1 #ifndef _GEN_PV_LOCK_SLOWPATH 2 #error "do not include this file" 3 #endif 4 5 #include <linux/hash.h> 6 #include <linux/bootmem.h> 7 #include <linux/debug_locks.h> 8 9 /* 10 * Implement paravirt qspinlocks; the general idea is to halt the vcpus instead 11 * of spinning them. 12 * 13 * This relies on the architecture to provide two paravirt hypercalls: 14 * 15 * pv_wait(u8 *ptr, u8 val) -- suspends the vcpu if *ptr == val 16 * pv_kick(cpu) -- wakes a suspended vcpu 17 * 18 * Using these we implement __pv_queued_spin_lock_slowpath() and 19 * __pv_queued_spin_unlock() to replace native_queued_spin_lock_slowpath() and 20 * native_queued_spin_unlock(). 21 */ 22 23 #define _Q_SLOW_VAL (3U << _Q_LOCKED_OFFSET) 24 25 /* 26 * Queue Node Adaptive Spinning 27 * 28 * A queue node vCPU will stop spinning if the vCPU in the previous node is 29 * not running. The one lock stealing attempt allowed at slowpath entry 30 * mitigates the slight slowdown for non-overcommitted guest with this 31 * aggressive wait-early mechanism. 32 * 33 * The status of the previous node will be checked at fixed interval 34 * controlled by PV_PREV_CHECK_MASK. This is to ensure that we won't 35 * pound on the cacheline of the previous node too heavily. 36 */ 37 #define PV_PREV_CHECK_MASK 0xff 38 39 /* 40 * Queue node uses: vcpu_running & vcpu_halted. 41 * Queue head uses: vcpu_running & vcpu_hashed. 42 */ 43 enum vcpu_state { 44 vcpu_running = 0, 45 vcpu_halted, /* Used only in pv_wait_node */ 46 vcpu_hashed, /* = pv_hash'ed + vcpu_halted */ 47 }; 48 49 struct pv_node { 50 struct mcs_spinlock mcs; 51 struct mcs_spinlock __res[3]; 52 53 int cpu; 54 u8 state; 55 }; 56 57 /* 58 * By replacing the regular queued_spin_trylock() with the function below, 59 * it will be called once when a lock waiter enter the PV slowpath before 60 * being queued. By allowing one lock stealing attempt here when the pending 61 * bit is off, it helps to reduce the performance impact of lock waiter 62 * preemption without the drawback of lock starvation. 63 */ 64 #define queued_spin_trylock(l) pv_queued_spin_steal_lock(l) 65 static inline bool pv_queued_spin_steal_lock(struct qspinlock *lock) 66 { 67 struct __qspinlock *l = (void *)lock; 68 69 return !(atomic_read(&lock->val) & _Q_LOCKED_PENDING_MASK) && 70 (cmpxchg(&l->locked, 0, _Q_LOCKED_VAL) == 0); 71 } 72 73 /* 74 * The pending bit is used by the queue head vCPU to indicate that it 75 * is actively spinning on the lock and no lock stealing is allowed. 76 */ 77 #if _Q_PENDING_BITS == 8 78 static __always_inline void set_pending(struct qspinlock *lock) 79 { 80 struct __qspinlock *l = (void *)lock; 81 82 WRITE_ONCE(l->pending, 1); 83 } 84 85 static __always_inline void clear_pending(struct qspinlock *lock) 86 { 87 struct __qspinlock *l = (void *)lock; 88 89 WRITE_ONCE(l->pending, 0); 90 } 91 92 /* 93 * The pending bit check in pv_queued_spin_steal_lock() isn't a memory 94 * barrier. Therefore, an atomic cmpxchg() is used to acquire the lock 95 * just to be sure that it will get it. 96 */ 97 static __always_inline int trylock_clear_pending(struct qspinlock *lock) 98 { 99 struct __qspinlock *l = (void *)lock; 100 101 return !READ_ONCE(l->locked) && 102 (cmpxchg(&l->locked_pending, _Q_PENDING_VAL, _Q_LOCKED_VAL) 103 == _Q_PENDING_VAL); 104 } 105 #else /* _Q_PENDING_BITS == 8 */ 106 static __always_inline