1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _GEN_PV_LOCK_SLOWPATH 3 #error "do not include this file" 4 #endif 5 6 #include <linux/hash.h> 7 #include <linux/bootmem.h> 8 #include <linux/debug_locks.h> 9 10 /* 11 * Implement paravirt qspinlocks; the general idea is to halt the vcpus instead 12 * of spinning them. 13 * 14 * This relies on the architecture to provide two paravirt hypercalls: 15 * 16 * pv_wait(u8 *ptr, u8 val) -- suspends the vcpu if *ptr == val 17 * pv_kick(cpu) -- wakes a suspended vcpu 18 * 19 * Using these we implement __pv_queued_spin_lock_slowpath() and 20 * __pv_queued_spin_unlock() to replace native_queued_spin_lock_slowpath() and 21 * native_queued_spin_unlock(). 22 */ 23 24 #define _Q_SLOW_VAL (3U << _Q_LOCKED_OFFSET) 25 26 /* 27 * Queue Node Adaptive Spinning 28 * 29 * A queue node vCPU will stop spinning if the vCPU in the previous node is 30 * not running. The one lock stealing attempt allowed at slowpath entry 31 * mitigates the slight slowdown for non-overcommitted guest with this 32 * aggressive wait-early mechanism. 33 * 34 * The status of the previous node will be checked at fixed interval 35 * controlled by PV_PREV_CHECK_MASK. This is to ensure that we won't 36 * pound on the cacheline of the previous node too heavily. 37 */ 38 #define PV_PREV_CHECK_MASK 0xff 39 40 /* 41 * Queue node uses: vcpu_running & vcpu_halted. 42 * Queue head uses: vcpu_running & vcpu_hashed. 43 */ 44 enum vcpu_state { 45 vcpu_running = 0, 46 vcpu_halted, /* Used only in pv_wait_node */ 47 vcpu_hashed, /* = pv_hash'ed + vcpu_halted */ 48 }; 49 50 struct pv_node { 51 struct mcs_spinlock mcs; 52 struct mcs_spinlock __res[3]; 53 54 int cpu; 55 u8 state; 56 }; 57 58 /* 59 * Include queued spinlock statistics code 60 */ 61 #include "qspinlock_stat.h" 62 63 /* 64 * By replacing the regular queued_spin_trylock() with the function below, 65 * it will be called once when a lock waiter enter the PV slowpath before 66 * being queued. By allowing one lock stealing attempt here when the pending 67 * bit is off, it helps to reduce the performance impact of lock waiter 68 * preemption without the drawback of lock starvation. 69 */ 70 #define queued_spin_trylock(l) pv_queued_spin_steal_lock(l) 71 static inline bool pv_queued_spin_steal_lock(struct qspinlock *lock) 72 { 73 struct __qspinlock *l = (void *)lock; 74 75 if (!(atomic_read(&lock->val) & _Q_LOCKED_PENDING_MASK) && 76 (cmpxchg_acquire(&l->locked, 0, _Q_LOCKED_VAL) == 0)) { 77 qstat_inc(qstat_pv_lock_stealing, true); 78 return true; 79 } 80 81 return false; 82 } 83 84 /* 85 * The pending bit is used by the queue head vCPU to indicate that it 86 * is actively spinning on the lock and no lock stealing is allowed. 87 */ 88 #if _Q_PENDING_BITS == 8 89 static __always_inline void set_pending(struct qspinlock *lock) 90 { 91 struct __qspinlock *l = (void *)lock; 92 93 WRITE_ONCE(l->pending, 1); 94 } 95 96 static __always_inline void clear_pending(struct qspinlock *lock) 97 { 98 struct __qspinlock *l = (void *)lock; 99 100 WRITE_ONCE(l->pending, 0); 101 } 102 103 /* 104 * The pending bit check in pv_queued_spin_steal_lock() isn't a memory 105 * barrier. Therefore, an atomic cmpxchg_acquire() is used to acquire the 106 * lock just to be sure that it will get it. 107 */ 108 static __always_inline int trylock_clear_pending(struct qspinlock *lock) 109 { 110 struct __qspinlock *l = (void *)lock; 111 112 return !READ_ONCE(l->locked) && 