1 /* 2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support 3 * 4 * started by Ingo Molnar and Thomas Gleixner. 5 * 6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 7 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com> 8 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt 9 * Copyright (C) 2006 Esben Nielsen 10 * 11 * See Documentation/rt-mutex-design.txt for details. 12 */ 13 #include <linux/spinlock.h> 14 #include <linux/export.h> 15 #include <linux/sched.h> 16 #include <linux/sched/rt.h> 17 #include <linux/sched/deadline.h> 18 #include <linux/timer.h> 19 20 #include "rtmutex_common.h" 21 22 /* 23 * lock->owner state tracking: 24 * 25 * lock->owner holds the task_struct pointer of the owner. Bit 0 26 * is used to keep track of the "lock has waiters" state. 27 * 28 * owner bit0 29 * NULL 0 lock is free (fast acquire possible) 30 * NULL 1 lock is free and has waiters and the top waiter 31 * is going to take the lock* 32 * taskpointer 0 lock is held (fast release possible) 33 * taskpointer 1 lock is held and has waiters** 34 * 35 * The fast atomic compare exchange based acquire and release is only 36 * possible when bit 0 of lock->owner is 0. 37 * 38 * (*) It also can be a transitional state when grabbing the lock 39 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock, 40 * we need to set the bit0 before looking at the lock, and the owner may be 41 * NULL in this small time, hence this can be a transitional state. 42 * 43 * (**) There is a small time when bit 0 is set but there are no 44 * waiters. This can happen when grabbing the lock in the slow path. 45 * To prevent a cmpxchg of the owner releasing the lock, we need to 46 * set this bit before looking at the lock. 47 */ 48 49 static void 50 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner) 51 { 52 unsigned long val = (unsigned long)owner; 53 54 if (rt_mutex_has_waiters(lock)) 55 val |= RT_MUTEX_HAS_WAITERS; 56 57 lock->owner = (struct task_struct *)val; 58 } 59 60 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock) 61 { 62 lock->owner = (struct task_struct *) 63 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS); 64 } 65 66 static void fixup_rt_mutex_waiters(struct rt_mutex *lock) 67 { 68 if (!rt_mutex_has_waiters(lock)) 69 clear_rt_mutex_waiters(lock); 70 } 71 72 /* 73 * We can speed up the acquire/release, if the architecture 74 * supports cmpxchg and if there's no debugging state to be set up 75 */ 76 #if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES) 77 # define rt_mutex_cmpxchg(l,c,n) (cmpxchg(&l->owner, c, n) == c) 78 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock) 79 { 80 unsigned long owner, *p = (unsigned long *) &lock->owner; 81 82 do { 83 owner = *p; 84 } while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner); 85 } 86 #else 87 # define rt_mutex_cmpxchg(l,c,n) (0) 88 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock) 89 { 90 lock->owner = (struct task_struct *) 91 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS); 92 } 93 #endif 94 95 static inline int 96 rt_mutex_waiter_less(struct rt_mutex_waiter *left, 97 struct rt_mutex_waiter *right) 98 { 99 if (left->prio < right->prio) 100 return 1; 101 102 /* 103 * If both waiters have dl_prio(), we check the deadlines of the 104 * associated tasks. 105 * If left waiter has a dl_prio(), and we didn't return 1 above, 106 * then right waiter has a dl_prio() too. 107 */ 108 if (dl_prio(left->prio)) 109 return (left->task->dl.deadline < right->task->dl.deadline); 110 111 return 0; 112 } 113 114 static void 115 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter) 116 { 117 struct rb_node **link = &lock->waiters.rb_node; 118 struct rb_node *parent = NULL; 119 struct rt_mutex_waiter *entry; 120 int leftmost = 1; 121 122 while (*link) { 123 parent = *link; 124 entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry); 125 if (rt_mutex_waiter_less(waiter, entry)) { 126 link = &parent->rb_left; 127 } else { 128 link = &parent->rb_right; 129 leftmost = 0; 130 } 131 } 132 133 if (leftmost) 134 lock->waiters_leftmost = &waiter->tree_entry; 135 136 rb_link_node(&waiter->tree_entry, parent, link); 137 rb_insert_color(&waiter->tree_entry, &lock->waiters); 138 } 139 140 static void 141 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter) 142 { 143 if (RB_EMPTY_NODE(&waiter->tree_entry)) 144 return; 145 146 if (lock->waiters_leftmost == &waiter->tree_entry) 147 lock->waiters_leftmost = rb_next(&waiter->tree_entry); 148 149 rb_erase(&waiter->tree_entry, &lock->waiters); 150 RB_CLEAR_NODE(&waiter->tree_entry); 151 } 152 153 static void 154 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter) 155 { 156 struct rb_node **link = &task->pi_waiters.rb_node; 157 struct rb_node *parent = NULL; 158 struct rt_mutex_waiter *entry; 159 int leftmost = 1; 160 161 while (*link) { 162 parent = *link; 163 entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry); 164 if (rt_mutex_waiter_less(waiter, entry)) { 165 link = &parent->rb_left; 166 } else { 167 link = &parent->rb_right; 168 leftmost = 0; 169 } 170 } 171 172 if (leftmost) 173 task->pi_waiters_leftmost = &waiter->pi_tree_entry; 174 175 rb_link_node(&waiter->pi_tree_entry, parent, link); 176 rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters); 177 } 178 179 static void 180 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter) 181 { 182 if (RB_EMPTY_NODE(&waiter->pi_tree_entry)) 183 return; 184 185 if (task->pi_waiters_leftmost == &waiter->pi_tree_entry) 186 task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry); 187 188 rb_erase(&waiter->pi_tree_entry, &task->pi_waiters); 189 RB_CLEAR_NODE(&waiter->pi_tree_entry); 190 } 191 192 /* 193 * Calculate task priority from the waiter tree priority 194 * 195 * Return task->normal_prio when the waiter tree is empty or when 196 * the waiter is not allowed to do priority boosting 197 */ 198 int rt_mutex_getprio(struct task_struct *task) 199 { 200 if (likely(!task_has_pi_waiters(task))) 201 return task->normal_prio; 202 203 return min(task_top_pi_waiter(task)->prio, 204 task->normal_prio); 205 } 206 207 struct task_struct *rt_mutex_get_top_task(struct task_struct *task) 208 { 209 if (likely(!task_has_pi_waiters(task))) 210 return NULL; 211 212 return task_top_pi_waiter(task)->task; 213 } 214 215 /* 216 * Adjust the priority of a task, after its pi_waiters got modified. 217 * 218 * This can be both boosting and unboosting. task->pi_lock must be held. 219 */ 220 static void __rt_mutex_adjust_prio(struct task_struct *task) 221 { 222 int prio = rt_mutex_getprio(task); 223 224 if (task->prio != prio || dl_prio(prio)) 225 rt_mutex_setprio(task, prio); 226 } 227 228 /* 229 * Adjust task priority (undo boosting). Called from the exit path of 230 * rt_mutex_slowunlock() and rt_mutex_slowlock(). 231 * 232 * (Note: We do this outside of the protection of lock->wait_lock to 233 * allow the lock to be taken while or before we readjust the priority 234 * of task. We do not use the spin_xx_mutex() variants here as we are 235 * outside of the debug path.) 236 */ 237 static void rt_mutex_adjust_prio(struct task_struct *task) 238 { 239 unsigned long flags; 240 241 raw_spin_lock_irqsave(&task->pi_lock, flags); 242 __rt_mutex_adjust_prio(task); 243 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 244 } 245 246 /* 247 * Max number of times we'll walk the boosting chain: 248 */ 249 int max_lock_depth = 1024; 250 251 /* 252 * Adjust the priority chain. Also used for deadlock detection. 253 * Decreases task's usage by one - may thus free the task. 254 * 255 * @task: the task owning the mutex (owner) for which a chain walk is probably 256 * needed 257 * @deadlock_detect: do we have to carry out deadlock detection? 258 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck 259 * things for a task that has just got its priority adjusted, and 260 * is waiting on a mutex) 261 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated 262 * its priority to the mutex owner (can be NULL in the case 263 * depicted above or if the top waiter is gone away and we are 264 * actually deboosting the owner) 265 * @top_task: the current top waiter 266 * 267 * Returns 0 or -EDEADLK. 