_slowlock(struct rt_mutex *lock, int state,
1232 		  struct hrtimer_sleeper *timeout,
1233 		  enum rtmutex_chainwalk chwalk)
1234 {
1235 	struct rt_mutex_waiter waiter;
1236 	unsigned long flags;
1237 	int ret = 0;
1238 
1239 	rt_mutex_init_waiter(&waiter);
1240 
1241 	/*
1242 	 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1243 	 * be called in early boot if the cmpxchg() fast path is disabled
1244 	 * (debug, no architecture support). In this case we will acquire the
1245 	 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1246 	 * enable interrupts in that early boot case. So we need to use the
1247 	 * irqsave/restore variants.
1248 	 */
1249 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1250 
1251 	/* Try to acquire the lock again: */
1252 	if (try_to_take_rt_mutex(lock, current, NULL)) {
1253 		raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1254 		return 0;
1255 	}
1256 
1257 	set_current_state(state);
1258 
1259 	/* Setup the timer, when timeout != NULL */
1260 	if (unlikely(timeout))
1261 		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1262 
1263 	ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1264 
1265 	if (likely(!ret))
1266 		/* sleep on the mutex */
1267 		ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1268 
1269 	if (unlikely(ret)) {
1270 		__set_current_state(TASK_RUNNING);
1271 		if (rt_mutex_has_waiters(lock))
1272 			remove_waiter(lock, &waiter);
1273 		rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1274 	}
1275 
1276 	/*
1277 	 * try_to_take_rt_mutex() sets the waiter bit
1278 	 * unconditionally. We might have to fix that up.
1279 	 */
1280 	fixup_rt_mutex_waiters(lock);
1281 
1282 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1283 
1284 	/* Remove pending timer: */
1285 	if (unlikely(timeout))
1286 		hrtimer_cancel(&timeout->timer);
1287 
1288 	debug_rt_mutex_free_waiter(&waiter);
1289 
1290 	return ret;
1291 }
1292 
1293 /*
1294  * Slow path try-lock function:
1295  */
1296 static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1297 {
1298 	unsigned long flags;
1299 	int ret;
1300 
1301 	/*
1302 	 * If the lock already has an owner we fail to get the lock.
1303 	 * This can be done without taking the @lock->wait_lock as
1304 	 * it is only being read, and this is a trylock anyway.
1305 	 */
1306 	if (rt_mutex_owner(lock))
1307 		return 0;
1308 
1309 	/*
1310 	 * The mutex has currently no owner. Lock the wait lock and try to
1311 	 * acquire the lock. We use irqsave here to support early boot calls.
1312 	 */
1313 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1314 
1315 	ret = try_to_take_rt_mutex(lock, current, NULL);
1316 
1317 	/*
1318 	 * try_to_take_rt_mutex() sets the lock waiters bit
1319 	 * unconditionally. Clean this up.
1320 	 */
1321 	fixup_rt_mutex_waiters(lock);
1322 
1323 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1324 
1325 	return ret;
1326 }
1327 
1328 /*
1329  * Slow path to release a rt-mutex.
1330  *
1331  * Return whether the current task needs to call rt_mutex_postunlock().