113 (cmpxchg_acquire(&l->locked_pending, _Q_PENDING_VAL, 114 _Q_LOCKED_VAL) == _Q_PENDING_VAL); 115 } 116 #else /* _Q_PENDING_BITS == 8 */ 117 static __always_inline void set_pending(struct qspinlock *lock) 118 { 119 atomic_or(_Q_PENDING_VAL, &lock->val); 120 } 121 122 static __always_inline void clear_pending(struct qspinlock *lock) 123 { 124 atomic_andnot(_Q_PENDING_VAL, &lock->val); 125 } 126 127 static __always_inline int trylock_clear_pending(struct qspinlock *lock) 128 { 129 int val = atomic_read(&lock->val); 130 131 for (;;) { 132 int old, new; 133 134 if (val & _Q_LOCKED_MASK) 135 break; 136 137 /* 138 * Try to clear pending bit & set locked bit 139 */ 140 old = val; 141 new = (val & ~_Q_PENDING_MASK) | _Q_LOCKED_VAL; 142 val = atomic_cmpxchg_acquire(&lock->val, old, new); 143 144 if (val == old) 145 return 1; 146 } 147 return 0; 148 } 149 #endif /* _Q_PENDING_BITS == 8 */ 150 151 /* 152 * Lock and MCS node addresses hash table for fast lookup 153 * 154 * Hashing is done on a per-cacheline basis to minimize the need to access 155 * more than one cacheline. 156 * 157 * Dynamically allocate a hash table big enough to hold at least 4X the 158 * number of possible cpus in the system. Allocation is done on page 159 * granularity. So the minimum number of hash buckets should be at least 160 * 256 (64-bit) or 512 (32-bit) to fully utilize a 4k page. 161 * 162 * Since we should not be holding locks from NMI context (very rare indeed) the 163 * max load factor is 0.75, which is around the point where open addressing 164 * breaks down. 165 * 166 */ 167 struct pv_hash_entry { 168 struct qspinlock *lock; 169 struct pv_node *node; 170 }; 171 172 #define PV_HE_PER_LINE (SMP_CACHE_BYTES / sizeof(struct pv_hash_entry)) 173 #define PV_HE_MIN (PAGE_SIZE / sizeof(struct pv_hash_entry)) 174 175 static struct pv_hash_entry *pv_lock_hash; 176 static unsigned int pv_lock_hash_bits __read_mostly; 177 178 /* 179 * Allocate memory for the PV qspinlock hash buckets 180 * 181 * This function should be called from the paravirt spinlock initialization 182 * routine. 183 */ 184 void __init __pv_init_lock_hash(void) 185 { 186 int pv_hash_size = ALIGN(4 * num_possible_cpus(), PV_HE_PER_LINE); 187 188 if (pv_hash_size < PV_HE_MIN) 189 pv_hash_size = PV_HE_MIN; 190 191 /* 192 * Allocate space from bootmem which should be page-size aligned 193 * and hence cacheline aligned. 194 */ 195 pv_lock_hash = alloc_large_system_hash("PV qspinlock", 196 sizeof(struct pv_hash_entry), 197 pv_hash_size, 0, 198 HASH_EARLY | HASH_ZERO, 199 &pv_lock_hash_bits, NULL, 200 pv_hash_size, pv_hash_size); 201 } 202 203 #define for_each_hash_entry(he, offset, hash) \ 204 for (hash &= ~(PV_HE_PER_LINE - 1), he = &pv_lock_hash[hash], offset = 0; \ 205 offset < (1 << pv_lock_hash_bits); \ 206 offset++, he = &pv_lock_hash[(hash + offset) & ((1 << pv_lock_hash_bits) - 1)]) 207 208 static struct qspinlock **pv_hash(struct qspinlock *lock, struct pv_node *node) 209 { 210 unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits); 211 struct pv_hash_entry *he; 212 int hopcnt = 0; 213 214 for_each_hash_entry(he, offset, hash) { 215 hopcnt++; 216 if (!cmpxchg(&he->lock, NULL, lock)) { 217 WRITE_ONCE(he->node, node); 218 qstat_hop(hopcnt); 219 return &he->lock; 220 } 221 } 222 /* 223 * Hard assume there is a free entry for us. 224 * 225 * This is guaranteed by ensuring every blocked lock only ever consumes 226 * a single entry, and since we only have 4 nesting levels per CPU 227 * and allocated 4*nr_possible_cpus(), this must be so. 228 * 229 * The single entry is guaranteed by having the lock owner unhash 230 * before it releases. 