268 */ 269 static int rt_mutex_adjust_prio_chain(struct task_struct *task, 270 int deadlock_detect, 271 struct rt_mutex *orig_lock, 272 struct rt_mutex_waiter *orig_waiter, 273 struct task_struct *top_task) 274 { 275 struct rt_mutex *lock; 276 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter; 277 int detect_deadlock, ret = 0, depth = 0; 278 unsigned long flags; 279 280 detect_deadlock = debug_rt_mutex_detect_deadlock(orig_waiter, 281 deadlock_detect); 282 283 /* 284 * The (de)boosting is a step by step approach with a lot of 285 * pitfalls. We want this to be preemptible and we want hold a 286 * maximum of two locks per step. So we have to check 287 * carefully whether things change under us. 288 */ 289 again: 290 if (++depth > max_lock_depth) { 291 static int prev_max; 292 293 /* 294 * Print this only once. If the admin changes the limit, 295 * print a new message when reaching the limit again. 296 */ 297 if (prev_max != max_lock_depth) { 298 prev_max = max_lock_depth; 299 printk(KERN_WARNING "Maximum lock depth %d reached " 300 "task: %s (%d)\n", max_lock_depth, 301 top_task->comm, task_pid_nr(top_task)); 302 } 303 put_task_struct(task); 304 305 return deadlock_detect ? -EDEADLK : 0; 306 } 307 retry: 308 /* 309 * Task can not go away as we did a get_task() before ! 310 */ 311 raw_spin_lock_irqsave(&task->pi_lock, flags); 312 313 waiter = task->pi_blocked_on; 314 /* 315 * Check whether the end of the boosting chain has been 316 * reached or the state of the chain has changed while we 317 * dropped the locks. 318 */ 319 if (!waiter) 320 goto out_unlock_pi; 321 322 /* 323 * Check the orig_waiter state. After we dropped the locks, 324 * the previous owner of the lock might have released the lock. 325 */ 326 if (orig_waiter && !rt_mutex_owner(orig_lock)) 327 goto out_unlock_pi; 328 329 /* 330 * Drop out, when the task has no waiters. Note, 331 * top_waiter can be NULL, when we are in the deboosting 332 * mode! 333 */ 334 if (top_waiter && (!task_has_pi_waiters(task) || 335 top_waiter != task_top_pi_waiter(task))) 336 goto out_unlock_pi; 337 338 /* 339 * When deadlock detection is off then we check, if further 340 * priority adjustment is necessary. 341 */ 342 if (!detect_deadlock && waiter->prio == task->prio) 343 goto out_unlock_pi; 344 345 lock = waiter->lock; 346 if (!raw_spin_trylock(&lock->wait_lock)) { 347 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 348 cpu_relax(); 349 goto retry; 350 } 351 352 /* Deadlock detection */ 353 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) { 354 debug_rt_mutex_deadlock(deadlock_detect, orig_waiter, lock); 355 raw_spin_unlock(&lock->wait_lock); 356 ret = deadlock_detect ? -EDEADLK : 0; 357 goto out_unlock_pi; 358 } 359 360 top_waiter = rt_mutex_top_waiter(lock); 361 362 /* Requeue the waiter */ 363 rt_mutex_dequeue(lock, waiter); 364 waiter->prio = task->prio; 365 rt_mutex_enqueue(lock, waiter); 366 367 /* Release the task */ 368 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 369 if (!rt_mutex_owner(lock)) { 370 /* 371 * If the requeue above changed the top waiter, then we need 372 * to wake the new top waiter up to try to get the lock. 373 */ 374 375 if (top_waiter != rt_mutex_top_waiter(lock)) 376 wake_up_process(rt_mutex_top_waiter(lock)->task); 377 raw_spin_unlock(&lock->wait_lock); 378 goto out_put_task; 379 } 380 put_task_struct(task); 381 382 /* Grab the next task */ 383 task = rt_mutex_owner(lock); 384 get_task_struct(task); 385 raw_spin_lock_irqsave(&task->pi_lock, flags); 386 387 if (waiter == rt_mutex_top_waiter(lock)) { 388 /* Boost the owner */ 389 rt_mutex_dequeue_pi(task, top_waiter); 390 rt_mutex_enqueue_pi(task, waiter); 391 __rt_mutex_adjust_prio(task); 392 393 } else if (top_waiter == waiter) { 394 /* Deboost the owner */ 395 rt_mutex_dequeue_pi(task, waiter); 396 waiter = rt_mutex_top_waiter(lock); 397 rt_mutex_enqueue_pi(task, waiter); 398 __rt_mutex_adjust_prio(task); 399 } 400 401 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 402 403 top_waiter = rt_mutex_top_waiter(lock); 404 raw_spin_unlock(&lock->wait_lock); 405 406 if (!detect_deadlock && waiter != top_waiter) 407 goto out_put_task; 408 409 goto again; 410 411 out_unlock_pi: 412 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 413 out_put_task: 414 put_task_struct(task); 415 416 return ret; 417 } 418 419 /* 420 * Try to take an rt-mutex 421 * 422 * Must be called with lock->wait_lock held. 423 * 424 * @lock: the lock to be acquired. 