void set_pending(struct qspinlock *lock) 107 { 108 atomic_set_mask(_Q_PENDING_VAL, &lock->val); 109 } 110 111 static __always_inline void clear_pending(struct qspinlock *lock) 112 { 113 atomic_clear_mask(_Q_PENDING_VAL, &lock->val); 114 } 115 116 static __always_inline int trylock_clear_pending(struct qspinlock *lock) 117 { 118 int val = atomic_read(&lock->val); 119 120 for (;;) { 121 int old, new; 122 123 if (val & _Q_LOCKED_MASK) 124 break; 125 126 /* 127 * Try to clear pending bit & set locked bit 128 */ 129 old = val; 130 new = (val & ~_Q_PENDING_MASK) | _Q_LOCKED_VAL; 131 val = atomic_cmpxchg(&lock->val, old, new); 132 133 if (val == old) 134 return 1; 135 } 136 return 0; 137 } 138 #endif /* _Q_PENDING_BITS == 8 */ 139 140 /* 141 * Include queued spinlock statistics code 142 */ 143 #include "qspinlock_stat.h" 144 145 /* 146 * Lock and MCS node addresses hash table for fast lookup 147 * 148 * Hashing is done on a per-cacheline basis to minimize the need to access 149 * more than one cacheline. 150 * 151 * Dynamically allocate a hash table big enough to hold at least 4X the 152 * number of possible cpus in the system. Allocation is done on page 153 * granularity. So the minimum number of hash buckets should be at least 154 * 256 (64-bit) or 512 (32-bit) to fully utilize a 4k page. 155 * 156 * Since we should not be holding locks from NMI context (very rare indeed) the 157 * max load factor is 0.75, which is around the point where open addressing 158 * breaks down. 159 * 160 */ 161 struct pv_hash_entry { 162 struct qspinlock *lock; 163 struct pv_node *node; 164 }; 165 166 #define PV_HE_PER_LINE (SMP_CACHE_BYTES / sizeof(struct pv_hash_entry)) 167 #define PV_HE_MIN (PAGE_SIZE / sizeof(struct pv_hash_entry)) 168 169 static struct pv_hash_entry *pv_lock_hash; 170 static unsigned int pv_lock_hash_bits __read_mostly; 171 172 /* 173 * Allocate memory for the PV qspinlock hash buckets 174 * 175 * This function should be called from the paravirt spinlock initialization 176 * routine. 177 */ 178 void __init __pv_init_lock_hash(void) 179 { 180 int pv_hash_size = ALIGN(4 * num_possible_cpus(), PV_HE_PER_LINE); 181 182 if (pv_hash_size < PV_HE_MIN) 183 pv_hash_size = PV_HE_MIN; 184 185 /* 186 * Allocate space from bootmem which should be page-size aligned 187 * and hence cacheline aligned. 188 */ 189 pv_lock_hash = alloc_large_system_hash("PV qspinlock", 190 sizeof(struct pv_hash_entry), 191 pv_hash_size, 0, HASH_EARLY, 192 &pv_lock_hash_bits, NULL, 193 pv_hash_size, pv_hash_size); 194 } 195 196 #define for_each_hash_entry(he, offset, hash) \ 197 for (hash &= ~(PV_HE_PER_LINE - 1), he = &pv_lock_hash[hash], offset = 0; \ 198 offset < (1 << pv_lock_hash_bits); \ 199 offset++, he = &pv_lock_hash[(hash + offset) & ((1 << pv_lock_hash_bits) - 1)]) 200 201 static struct qspinlock **pv_hash(struct qspinlock *lock, struct pv_node *node) 202 { 203 unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits); 204 struct pv_hash_entry *he; 205 int hopcnt = 0; 206 207 for_each_hash_entry(he, offset, hash) { 208 hopcnt++; 209 if (!cmpxchg(&he->lock, NULL, lock)) { 210 WRITE_ONCE(he->node, node); 211 qstat_hop(hopcnt); 212 return &he->lock; 213 } 214 } 215 /* 216 * Hard assume there is a free entry for us. 217 * 218 * This is guaranteed by ensuring every blocked lock only ever consumes 219 * a single entry, and since we only have 4 nesting levels per CPU 220 * and allocated 4*nr_possible_cpus(), this must be so. 221 * 222 * The single entry is guaranteed by having the lock owner unhash 223 * before it releases. 