1332  */
1333 static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1334 					struct wake_q_head *wake_q)
1335 {
1336 	unsigned long flags;
1337 
1338 	/* irqsave required to support early boot calls */
1339 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1340 
1341 	debug_rt_mutex_unlock(lock);
1342 
1343 	/*
1344 	 * We must be careful here if the fast path is enabled. If we
1345 	 * have no waiters queued we cannot set owner to NULL here
1346 	 * because of:
1347 	 *
1348 	 * foo->lock->owner = NULL;
1349 	 *			rtmutex_lock(foo->lock);   <- fast path
1350 	 *			free = atomic_dec_and_test(foo->refcnt);
1351 	 *			rtmutex_unlock(foo->lock); <- fast path
1352 	 *			if (free)
1353 	 *				kfree(foo);
1354 	 * raw_spin_unlock(foo->lock->wait_lock);
1355 	 *
1356 	 * So for the fastpath enabled kernel:
1357 	 *
1358 	 * Nothing can set the waiters bit as long as we hold
1359 	 * lock->wait_lock. So we do the following sequence:
1360 	 *
1361 	 *	owner = rt_mutex_owner(lock);
1362 	 *	clear_rt_mutex_waiters(lock);
1363 	 *	raw_spin_unlock(&lock->wait_lock);
1364 	 *	if (cmpxchg(&lock->owner, owner, 0) == owner)
1365 	 *		return;
1366 	 *	goto retry;
1367 	 *
1368 	 * The fastpath disabled variant is simple as all access to
1369 	 * lock->owner is serialized by lock->wait_lock:
1370 	 *
1371 	 *	lock->owner = NULL;
1372 	 *	raw_spin_unlock(&lock->wait_lock);
1373 	 */
1374 	while (!rt_mutex_has_waiters(lock)) {
1375 		/* Drops lock->wait_lock ! */
1376 		if (unlock_rt_mutex_safe(lock, flags) == true)
1377 			return false;
1378 		/* Relock the rtmutex and try again */
1379 		raw_spin_lock_irqsave(&lock->wait_lock, flags);
1380 	}
1381 
1382 	/*
1383 	 * The wakeup next waiter path does not suffer from the above
1384 	 * race. See the comments there.
1385 	 *
1386 	 * Queue the next waiter for wakeup once we release the wait_lock.
1387 	 */
1388 	mark_wakeup_next_waiter(wake_q, lock);
1389 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1390 
1391 	return true; /* call rt_mutex_postunlock() */
1392 }
1393 
1394 /*
1395  * debug aware fast / slowpath lock,trylock,unlock
1396  *
1397  * The atomic acquire/release ops are compiled away, when either the
1398  * architecture does not support cmpxchg or when debugging is enabled.
1399  */
1400 static inline int
1401 rt_mutex_fastlock(struct rt_mutex *lock, int state,
1402 		  int (*slowfn)(struct rt_mutex *lock, int state,
1403 				struct hrtimer_sleeper *timeout,
1404 				enum rtmutex_chainwalk chwalk))
1405 {
1406 	if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1407 		return 0;
1408 
1409 	return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1410 }
1411 
1412 static inline int
1413 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1414 			struct hrtimer_sleeper *timeout,
1415 			enum rtmutex_chainwalk chwalk,
1416 			int (*slowfn)(struct rt_mutex *lock, int state,
1417 				      struct hrtimer_sleeper *timeout,
1418 				      enum rtmutex_chainwalk chwalk))
1419 {
1420 	if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1421 	    likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1422 		return 0;
1423 
1424 	return slowfn(lock, state, timeout, chwalk);
1425 }
1426 
1427 static inline int
1428 rt_mutex_fasttrylock(struct rt_mutex *lock,
1429 		     int (*slowfn)(struct rt_mutex *lock))
1430 {
1431 	if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1432 		return 1;
1433 
1434 	return slowfn(lock);
1435 }
1436 
1437 /*
1438  * Performs the wakeup of the the top-waiter and re-enables preemption.
1439  */
1440 void rt_mutex_postunlock(struct wake_q_head *wake_q)
1441 {
1442 	wake_up_q(wake_q);
1443 
1444 	/* Pairs with preempt_disable() in rt_mutex_slowunlock() */
1445 	preempt_enable();
1446 }
1447 
1448 static inline void
1449 rt_mutex_fastunlock(struct rt_mutex *lock,
1450 		    bool (*slowfn)(struct rt_mutex *lock,
1451 				   struct wake_q_head *wqh))
1452 {
1453 	DEFINE_WAKE_Q(wake_q);
1454 
1455 	if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1456 		return;
1457 
1458 	if (slowfn(lock, &wake_q))
1459 		rt_mutex_postunlock(&wake_q);
1460 }
1461 
1462 /**
1463  * rt_mutex_lock - lock a rt_mutex
1464  *
1465  * @lock: the rt_mutex to be locked
1466  */
1467 void __sched rt_mutex_lock(struct rt_mutex *lock)
1468 {
1469 	might_sleep();
1470 
1471 	mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1472 	rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1473 }
1474 EXPORT_SYMBOL_GPL(rt_mutex_lock);
1475 
1476 /**
1477  * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1478  *
1479  * @lock:		the rt_mutex to be locked
1480  *
1481  * Returns:
1482  *  0		on success
1483  * -EINTR	when interrupted by a signal
1484  */
1485 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1486 {
1487 	int ret;
1488 
1489 	might_sleep();
1490 
1491 	mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1492 	ret = rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1493 	if (ret)
1494 		mutex_release(&lock->dep_map, 1, _RET_IP_);
1495 
1496 	return ret;
1497 }
1498 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1499 
1500 /*
1501  * Futex variant, must not use fastpath.