425 * @task: the task which wants to acquire the lock 426 * @waiter: the waiter that is queued to the lock's wait list. (could be NULL) 427 */ 428 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task, 429 struct rt_mutex_waiter *waiter) 430 { 431 /* 432 * We have to be careful here if the atomic speedups are 433 * enabled, such that, when 434 * - no other waiter is on the lock 435 * - the lock has been released since we did the cmpxchg 436 * the lock can be released or taken while we are doing the 437 * checks and marking the lock with RT_MUTEX_HAS_WAITERS. 438 * 439 * The atomic acquire/release aware variant of 440 * mark_rt_mutex_waiters uses a cmpxchg loop. After setting 441 * the WAITERS bit, the atomic release / acquire can not 442 * happen anymore and lock->wait_lock protects us from the 443 * non-atomic case. 444 * 445 * Note, that this might set lock->owner = 446 * RT_MUTEX_HAS_WAITERS in the case the lock is not contended 447 * any more. This is fixed up when we take the ownership. 448 * This is the transitional state explained at the top of this file. 449 */ 450 mark_rt_mutex_waiters(lock); 451 452 if (rt_mutex_owner(lock)) 453 return 0; 454 455 /* 456 * It will get the lock because of one of these conditions: 457 * 1) there is no waiter 458 * 2) higher priority than waiters 459 * 3) it is top waiter 460 */ 461 if (rt_mutex_has_waiters(lock)) { 462 if (task->prio >= rt_mutex_top_waiter(lock)->prio) { 463 if (!waiter || waiter != rt_mutex_top_waiter(lock)) 464 return 0; 465 } 466 } 467 468 if (waiter || rt_mutex_has_waiters(lock)) { 469 unsigned long flags; 470 struct rt_mutex_waiter *top; 471 472 raw_spin_lock_irqsave(&task->pi_lock, flags); 473 474 /* remove the queued waiter. */ 475 if (waiter) { 476 rt_mutex_dequeue(lock, waiter); 477 task->pi_blocked_on = NULL; 478 } 479 480 /* 481 * We have to enqueue the top waiter(if it exists) into 482 * task->pi_waiters list. 483 */ 484 if (rt_mutex_has_waiters(lock)) { 485 top = rt_mutex_top_waiter(lock); 486 rt_mutex_enqueue_pi(task, top); 487 } 488 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 489 } 490 491 /* We got the lock. */ 492 debug_rt_mutex_lock(lock); 493 494 rt_mutex_set_owner(lock, task); 495 496 rt_mutex_deadlock_account_lock(lock, task); 497 498 return 1; 499 } 500 501 /* 502 * Task blocks on lock. 503 * 504 * Prepare waiter and propagate pi chain 505 * 506 * This must be called with lock->wait_lock held. 507 */ 508 static int task_blocks_on_rt_mutex(struct rt_mutex *lock, 509 struct rt_mutex_waiter *waiter, 510 struct task_struct *task, 511 int detect_deadlock) 512 { 513 struct task_struct *owner = rt_mutex_owner(lock); 514 struct rt_mutex_waiter *top_waiter = waiter; 515 unsigned long flags; 516 int chain_walk = 0, res; 517 518 raw_spin_lock_irqsave(&task->pi_lock, flags); 519 __rt_mutex_adjust_prio(task); 520 waiter->task = task; 521 waiter->lock = lock; 522 waiter->prio = task->prio; 523 524 /* Get the top priority waiter on the lock */ 525 if (rt_mutex_has_waiters(lock)) 526 top_waiter = rt_mutex_top_waiter(lock); 527 rt_mutex_enqueue(lock, waiter); 528 529 task->pi_blocked_on = waiter; 530 531 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 532 533 if (!owner) 534 return 0; 535 536 if (waiter == rt_mutex_top_waiter(lock)) { 537 raw_spin_lock_irqsave(&owner->pi_lock, flags); 538 rt_mutex_dequeue_pi(owner, top_waiter); 539 rt_mutex_enqueue_pi(owner, waiter); 540 541 __rt_mutex_adjust_prio(owner); 542 if (owner->pi_blocked_on) 543 chain_walk = 1; 544 raw_spin_unlock_irqrestore(&owner->pi_lock, flags); 545 } 546 else if (debug_rt_mutex_detect_deadlock(waiter, detect_deadlock)) 547 chain_walk = 1; 548 549 if (!chain_walk) 550 return 0; 551 552 /* 553 * The owner can't disappear while holding a lock, 554 * so the owner struct is protected by wait_lock. 555 * Gets dropped in rt_mutex_adjust_prio_chain()! 