224 */ 225 BUG(); 226 } 227 228 static struct pv_node *pv_unhash(struct qspinlock *lock) 229 { 230 unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits); 231 struct pv_hash_entry *he; 232 struct pv_node *node; 233 234 for_each_hash_entry(he, offset, hash) { 235 if (READ_ONCE(he->lock) == lock) { 236 node = READ_ONCE(he->node); 237 WRITE_ONCE(he->lock, NULL); 238 return node; 239 } 240 } 241 /* 242 * Hard assume we'll find an entry. 243 * 244 * This guarantees a limited lookup time and is itself guaranteed by 245 * having the lock owner do the unhash -- IFF the unlock sees the 246 * SLOW flag, there MUST be a hash entry. 247 */ 248 BUG(); 249 } 250 251 /* 252 * Return true if when it is time to check the previous node which is not 253 * in a running state. 254 */ 255 static inline bool 256 pv_wait_early(struct pv_node *prev, int loop) 257 { 258 259 if ((loop & PV_PREV_CHECK_MASK) != 0) 260 return false; 261 262 return READ_ONCE(prev->state) != vcpu_running; 263 } 264 265 /* 266 * Initialize the PV part of the mcs_spinlock node. 267 */ 268 static void pv_init_node(struct mcs_spinlock *node) 269 { 270 struct pv_node *pn = (struct pv_node *)node; 271 272 BUILD_BUG_ON(sizeof(struct pv_node) > 5*sizeof(struct mcs_spinlock)); 273 274 pn->cpu = smp_processor_id(); 275 pn->state = vcpu_running; 276 } 277 278 /* 279 * Wait for node->locked to become true, halt the vcpu after a short spin. 280 * pv_kick_node() is used to set _Q_SLOW_VAL and fill in hash table on its 281 * behalf. 282 */ 283 static void pv_wait_node(struct mcs_spinlock *node, struct mcs_spinlock *prev) 284 { 285 struct pv_node *pn = (struct pv_node *)node; 286 struct pv_node *pp = (struct pv_node *)prev; 287 int waitcnt = 0; 288 int loop; 289 bool wait_early; 290 291 /* waitcnt processing will be compiled out if !QUEUED_LOCK_STAT */ 292 for (;; waitcnt++) { 293 for (wait_early = false, loop = SPIN_THRESHOLD; loop; loop--) { 294 if (READ_ONCE(node->locked)) 295 return; 296 if (pv_wait_early(pp, loop)) { 297 wait_early = true; 298 break; 299 } 300 cpu_relax(); 301 } 302 303 /* 304 * Order pn->state vs pn->locked thusly: 305 * 306 * [S] pn->state = vcpu_halted [S] next->locked = 1 307 * MB MB 308 * [L] pn->locked [RmW] pn->state = vcpu_hashed 309 * 310 * Matches the cmpxchg() from pv_kick_node(). 311 */ 312 smp_store_mb(pn->state, vcpu_halted); 313 314 if (!READ_ONCE(node->locked)) { 315 qstat_inc(qstat_pv_wait_node, true); 316 qstat_inc(qstat_pv_wait_again, waitcnt); 317 qstat_inc(qstat_pv_wait_early, wait_early); 318 pv_wait(&pn->state, vcpu_halted); 319 } 320 321 /* 322 * If pv_kick_node() changed us to vcpu_hashed, retain that 323 * value so that pv_wait_head_or_lock() knows to not also try 324 * to hash this lock. 325 */ 326 cmpxchg(&pn->state, vcpu_halted, vcpu_running); 327 328 /* 329 * If the locked flag is still not set after wakeup, it is a 330 * spurious wakeup and the vCPU should wait again. However, 331 * there is a pretty high overhead for CPU halting and kicking. 