1502  */
1503 int __sched rt_mutex_futex_trylock(struct rt_mutex *lock)
1504 {
1505 	return rt_mutex_slowtrylock(lock);
1506 }
1507 
1508 /**
1509  * rt_mutex_timed_lock - lock a rt_mutex interruptible
1510  *			the timeout structure is provided
1511  *			by the caller
1512  *
1513  * @lock:		the rt_mutex to be locked
1514  * @timeout:		timeout structure or NULL (no timeout)
1515  *
1516  * Returns:
1517  *  0		on success
1518  * -EINTR	when interrupted by a signal
1519  * -ETIMEDOUT	when the timeout expired
1520  */
1521 int
1522 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1523 {
1524 	int ret;
1525 
1526 	might_sleep();
1527 
1528 	mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1529 	ret = rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1530 				       RT_MUTEX_MIN_CHAINWALK,
1531 				       rt_mutex_slowlock);
1532 	if (ret)
1533 		mutex_release(&lock->dep_map, 1, _RET_IP_);
1534 
1535 	return ret;
1536 }
1537 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1538 
1539 /**
1540  * rt_mutex_trylock - try to lock a rt_mutex
1541  *
1542  * @lock:	the rt_mutex to be locked
1543  *
1544  * This function can only be called in thread context. It's safe to
1545  * call it from atomic regions, but not from hard interrupt or soft
1546  * interrupt context.
1547  *
1548  * Returns 1 on success and 0 on contention
1549  */
1550 int __sched rt_mutex_trylock(struct rt_mutex *lock)
1551 {
1552 	int ret;
1553 
1554 	if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq()))
1555 		return 0;
1556 
1557 	ret = rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1558 	if (ret)
1559 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1560 
1561 	return ret;
1562 }
1563 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1564 
1565 /**
1566  * rt_mutex_unlock - unlock a rt_mutex
1567  *
1568  * @lock: the rt_mutex to be unlocked
1569  */
1570 void __sched rt_mutex_unlock(struct rt_mutex *lock)
1571 {
1572 	mutex_release(&lock->dep_map, 1, _RET_IP_);
1573 	rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1574 }
1575 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1576 
1577 /**
1578  * Futex variant, that since futex variants do not use the fast-path, can be
1579  * simple and will not need to retry.
1580  */
1581 bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock,
1582 				    struct wake_q_head *wake_q)
1583 {
1584 	lockdep_assert_held(&lock->wait_lock);
1585 
1586 	debug_rt_mutex_unlock(lock);
1587 
1588 	if (!rt_mutex_has_waiters(lock)) {
1589 		lock->owner = NULL;
1590 		return false; /* done */
1591 	}
1592 
1593 	/*
1594 	 * We've already deboosted, mark_wakeup_next_waiter() will
1595 	 * retain preempt_disabled when we drop the wait_lock, to
1596 	 * avoid inversion prior to the wakeup.  preempt_disable()
1597 	 * therein pairs with rt_mutex_postunlock().
1598 	 */
1599 	mark_wakeup_next_waiter(wake_q, lock);
1600 
1601 	return true; /* call postunlock() */
1602 }
1603 
1604 void __sched rt_mutex_futex_unlock(struct rt_mutex *lock)
1605 {
1606 	DEFINE_WAKE_Q(wake_q);
1607 	bool postunlock;
1608 
1609 	raw_spin_lock_irq(&lock->wait_lock);
1610 	postunlock = __rt_mutex_futex_unlock(lock, &wake_q);
1611 	raw_spin_unlock_irq(&lock->wait_lock);
1612 
1613 	if (postunlock)
1614 		rt_mutex_postunlock(&wake_q);
1615 }
1616 
1617 /**
1618  * rt_mutex_destroy - mark a mutex unusable
1619  * @lock: the mutex to be destroyed
1620  *
1621  * This function marks the mutex uninitialized, and any subsequent
1622  * use of the mutex is forbidden. The mutex must not be locked when
1623  * this function is called.