556 */ 557 get_task_struct(owner); 558 559 raw_spin_unlock(&lock->wait_lock); 560 561 res = rt_mutex_adjust_prio_chain(owner, detect_deadlock, lock, waiter, 562 task); 563 564 raw_spin_lock(&lock->wait_lock); 565 566 return res; 567 } 568 569 /* 570 * Wake up the next waiter on the lock. 571 * 572 * Remove the top waiter from the current tasks waiter list and wake it up. 573 * 574 * Called with lock->wait_lock held. 575 */ 576 static void wakeup_next_waiter(struct rt_mutex *lock) 577 { 578 struct rt_mutex_waiter *waiter; 579 unsigned long flags; 580 581 raw_spin_lock_irqsave(¤t->pi_lock, flags); 582 583 waiter = rt_mutex_top_waiter(lock); 584 585 /* 586 * Remove it from current->pi_waiters. We do not adjust a 587 * possible priority boost right now. We execute wakeup in the 588 * boosted mode and go back to normal after releasing 589 * lock->wait_lock. 590 */ 591 rt_mutex_dequeue_pi(current, waiter); 592 593 rt_mutex_set_owner(lock, NULL); 594 595 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); 596 597 wake_up_process(waiter->task); 598 } 599 600 /* 601 * Remove a waiter from a lock and give up 602 * 603 * Must be called with lock->wait_lock held and 604 * have just failed to try_to_take_rt_mutex(). 605 */ 606 static void remove_waiter(struct rt_mutex *lock, 607 struct rt_mutex_waiter *waiter) 608 { 609 int first = (waiter == rt_mutex_top_waiter(lock)); 610 struct task_struct *owner = rt_mutex_owner(lock); 611 unsigned long flags; 612 int chain_walk = 0; 613 614 raw_spin_lock_irqsave(¤t->pi_lock, flags); 615 rt_mutex_dequeue(lock, waiter); 616 current->pi_blocked_on = NULL; 617 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); 618 619 if (!owner) 620 return; 621 622 if (first) { 623 624 raw_spin_lock_irqsave(&owner->pi_lock, flags); 625 626 rt_mutex_dequeue_pi(owner, waiter); 627 628 if (rt_mutex_has_waiters(lock)) { 629 struct rt_mutex_waiter *next; 630 631 next = rt_mutex_top_waiter(lock); 632 rt_mutex_enqueue_pi(owner, next); 633 } 634 __rt_mutex_adjust_prio(owner); 635 636 if (owner->pi_blocked_on) 637 chain_walk = 1; 638 639 raw_spin_unlock_irqrestore(&owner->pi_lock, flags); 640 } 641 642 if (!chain_walk) 643 return; 644 645 /* gets dropped in rt_mutex_adjust_prio_chain()! */ 646 get_task_struct(owner); 647 648 raw_spin_unlock(&lock->wait_lock); 649 650 rt_mutex_adjust_prio_chain(owner, 0, lock, NULL, current); 651 652 raw_spin_lock(&lock->wait_lock); 653 } 654 655 /* 656 * Recheck the pi chain, in case we got a priority setting 657 * 658 * Called from sched_setscheduler 659 */ 660 void rt_mutex_adjust_pi(struct task_struct *task) 661 { 662 struct rt_mutex_waiter *waiter; 663 unsigned long flags; 664 665 raw_spin_lock_irqsave(&task->pi_lock, flags); 666 667 waiter = task->pi_blocked_on; 668 if (!waiter || (waiter->prio == task->prio && 669 !dl_prio(task->prio))) { 670 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 671 return; 672 } 673 674 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 675 676 /* gets dropped in rt_mutex_adjust_prio_chain()! */ 677 get_task_struct(task); 678 rt_mutex_adjust_prio_chain(task, 0, NULL, NULL, task); 679 } 680 681 /** 682 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop 683 * @lock: the rt_mutex to take 684 * @state: the state the task should block in (TASK_INTERRUPTIBLE 685 * or TASK_UNINTERRUPTIBLE) 686 * @timeout: the pre-initialized and started timer, or NULL for none 687 * @waiter: the pre-initialized rt_mutex_waiter 688 * 689 * lock->wait_lock must be held by the caller. 690 */ 691 static int __sched 692 __rt_mutex_slowlock(struct rt_mutex *lock, int state, 693 struct hrtimer_sleeper *timeout, 694 struct rt_mutex_waiter *waiter) 695 { 696 int ret = 0; 697 698 for (;;) { 699 /* Try to acquire the lock: */ 700 if (try_to_take_rt_mutex(lock, current, waiter)) 701 break; 702 703 /* 704 * TASK_INTERRUPTIBLE checks for signals and 705 * timeout. Ignored otherwise. 