332 * So it is better to spin for a while in the hope that the 333 * MCS lock will be released soon. 334 */ 335 qstat_inc(qstat_pv_spurious_wakeup, !READ_ONCE(node->locked)); 336 } 337 338 /* 339 * By now our node->locked should be 1 and our caller will not actually 340 * spin-wait for it. We do however rely on our caller to do a 341 * load-acquire for us. 342 */ 343 } 344 345 /* 346 * Called after setting next->locked = 1 when we're the lock owner. 347 * 348 * Instead of waking the waiters stuck in pv_wait_node() advance their state 349 * such that they're waiting in pv_wait_head_or_lock(), this avoids a 350 * wake/sleep cycle. 351 */ 352 static void pv_kick_node(struct qspinlock *lock, struct mcs_spinlock *node) 353 { 354 struct pv_node *pn = (struct pv_node *)node; 355 struct __qspinlock *l = (void *)lock; 356 357 /* 358 * If the vCPU is indeed halted, advance its state to match that of 359 * pv_wait_node(). If OTOH this fails, the vCPU was running and will 360 * observe its next->locked value and advance itself. 361 * 362 * Matches with smp_store_mb() and cmpxchg() in pv_wait_node() 363 */ 364 if (cmpxchg(&pn->state, vcpu_halted, vcpu_hashed) != vcpu_halted) 365 return; 366 367 /* 368 * Put the lock into the hash table and set the _Q_SLOW_VAL. 369 * 370 * As this is the same vCPU that will check the _Q_SLOW_VAL value and 371 * the hash table later on at unlock time, no atomic instruction is 372 * needed. 373 */ 374 WRITE_ONCE(l->locked, _Q_SLOW_VAL); 375 (void)pv_hash(lock, pn); 376 } 377 378 /* 379 * Wait for l->locked to become clear and acquire the lock; 380 * halt the vcpu after a short spin. 381 * __pv_queued_spin_unlock() will wake us. 382 * 383 * The current value of the lock will be returned for additional processing. 384 */ 385 static u32 386 pv_wait_head_or_lock(struct qspinlock *lock, struct mcs_spinlock *node) 387 { 388 struct pv_node *pn = (struct pv_node *)node; 389 struct __qspinlock *l = (void *)lock; 390 struct qspinlock **lp = NULL; 391 int waitcnt = 0; 392 int loop; 393 394 /* 395 * If pv_kick_node() already advanced our state, we don't need to 396 * insert ourselves into the hash table anymore. 397 */ 398 if (READ_ONCE(pn->state) == vcpu_hashed) 399 lp = (struct qspinlock **)1; 400 401 for (;; waitcnt++) { 402 /* 403 * Set correct vCPU state to be used by queue node wait-early 404 * mechanism. 405 */ 406 WRITE_ONCE(pn->state, vcpu_running); 407 408 /* 409 * Set the pending bit in the active lock spinning loop to 410 * disable lock stealing before attempting to acquire the lock. 411 */ 412 set_pending(lock); 413 for (loop = SPIN_THRESHOLD; loop; loop--) { 414 if (trylock_clear_pending(lock)) 415 goto gotlock; 416 cpu_relax(); 417 } 418 clear_pending(lock); 419 420 421 if (!lp) { /* ONCE */ 422 lp = pv_hash(lock, pn); 423 424 /* 425 * We must hash before setting _Q_SLOW_VAL, such that 426 * when we observe _Q_SLOW_VAL in __pv_queued_spin_unlock() 427 * we'll be sure to be able to observe our hash entry. 428 * 429 * [S] <hash> [Rmw] l->locked == _Q_SLOW_VAL 430 * MB RMB 431 * [RmW] l->locked = _Q_SLOW_VAL [L] <unhash> 432 * 433 * Matches the smp_rmb() in __pv_queued_spin_unlock(). 434 */ 435 if (xchg(&l->locked, _Q_SLOW_VAL) == 0) { 436 /* 437 * The lock was free and now we own the lock. 438 * Change the lock value back to _Q_LOCKED_VAL 439 * and unhash the table. 