1624  */
1625 void rt_mutex_destroy(struct rt_mutex *lock)
1626 {
1627 	WARN_ON(rt_mutex_is_locked(lock));
1628 #ifdef CONFIG_DEBUG_RT_MUTEXES
1629 	lock->magic = NULL;
1630 #endif
1631 }
1632 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1633 
1634 /**
1635  * __rt_mutex_init - initialize the rt lock
1636  *
1637  * @lock: the rt lock to be initialized
1638  *
1639  * Initialize the rt lock to unlocked state.
1640  *
1641  * Initializing of a locked rt lock is not allowed
1642  */
1643 void __rt_mutex_init(struct rt_mutex *lock, const char *name,
1644 		     struct lock_class_key *key)
1645 {
1646 	lock->owner = NULL;
1647 	raw_spin_lock_init(&lock->wait_lock);
1648 	lock->waiters = RB_ROOT_CACHED;
1649 
1650 	if (name && key)
1651 		debug_rt_mutex_init(lock, name, key);
1652 }
1653 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1654 
1655 /**
1656  * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1657  *				proxy owner
1658  *
1659  * @lock:	the rt_mutex to be locked
1660  * @proxy_owner:the task to set as owner
1661  *
1662  * No locking. Caller has to do serializing itself
1663  *
1664  * Special API call for PI-futex support. This initializes the rtmutex and
1665  * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
1666  * possible at this point because the pi_state which contains the rtmutex
1667  * is not yet visible to other tasks.
1668  */
1669 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1670 				struct task_struct *proxy_owner)
1671 {
1672 	__rt_mutex_init(lock, NULL, NULL);
1673 	debug_rt_mutex_proxy_lock(lock, proxy_owner);
1674 	rt_mutex_set_owner(lock, proxy_owner);
1675 }
1676 
1677 /**
1678  * rt_mutex_proxy_unlock - release a lock on behalf of owner
1679  *
1680  * @lock:	the rt_mutex to be locked
1681  *
1682  * No locking. Caller has to do serializing itself
1683  *
1684  * Special API call for PI-futex support. This merrily cleans up the rtmutex
1685  * (debugging) state. Concurrent operations on this rt_mutex are not
1686  * possible because it belongs to the pi_state which is about to be freed
1687  * and it is not longer visible to other tasks.
1688  */
1689 void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1690 			   struct task_struct *proxy_owner)
1691 {
1692 	debug_rt_mutex_proxy_unlock(lock);
1693 	rt_mutex_set_owner(lock, NULL);
1694 }
1695 
1696 int __rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1697 			      struct rt_mutex_waiter *waiter,
1698 			      struct task_struct *task)
1699 {
1700 	int ret;
1701 
1702 	if (try_to_take_rt_mutex(lock, task, NULL))
1703 		return 1;
1704 
1705 	/* We enforce deadlock detection for futexes */
1706 	ret = task_blocks_on_rt_mutex(lock, waiter, task,
1707 				      RT_MUTEX_FULL_CHAINWALK);
1708 
1709 	if (ret && !rt_mutex_owner(lock)) {
1710 		/*
1711 		 * Reset the return value. We might have
1712 		 * returned with -EDEADLK and the owner
1713 		 * released the lock while we were walking the
1714 		 * pi chain.  Let the waiter sort it out.
1715 		 */
1716 		ret = 0;
1717 	}
1718 
1719 	if (unlikely(ret))
1720 		remove_waiter(lock, waiter);
1721 
1722 	debug_rt_mutex_print_deadlock(waiter);
1723 
1724 	return ret;
1725 }
1726 
1727 /**
1728  * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1729  * @lock:		the rt_mutex to take
1730  * @waiter:		the pre-initialized rt_mutex_waiter
1731  * @task:		the task to prepare
1732  *
1733  * Returns:
1734  *  0 - task blocked on lock
1735  *  1 - acquired the lock for task, caller should wake it up
1736  * <0 - error
1737  *
1738  * Special API call for FUTEX_REQUEUE_PI support.