706 */ 707 if (unlikely(state == TASK_INTERRUPTIBLE)) { 708 /* Signal pending? */ 709 if (signal_pending(current)) 710 ret = -EINTR; 711 if (timeout && !timeout->task) 712 ret = -ETIMEDOUT; 713 if (ret) 714 break; 715 } 716 717 raw_spin_unlock(&lock->wait_lock); 718 719 debug_rt_mutex_print_deadlock(waiter); 720 721 schedule_rt_mutex(lock); 722 723 raw_spin_lock(&lock->wait_lock); 724 set_current_state(state); 725 } 726 727 return ret; 728 } 729 730 /* 731 * Slow path lock function: 732 */ 733 static int __sched 734 rt_mutex_slowlock(struct rt_mutex *lock, int state, 735 struct hrtimer_sleeper *timeout, 736 int detect_deadlock) 737 { 738 struct rt_mutex_waiter waiter; 739 int ret = 0; 740 741 debug_rt_mutex_init_waiter(&waiter); 742 RB_CLEAR_NODE(&waiter.pi_tree_entry); 743 RB_CLEAR_NODE(&waiter.tree_entry); 744 745 raw_spin_lock(&lock->wait_lock); 746 747 /* Try to acquire the lock again: */ 748 if (try_to_take_rt_mutex(lock, current, NULL)) { 749 raw_spin_unlock(&lock->wait_lock); 750 return 0; 751 } 752 753 set_current_state(state); 754 755 /* Setup the timer, when timeout != NULL */ 756 if (unlikely(timeout)) { 757 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS); 758 if (!hrtimer_active(&timeout->timer)) 759 timeout->task = NULL; 760 } 761 762 ret = task_blocks_on_rt_mutex(lock, &waiter, current, detect_deadlock); 763 764 if (likely(!ret)) 765 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter); 766 767 set_current_state(TASK_RUNNING); 768 769 if (unlikely(ret)) 770 remove_waiter(lock, &waiter); 771 772 /* 773 * try_to_take_rt_mutex() sets the waiter bit 774 * unconditionally. We might have to fix that up. 775 */ 776 fixup_rt_mutex_waiters(lock); 777 778 raw_spin_unlock(&lock->wait_lock); 779 780 /* Remove pending timer: */ 781 if (unlikely(timeout)) 782 hrtimer_cancel(&timeout->timer); 783 784 debug_rt_mutex_free_waiter(&waiter); 785 786 return ret; 787 } 788 789 /* 790 * Slow path try-lock function: 791 */ 792 static inline int 793 rt_mutex_slowtrylock(struct rt_mutex *lock) 794 { 795 int ret = 0; 796 797 raw_spin_lock(&lock->wait_lock); 798 799 if (likely(rt_mutex_owner(lock) != current)) { 800 801 ret = try_to_take_rt_mutex(lock, current, NULL); 802 /* 803 * try_to_take_rt_mutex() sets the lock waiters 804 * bit unconditionally. Clean this up. 805 */ 806 fixup_rt_mutex_waiters(lock); 807 } 808 809 raw_spin_unlock(&lock->wait_lock); 810 811 return ret; 812 } 813 814 /* 815 * Slow path to release a rt-mutex: 816 */ 817 static void __sched 818 rt_mutex_slowunlock(struct rt_mutex *lock) 819 { 820 raw_spin_lock(&lock->wait_lock); 821 822 debug_rt_mutex_unlock(lock); 823 824 rt_mutex_deadlock_account_unlock(current); 825 826 if (!rt_mutex_has_waiters(lock)) { 827 lock->owner = NULL; 828 raw_spin_unlock(&lock->wait_lock); 829 return; 830 } 831 832 wakeup_next_waiter(lock); 833 834 raw_spin_unlock(&lock->wait_lock); 835 836 /* Undo pi boosting if necessary: */ 837 rt_mutex_adjust_prio(current); 838 } 839 840 /* 841 * debug aware fast / slowpath lock,trylock,unlock 842 * 843 * The atomic acquire/release ops are compiled away, when either the 844 * architecture does not support cmpxchg or when debugging is enabled. 845 */ 846 static inline int 847 rt_mutex_fastlock(struct rt_mutex *lock, int state, 848 int detect_deadlock, 849 int (*slowfn)(struct rt_mutex *lock, int state, 850 struct hrtimer_sleeper *timeout, 851 int detect_deadlock)) 852 { 853 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) { 854 rt_mutex_deadlock_account_lock(lock, current); 855 return 0; 856 } else 857 return slowfn(lock, state, NULL, detect_deadlock); 858 } 859 860 static inline int 861 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state, 862 struct hrtimer_sleeper *timeout, int detect_deadlock, 863 int (*slowfn)(struct rt_mutex *lock, int state, 864 struct hrtimer_sleeper *timeout, 865 int detect_deadlock)) 866 { 867 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) { 868 rt_mutex_deadlock_account_lock(lock, current); 869 return 