231 */ 232 BUG(); 233 } 234 235 static struct pv_node *pv_unhash(struct qspinlock *lock) 236 { 237 unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits); 238 struct pv_hash_entry *he; 239 struct pv_node *node; 240 241 for_each_hash_entry(he, offset, hash) { 242 if (READ_ONCE(he->lock) == lock) { 243 node = READ_ONCE(he->node); 244 WRITE_ONCE(he->lock, NULL); 245 return node; 246 } 247 } 248 /* 249 * Hard assume we'll find an entry. 250 * 251 * This guarantees a limited lookup time and is itself guaranteed by 252 * having the lock owner do the unhash -- IFF the unlock sees the 253 * SLOW flag, there MUST be a hash entry. 254 */ 255 BUG(); 256 } 257 258 /* 259 * Return true if when it is time to check the previous node which is not 260 * in a running state. 261 */ 262 static inline bool 263 pv_wait_early(struct pv_node *prev, int loop) 264 { 265 if ((loop & PV_PREV_CHECK_MASK) != 0) 266 return false; 267 268 return READ_ONCE(prev->state) != vcpu_running || vcpu_is_preempted(prev->cpu); 269 } 270 271 /* 272 * Initialize the PV part of the mcs_spinlock node. 273 */ 274 static void pv_init_node(struct mcs_spinlock *node) 275 { 276 struct pv_node *pn = (struct pv_node *)node; 277 278 BUILD_BUG_ON(sizeof(struct pv_node) > 5*sizeof(struct mcs_spinlock)); 279 280 pn->cpu = smp_processor_id(); 281 pn->state = vcpu_running; 282 } 283 284 /* 285 * Wait for node->locked to become true, halt the vcpu after a short spin. 286 * pv_kick_node() is used to set _Q_SLOW_VAL and fill in hash table on its 287 * behalf. 288 */ 289 static void pv_wait_node(struct mcs_spinlock *node, struct mcs_spinlock *prev) 290 { 291 struct pv_node *pn = (struct pv_node *)node; 292 struct pv_node *pp = (struct pv_node *)prev; 293 int loop; 294 bool wait_early; 295 296 for (;;) { 297 for (wait_early = false, loop = SPIN_THRESHOLD; loop; loop--) { 298 if (READ_ONCE(node->locked)) 299 return; 300 if (pv_wait_early(pp, loop)) { 301 wait_early = true; 302 break; 303 } 304 cpu_relax(); 305 } 306 307 /* 308 * Order pn->state vs pn->locked thusly: 309 * 310 * [S] pn->state = vcpu_halted [S] next->locked = 1 311 * MB MB 312 * [L] pn->locked [RmW] pn->state = vcpu_hashed 313 * 314 * Matches the cmpxchg() from pv_kick_node(). 315 */ 316 smp_store_mb(pn->state, vcpu_halted); 317 318 if (!READ_ONCE(node->locked)) { 319 qstat_inc(qstat_pv_wait_node, true); 320 qstat_inc(qstat_pv_wait_early, wait_early); 321 pv_wait(&pn->state, vcpu_halted); 322 } 323 324 /* 325 * If pv_kick_node() changed us to vcpu_hashed, retain that 326 * value so that pv_wait_head_or_lock() knows to not also try 327 * to hash this lock. 328 */ 329 cmpxchg(&pn->state, vcpu_halted, vcpu_running); 330 331 /* 332 * If the locked flag is still not set after wakeup, it is a 333 * spurious wakeup and the vCPU should wait again. However, 334 * there is a pretty high overhead for CPU halting and kicking. 335 * So it is better to spin for a while in the hope that the 336 * MCS lock will be released soon. 337 */ 338 qstat_inc(qstat_pv_spurious_wakeup, !READ_ONCE(node->locked)); 339 } 340 341 /* 342 * By now our node->locked should be 1 and our caller will not actually 343 * spin-wait for it. We do however rely on our caller to do a 344 * load-acquire for us. 345 */ 346 } 347 348 /* 349 * Called after setting next->locked = 1 when we're the lock owner. 