1739  */
1740 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1741 			      struct rt_mutex_waiter *waiter,
1742 			      struct task_struct *task)
1743 {
1744 	int ret;
1745 
1746 	raw_spin_lock_irq(&lock->wait_lock);
1747 	ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
1748 	raw_spin_unlock_irq(&lock->wait_lock);
1749 
1750 	return ret;
1751 }
1752 
1753 /**
1754  * rt_mutex_next_owner - return the next owner of the lock
1755  *
1756  * @lock: the rt lock query
1757  *
1758  * Returns the next owner of the lock or NULL
1759  *
1760  * Caller has to serialize against other accessors to the lock
1761  * itself.
1762  *
1763  * Special API call for PI-futex support
1764  */
1765 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1766 {
1767 	if (!rt_mutex_has_waiters(lock))
1768 		return NULL;
1769 
1770 	return rt_mutex_top_waiter(lock)->task;
1771 }
1772 
1773 /**
1774  * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
1775  * @lock:		the rt_mutex we were woken on
1776  * @to:			the timeout, null if none. hrtimer should already have
1777  *			been started.
1778  * @waiter:		the pre-initialized rt_mutex_waiter
1779  *
1780  * Wait for the the lock acquisition started on our behalf by
1781  * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
1782  * rt_mutex_cleanup_proxy_lock().
1783  *
1784  * Returns:
1785  *  0 - success
1786  * <0 - error, one of -EINTR, -ETIMEDOUT
1787  *
1788  * Special API call for PI-futex support
1789  */
1790 int rt_mutex_wait_proxy_lock(struct rt_mutex *lock,
1791 			       struct hrtimer_sleeper *to,
1792 			       struct rt_mutex_waiter *waiter)
1793 {
1794 	int ret;
1795 
1796 	raw_spin_lock_irq(&lock->wait_lock);
1797 	/* sleep on the mutex */
1798 	set_current_state(TASK_INTERRUPTIBLE);
1799 	ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1800 	/*
1801 	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1802 	 * have to fix that up.
1803 	 */
1804 	fixup_rt_mutex_waiters(lock);
1805 	raw_spin_unlock_irq(&lock->wait_lock);
1806 
1807 	return ret;
1808 }
1809 
1810 /**
1811  * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
1812  * @lock:		the rt_mutex we were woken on
1813  * @waiter:		the pre-initialized rt_mutex_waiter
1814  *
1815  * Attempt to clean up after a failed rt_mutex_wait_proxy_lock().
1816  *
1817  * Unless we acquired the lock; we're still enqueued on the wait-list and can
1818  * in fact still be granted ownership until we're removed. Therefore we can
1819  * find we are in fact the owner and must disregard the
1820  * rt_mutex_wait_proxy_lock() failure.
1821  *
1822  * Returns:
1823  *  true  - did the cleanup, we done.
1824  *  false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
1825  *          caller should disregards its return value.
1826  *
1827  * Special API call for PI-futex support
1828  */
1829 bool rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock,
1830 				 struct rt_mutex_waiter *waiter)
1831 {
1832 	bool cleanup = false;
1833 
1834 	raw_spin_lock_irq(&lock->wait_lock);
1835 	/*
1836 	 * Do an unconditional try-lock, this deals with the lock stealing
1837 	 * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
1838 	 * sets a NULL owner.
1839 	 *
1840 	 * We're not interested in the return value, because the subsequent
1841 	 * test on rt_mutex_owner() will infer that. If the trylock succeeded,
1842 	 * we will own the lock and it will have removed the waiter. If we
1843 	 * failed the trylock, we're still not owner and we need to remove
1844 	 * ourselves.
1845 	 */
1846 	try_to_take_rt_mutex(lock, current, waiter);
1847 	/*
1848 	 * Unless we're the owner; we're still enqueued on the wait_list.
1849 	 * So check if we became owner, if not, take us off the wait_list.
1850 	 */
1851 	if (rt_mutex_owner(lock) != current) {
1852 		remove_waiter(lock, waiter);
1853 		cleanup = true;
1854 	}
1855 	/*
1856 	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1857 	 * have to fix that up.
1858 	 */
1859 	fixup_rt_mutex_waiters(lock);
1860 
1861 	raw_spin_unlock_irq(&lock->wait_lock);
1862 
1863 	return cleanup;
1864 }
1865