440 */ 441 WRITE_ONCE(l->locked, _Q_LOCKED_VAL); 442 WRITE_ONCE(*lp, NULL); 443 goto gotlock; 444 } 445 } 446 WRITE_ONCE(pn->state, vcpu_halted); 447 qstat_inc(qstat_pv_wait_head, true); 448 qstat_inc(qstat_pv_wait_again, waitcnt); 449 pv_wait(&l->locked, _Q_SLOW_VAL); 450 451 /* 452 * The unlocker should have freed the lock before kicking the 453 * CPU. So if the lock is still not free, it is a spurious 454 * wakeup or another vCPU has stolen the lock. The current 455 * vCPU should spin again. 456 */ 457 qstat_inc(qstat_pv_spurious_wakeup, READ_ONCE(l->locked)); 458 } 459 460 /* 461 * The cmpxchg() or xchg() call before coming here provides the 462 * acquire semantics for locking. The dummy ORing of _Q_LOCKED_VAL 463 * here is to indicate to the compiler that the value will always 464 * be nozero to enable better code optimization. 465 */ 466 gotlock: 467 return (u32)(atomic_read(&lock->val) | _Q_LOCKED_VAL); 468 } 469 470 /* 471 * PV versions of the unlock fastpath and slowpath functions to be used 472 * instead of queued_spin_unlock(). 473 */ 474 __visible void 475 __pv_queued_spin_unlock_slowpath(struct qspinlock *lock, u8 locked) 476 { 477 struct __qspinlock *l = (void *)lock; 478 struct pv_node *node; 479 480 if (unlikely(locked != _Q_SLOW_VAL)) { 481 WARN(!debug_locks_silent, 482 "pvqspinlock: lock 0x%lx has corrupted value 0x%x!\n", 483 (unsigned long)lock, atomic_read(&lock->val)); 484 return; 485 } 486 487 /* 488 * A failed cmpxchg doesn't provide any memory-ordering guarantees, 489 * so we need a barrier to order the read of the node data in 490 * pv_unhash *after* we've read the lock being _Q_SLOW_VAL. 491 * 492 * Matches the cmpxchg() in pv_wait_head_or_lock() setting _Q_SLOW_VAL. 493 */ 494 smp_rmb(); 495 496 /* 497 * Since the above failed to release, this must be the SLOW path. 498 * Therefore start by looking up the blocked node and unhashing it. 499 */ 500 node = pv_unhash(lock); 501 502 /* 503 * Now that we have a reference to the (likely) blocked pv_node, 504 * release the lock. 505 */ 506 smp_store_release(&l->locked, 0); 507 508 /* 509 * At this point the memory pointed at by lock can be freed/reused, 510 * however we can still use the pv_node to kick the CPU. 511 * The other vCPU may not really be halted, but kicking an active 512 * vCPU is harmless other than the additional latency in completing 513 * the unlock. 514 */ 515 qstat_inc(qstat_pv_kick_unlock, true); 516 pv_kick(node->cpu); 517 } 518 519 /* 520 * Include the architecture specific callee-save thunk of the 521 * __pv_queued_spin_unlock(). This thunk is put together with 522 * __pv_queued_spin_unlock() to make the callee-save thunk and the real unlock 523 * function close to each other sharing consecutive instruction cachelines. 524 * Alternatively, architecture specific version of __pv_queued_spin_unlock() 525 * can be defined. 526 */ 527 #include <asm/qspinlock_paravirt.h> 528 529 #ifndef __pv_queued_spin_unlock 530 __visible void __pv_queued_spin_unlock(struct qspinlock *lock) 531 { 532 struct __qspinlock *l = (void *)lock; 533 u8 locked; 534 535 /* 536 * We must not unlock if SLOW, because in that case we must first 537 * unhash. Otherwise it would be possible to have multiple @lock 538 * entries, which would be BAD. 539 */ 540 locked = cmpxchg(&l->locked, _Q_LOCKED_VAL, 0); 541 if (likely(locked == _Q_LOCKED_VAL)) 542 return; 543 544 __pv_queued_spin_unlock_slowpath(lock, locked); 545 } 546 #endif /* __pv_queued_spin_unlock */ 547