0; 870 } else 871 return slowfn(lock, state, timeout, detect_deadlock); 872 } 873 874 static inline int 875 rt_mutex_fasttrylock(struct rt_mutex *lock, 876 int (*slowfn)(struct rt_mutex *lock)) 877 { 878 if (likely(rt_mutex_cmpxchg(lock, NULL, current))) { 879 rt_mutex_deadlock_account_lock(lock, current); 880 return 1; 881 } 882 return slowfn(lock); 883 } 884 885 static inline void 886 rt_mutex_fastunlock(struct rt_mutex *lock, 887 void (*slowfn)(struct rt_mutex *lock)) 888 { 889 if (likely(rt_mutex_cmpxchg(lock, current, NULL))) 890 rt_mutex_deadlock_account_unlock(current); 891 else 892 slowfn(lock); 893 } 894 895 /** 896 * rt_mutex_lock - lock a rt_mutex 897 * 898 * @lock: the rt_mutex to be locked 899 */ 900 void __sched rt_mutex_lock(struct rt_mutex *lock) 901 { 902 might_sleep(); 903 904 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, 0, rt_mutex_slowlock); 905 } 906 EXPORT_SYMBOL_GPL(rt_mutex_lock); 907 908 /** 909 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible 910 * 911 * @lock: the rt_mutex to be locked 912 * @detect_deadlock: deadlock detection on/off 913 * 914 * Returns: 915 * 0 on success 916 * -EINTR when interrupted by a signal 917 * -EDEADLK when the lock would deadlock (when deadlock detection is on) 918 */ 919 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock, 920 int detect_deadlock) 921 { 922 might_sleep(); 923 924 return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, 925 detect_deadlock, rt_mutex_slowlock); 926 } 927 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible); 928 929 /** 930 * rt_mutex_timed_lock - lock a rt_mutex interruptible 931 * the timeout structure is provided 932 * by the caller 933 * 934 * @lock: the rt_mutex to be locked 935 * @timeout: timeout structure or NULL (no timeout) 936 * @detect_deadlock: deadlock detection on/off 937 * 938 * Returns: 939 * 0 on success 940 * -EINTR when interrupted by a signal 941 * -ETIMEDOUT when the timeout expired 942 * -EDEADLK when the lock would deadlock (when deadlock detection is on) 943 */ 944 int 945 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout, 946 int detect_deadlock) 947 { 948 might_sleep(); 949 950 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout, 951 detect_deadlock, rt_mutex_slowlock); 952 } 953 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock); 954 955 /** 956 * rt_mutex_trylock - try to lock a rt_mutex 957 * 958 * @lock: the rt_mutex to be locked 959 * 960 * Returns 1 on success and 0 on contention 961 */ 962 int __sched rt_mutex_trylock(struct rt_mutex *lock) 963 { 964 return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock); 965 } 966 EXPORT_SYMBOL_GPL(rt_mutex_trylock); 967 968 /** 969 * rt_mutex_unlock - unlock a rt_mutex 970 * 971 * @lock: the rt_mutex to be unlocked 972 */ 973 void __sched rt_mutex_unlock(struct rt_mutex *lock) 974 { 975 rt_mutex_fastunlock(lock, rt_mutex_slowunlock); 976 } 977 EXPORT_SYMBOL_GPL(rt_mutex_unlock); 978 979 /** 980 * rt_mutex_destroy - mark a mutex unusable 981 * @lock: the mutex to be destroyed 982 * 983 * This function marks the mutex uninitialized, and any subsequent 984 * use of the mutex is forbidden. The mutex must not be locked when 985 * this function is called. 986 */ 987 void rt_mutex_destroy(struct rt_mutex *lock) 988 { 989 WARN_ON(rt_mutex_is_locked(lock)); 990 #ifdef CONFIG_DEBUG_RT_MUTEXES 991 lock->magic = NULL; 992 #endif 993 } 994 995 EXPORT_SYMBOL_GPL(rt_mutex_destroy); 996 997 /** 998 * __rt_mutex_init - initialize the rt lock 999 * 1000 * @lock: the rt lock to be initialized 1001 * 1002 * Initialize the rt lock to unlocked state. 