350 * 351 * Instead of waking the waiters stuck in pv_wait_node() advance their state 352 * such that they're waiting in pv_wait_head_or_lock(), this avoids a 353 * wake/sleep cycle. 354 */ 355 static void pv_kick_node(struct qspinlock *lock, struct mcs_spinlock *node) 356 { 357 struct pv_node *pn = (struct pv_node *)node; 358 struct __qspinlock *l = (void *)lock; 359 360 /* 361 * If the vCPU is indeed halted, advance its state to match that of 362 * pv_wait_node(). If OTOH this fails, the vCPU was running and will 363 * observe its next->locked value and advance itself. 364 * 365 * Matches with smp_store_mb() and cmpxchg() in pv_wait_node() 366 * 367 * The write to next->locked in arch_mcs_spin_unlock_contended() 368 * must be ordered before the read of pn->state in the cmpxchg() 369 * below for the code to work correctly. To guarantee full ordering 370 * irrespective of the success or failure of the cmpxchg(), 371 * a relaxed version with explicit barrier is used. The control 372 * dependency will order the reading of pn->state before any 373 * subsequent writes. 374 */ 375 smp_mb__before_atomic(); 376 if (cmpxchg_relaxed(&pn->state, vcpu_halted, vcpu_hashed) 377 != vcpu_halted) 378 return; 379 380 /* 381 * Put the lock into the hash table and set the _Q_SLOW_VAL. 382 * 383 * As this is the same vCPU that will check the _Q_SLOW_VAL value and 384 * the hash table later on at unlock time, no atomic instruction is 385 * needed. 386 */ 387 WRITE_ONCE(l->locked, _Q_SLOW_VAL); 388 (void)pv_hash(lock, pn); 389 } 390 391 /* 392 * Wait for l->locked to become clear and acquire the lock; 393 * halt the vcpu after a short spin. 394 * __pv_queued_spin_unlock() will wake us. 395 * 396 * The current value of the lock will be returned for additional processing. 397 */ 398 static u32 399 pv_wait_head_or_lock(struct qspinlock *lock, struct mcs_spinlock *node) 400 { 401 struct pv_node *pn = (struct pv_node *)node; 402 struct __qspinlock *l = (void *)lock; 403 struct qspinlock **lp = NULL; 404 int waitcnt = 0; 405 int loop; 406 407 /* 408 * If pv_kick_node() already advanced our state, we don't need to 409 * insert ourselves into the hash table anymore. 410 */ 411 if (READ_ONCE(pn->state) == vcpu_hashed) 412 lp = (struct qspinlock **)1; 413 414 /* 415 * Tracking # of slowpath locking operations 416 */ 417 qstat_inc(qstat_pv_lock_slowpath, true); 418 419 for (;; waitcnt++) { 420 /* 421 * Set correct vCPU state to be used by queue node wait-early 422 * mechanism. 423 */ 424 WRITE_ONCE(pn->state, vcpu_running); 425 426 /* 427 * Set the pending bit in the active lock spinning loop to 428 * disable lock stealing before attempting to acquire the lock. 429 */ 430 set_pending(lock); 431 for (loop = SPIN_THRESHOLD; loop; loop--) { 432 if (trylock_clear_pending(lock)) 433 goto gotlock; 434 cpu_relax(); 435 } 436 clear_pending(lock); 437 438 439 if (!lp) { /* ONCE */ 440 lp = pv_hash(lock, pn); 441 442 /* 443 * We must hash before setting _Q_SLOW_VAL, such that 444 * when we observe _Q_SLOW_VAL in __pv_queued_spin_unlock() 445 * we'll be sure to be able to observe our hash entry. 446 * 447 * [S] <hash> [Rmw] l->locked == _Q_SLOW_VAL 448 * MB RMB 449 * [RmW] l->locked = _Q_SLOW_VAL [L] <unhash> 450 * 451 * Matches the smp_rmb() in __pv_queued_spin_unlock(). 