1003 * 1004 * Initializing of a locked rt lock is not allowed 1005 */ 1006 void __rt_mutex_init(struct rt_mutex *lock, const char *name) 1007 { 1008 lock->owner = NULL; 1009 raw_spin_lock_init(&lock->wait_lock); 1010 lock->waiters = RB_ROOT; 1011 lock->waiters_leftmost = NULL; 1012 1013 debug_rt_mutex_init(lock, name); 1014 } 1015 EXPORT_SYMBOL_GPL(__rt_mutex_init); 1016 1017 /** 1018 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a 1019 * proxy owner 1020 * 1021 * @lock: the rt_mutex to be locked 1022 * @proxy_owner:the task to set as owner 1023 * 1024 * No locking. Caller has to do serializing itself 1025 * Special API call for PI-futex support 1026 */ 1027 void rt_mutex_init_proxy_locked(struct rt_mutex *lock, 1028 struct task_struct *proxy_owner) 1029 { 1030 __rt_mutex_init(lock, NULL); 1031 debug_rt_mutex_proxy_lock(lock, proxy_owner); 1032 rt_mutex_set_owner(lock, proxy_owner); 1033 rt_mutex_deadlock_account_lock(lock, proxy_owner); 1034 } 1035 1036 /** 1037 * rt_mutex_proxy_unlock - release a lock on behalf of owner 1038 * 1039 * @lock: the rt_mutex to be locked 1040 * 1041 * No locking. Caller has to do serializing itself 1042 * Special API call for PI-futex support 1043 */ 1044 void rt_mutex_proxy_unlock(struct rt_mutex *lock, 1045 struct task_struct *proxy_owner) 1046 { 1047 debug_rt_mutex_proxy_unlock(lock); 1048 rt_mutex_set_owner(lock, NULL); 1049 rt_mutex_deadlock_account_unlock(proxy_owner); 1050 } 1051 1052 /** 1053 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task 1054 * @lock: the rt_mutex to take 1055 * @waiter: the pre-initialized rt_mutex_waiter 1056 * @task: the task to prepare 1057 * @detect_deadlock: perform deadlock detection (1) or not (0) 1058 * 1059 * Returns: 1060 * 0 - task blocked on lock 1061 * 1 - acquired the lock for task, caller should wake it up 1062 * <0 - error 1063 * 1064 * Special API call for FUTEX_REQUEUE_PI support. 1065 */ 1066 int rt_mutex_start_proxy_lock(struct rt_mutex *lock, 1067 struct rt_mutex_waiter *waiter, 1068 struct task_struct *task, int detect_deadlock) 1069 { 1070 int ret; 1071 1072 raw_spin_lock(&lock->wait_lock); 1073 1074 if (try_to_take_rt_mutex(lock, task, NULL)) { 1075 raw_spin_unlock(&lock->wait_lock); 1076 return 1; 1077 } 1078 1079 ret = task_blocks_on_rt_mutex(lock, waiter, task, detect_deadlock); 1080 1081 if (ret && !rt_mutex_owner(lock)) { 1082 /* 1083 * Reset the return value. We might have 1084 * returned with -EDEADLK and the owner 1085 * released the lock while we were walking the 1086 * pi chain. Let the waiter sort it out. 1087 */ 1088 ret = 0; 1089 } 1090 1091 if (unlikely(ret)) 1092 remove_waiter(lock, waiter); 1093 1094 raw_spin_unlock(&lock->wait_lock); 1095 1096 debug_rt_mutex_print_deadlock(waiter); 1097 1098 return ret; 1099 } 1100 1101 /** 1102 * rt_mutex_next_owner - return the next owner of the lock 1103 * 1104 * @lock: the rt lock query 1105 * 1106 * Returns the next owner of the lock or NULL 1107 * 1108 * Caller has to serialize against other accessors to the lock 1109 * itself. 1110 * 1111 * Special API call for PI-futex support 1112 */ 1113 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock) 1114 { 1115 if (!rt_mutex_has_waiters(lock)) 1116 return NULL; 1117 1118 return rt_mutex_top_waiter(lock)->task; 1119 } 1120 1121 /** 1122 * rt_mutex_finish_proxy_lock() - Complete lock acquisition 1123 * @lock: the rt_mutex we were woken on 1124 * @to: the timeout, null if none. hrtimer should already have 1125 * been started. 1126 * @waiter: the pre-initialized rt_mutex_waiter 1127 * @detect_deadlock: perform deadlock detection (1) or not (0) 1128 * 1129 * Complete the lock acquisition started our behalf by another thread. 1130 * 1131 * Returns: 1132 * 0 - success 1133 * <0 - error, one of -EINTR, -ETIMEDOUT, or -EDEADLK 1134 * 1135 * Special API call for PI-futex requeue support 1136 */ 1137 int rt_mutex_finish_proxy_lock(struct rt_mutex *lock, 1138 struct hrtimer_sleeper *to, 1139 struct rt_mutex_waiter *waiter, 1140 int detect_deadlock) 1141 { 1142 int ret; 1143 1144 raw_spin_lock(&lock->wait_lock); 1145 1146 set_current_state(TASK_INTERRUPTIBLE); 1147 1148 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter); 1149 1150 set_current_state(TASK_RUNNING); 1151 1152 if (unlikely(ret)) 1153 remove_waiter(lock, waiter); 1154 1155 /* 1156 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might 1157 * have to fix that up. 1158 */ 1159 fixup_rt_mutex_waiters(lock); 1160 1161 raw_spin_unlock(&lock->wait_lock); 1162 1163 return ret; 1164 } 1165