452 */ 453 if (xchg(&l->locked, _Q_SLOW_VAL) == 0) { 454 /* 455 * The lock was free and now we own the lock. 456 * Change the lock value back to _Q_LOCKED_VAL 457 * and unhash the table. 458 */ 459 WRITE_ONCE(l->locked, _Q_LOCKED_VAL); 460 WRITE_ONCE(*lp, NULL); 461 goto gotlock; 462 } 463 } 464 WRITE_ONCE(pn->state, vcpu_hashed); 465 qstat_inc(qstat_pv_wait_head, true); 466 qstat_inc(qstat_pv_wait_again, waitcnt); 467 pv_wait(&l->locked, _Q_SLOW_VAL); 468 469 /* 470 * Because of lock stealing, the queue head vCPU may not be 471 * able to acquire the lock before it has to wait again. 472 */ 473 } 474 475 /* 476 * The cmpxchg() or xchg() call before coming here provides the 477 * acquire semantics for locking. The dummy ORing of _Q_LOCKED_VAL 478 * here is to indicate to the compiler that the value will always 479 * be nozero to enable better code optimization. 480 */ 481 gotlock: 482 return (u32)(atomic_read(&lock->val) | _Q_LOCKED_VAL); 483 } 484 485 /* 486 * PV versions of the unlock fastpath and slowpath functions to be used 487 * instead of queued_spin_unlock(). 488 */ 489 __visible void 490 __pv_queued_spin_unlock_slowpath(struct qspinlock *lock, u8 locked) 491 { 492 struct __qspinlock *l = (void *)lock; 493 struct pv_node *node; 494 495 if (unlikely(locked != _Q_SLOW_VAL)) { 496 WARN(!debug_locks_silent, 497 "pvqspinlock: lock 0x%lx has corrupted value 0x%x!\n", 498 (unsigned long)lock, atomic_read(&lock->val)); 499 return; 500 } 501 502 /* 503 * A failed cmpxchg doesn't provide any memory-ordering guarantees, 504 * so we need a barrier to order the read of the node data in 505 * pv_unhash *after* we've read the lock being _Q_SLOW_VAL. 506 * 507 * Matches the cmpxchg() in pv_wait_head_or_lock() setting _Q_SLOW_VAL. 508 */ 509 smp_rmb(); 510 511 /* 512 * Since the above failed to release, this must be the SLOW path. 513 * Therefore start by looking up the blocked node and unhashing it. 514 */ 515 node = pv_unhash(lock); 516 517 /* 518 * Now that we have a reference to the (likely) blocked pv_node, 519 * release the lock. 520 */ 521 smp_store_release(&l->locked, 0); 522 523 /* 524 * At this point the memory pointed at by lock can be freed/reused, 525 * however we can still use the pv_node to kick the CPU. 526 * The other vCPU may not really be halted, but kicking an active 527 * vCPU is harmless other than the additional latency in completing 528 * the unlock. 529 */ 530 qstat_inc(qstat_pv_kick_unlock, true); 531 pv_kick(node->cpu); 532 } 533 534 /* 535 * Include the architecture specific callee-save thunk of the 536 * __pv_queued_spin_unlock(). This thunk is put together with 537 * __pv_queued_spin_unlock() to make the callee-save thunk and the real unlock 538 * function close to each other sharing consecutive instruction cachelines. 539 * Alternatively, architecture specific version of __pv_queued_spin_unlock() 540 * can be defined. 541 */ 542 #include <asm/qspinlock_paravirt.h> 543 544 #ifndef __pv_queued_spin_unlock 545 __visible void __pv_queued_spin_unlock(struct qspinlock *lock) 546 { 547 struct __qspinlock *l = (void *)lock; 548 u8 locked; 549 550 /* 551 * We must not unlock if SLOW, because in that case we must first 552 * unhash. Otherwise it would be possible to have multiple @lock 553 * entries, which would be BAD. 554 */ 555 locked = cmpxchg_release(&l->locked, _Q_LOCKED_VAL, 0); 556 if (likely(locked == _Q_LOCKED_VAL)) 557 return; 558 559 __pv_queued_spin_unlock_slowpath(lock, locked); 560 } 561 #endif /* __pv_queued_spin_unlock */ 562