1 #ifndef _GEN_PV_LOCK_SLOWPATH 2 #error "do not include this file" 3 #endif 4 5 #include <linux/hash.h> 6 #include <linux/bootmem.h> 7 8 /* 9 * Implement paravirt qspinlocks; the general idea is to halt the vcpus instead 10 * of spinning them. 11 * 12 * This relies on the architecture to provide two paravirt hypercalls: 13 * 14 * pv_wait(u8 *ptr, u8 val) -- suspends the vcpu if *ptr == val 15 * pv_kick(cpu) -- wakes a suspended vcpu 16 * 17 * Using these we implement __pv_queued_spin_lock_slowpath() and 18 * __pv_queued_spin_unlock() to replace native_queued_spin_lock_slowpath() and 19 * native_queued_spin_unlock(). 20 */ 21 22 #define _Q_SLOW_VAL (3U << _Q_LOCKED_OFFSET) 23 24 enum vcpu_state { 25 vcpu_running = 0, 26 vcpu_halted, 27 }; 28 29 struct pv_node { 30 struct mcs_spinlock mcs; 31 struct mcs_spinlock __res[3]; 32 33 int cpu; 34 u8 state; 35 }; 36 37 /* 38 * Lock and MCS node addresses hash table for fast lookup 39 * 40 * Hashing is done on a per-cacheline basis to minimize the need to access 41 * more than one cacheline. 42 * 43 * Dynamically allocate a hash table big enough to hold at least 4X the 44 * number of possible cpus in the system. Allocation is done on page 45 * granularity. So the minimum number of hash buckets should be at least 46 * 256 (64-bit) or 512 (32-bit) to fully utilize a 4k page. 47 * 48 * Since we should not be holding locks from NMI context (very rare indeed) the 49 * max load factor is 0.75, which is around the point where open addressing 50 * breaks down. 51 * 52 */ 53 struct pv_hash_entry { 54 struct qspinlock *lock; 55 struct pv_node *node; 56 }; 57 58 #define PV_HE_PER_LINE (SMP_CACHE_BYTES / sizeof(struct pv_hash_entry)) 59 #define PV_HE_MIN (PAGE_SIZE / sizeof(struct pv_hash_entry)) 60 61 static struct pv_hash_entry *pv_lock_hash; 62 static unsigned int pv_lock_hash_bits __read_mostly; 63 64 /* 65 * Allocate memory for the PV qspinlock hash buckets 66 * 67 * This function should be called from the paravirt spinlock initialization 68 * routine. 69 */ 70 void __init __pv_init_lock_hash(void) 71 { 72 int pv_hash_size = ALIGN(4 * num_possible_cpus(), PV_HE_PER_LINE); 73 74 if (pv_hash_size < PV_HE_MIN) 75 pv_hash_size = PV_HE_MIN; 76 77 /* 78 * Allocate space from bootmem which should be page-size aligned 79 * and hence cacheline aligned. 80 */ 81 pv_lock_hash = alloc_large_system_hash("PV qspinlock", 82 sizeof(struct pv_hash_entry), 83 pv_hash_size, 0, HASH_EARLY, 84 &pv_lock_hash_bits, NULL, 85 pv_hash_size, pv_hash_size); 86 } 87 88 #define for_each_hash_entry(he, offset, hash) \ 89 for (hash &= ~(PV_HE_PER_LINE - 1), he = &pv_lock_hash[hash], offset = 0; \ 90 offset < (1 << pv_lock_hash_bits); \ 91 offset++, he = &pv_lock_hash[(hash + offset) & ((1 << pv_lock_hash_bits) - 1)]) 92 93 static struct qspinlock **pv_hash(struct qspinlock *lock, struct pv_node *node) 94 { 95 unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits); 96 struct pv_hash_entry *he; 97 98 for_each_hash_entry(he, offset, hash) { 99 if (!cmpxchg(&he->lock, NULL, lock)) { 100 WRITE_ONCE(he->node, node); 101 return &he->lock; 102 } 103 } 104 /* 105 * Hard assume there is a free entry for us. 106 * 107 * This is guaranteed by ensuring every blocked lock only ever consumes 108 * a single entry, and since we only have 4 nesting levels per CPU 109 * and allocated 4*nr_possible_cpus(), this must be so. 110 * 111 * The single entry is guaranteed by having the lock owner unhash 112 * before it releases. 113 */ 114 BUG(); 115 } 116 117 static struct pv_node *pv_unhash(struct qspinlock *lock) 118 { 119 unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits); 120 struct pv_hash_entry *he; 121 struct pv_node *node; 122 123 for_each_hash_entry(he, offset, hash) { 124 if (READ_ONCE(he->lock) == lock) { 125 node = READ_ONCE(he->node); 126 WRITE_ONCE(he->lock, NULL); 127 return node; 128 } 129 } 130 /* 131 * Hard assume we'll find an entry. 132 * 133 * This guarantees a limited lookup time and is itself guaranteed by 134 * having the lock owner do the unhash -- IFF the unlock sees the 135 * SLOW flag, there MUST be a hash entry. 136 */ 137 BUG(); 138 } 139 140 /* 141 * Initialize the PV part of the mcs_spinlock node. 142 */ 143 static void pv_init_node(struct mcs_spinlock *node) 144 { 145 struct pv_node *pn = (struct pv_node *)node; 146 147 BUILD_BUG_ON(sizeof(struct pv_node) > 5*sizeof(struct mcs_spinlock)); 148 149 pn->cpu = smp_processor_id(); 150 pn->state = vcpu_running; 151 } 152 153 /* 154 * Wait for node->locked to become true, halt the vcpu after a short spin. 155 * pv_kick_node() is used to wake the vcpu again. 156 */ 157 static void pv_wait_node(struct mcs_spinlock *node) 158 { 159 struct pv_node *pn = (struct pv_node *)node; 160 int loop; 161 162 for (;;) { 163 for (loop = SPIN_THRESHOLD; loop; loop--) { 164 if (READ_ONCE(node->locked)) 165 return; 166 cpu_relax(); 167 } 168 169 /* 170 * Order pn->state vs pn->locked thusly: 171 * 172 * [S] pn->state = vcpu_halted [S] next->locked = 1 173 * MB MB 174 * [L] pn->locked [RmW] pn->state = vcpu_running 175 * 176 * Matches the xchg() from pv_kick_node(). 177 */ 178 smp_store_mb(pn->state, vcpu_halted); 179 180 if (!READ_ONCE(node->locked)) 181 pv_wait(&pn->state, vcpu_halted); 182 183 /* 184 * Reset the vCPU state to avoid unncessary CPU kicking 185 */ 186 WRITE_ONCE(pn->state, vcpu_running); 187 188 /* 189 * If the locked flag is still not set after wakeup, it is a 190 * spurious wakeup and the vCPU should wait again. However, 191 * there is a pretty high overhead for CPU halting and kicking. 192 * So it is better to spin for a while in the hope that the 193 * MCS lock will be released soon. 194 */ 195 } 196 /* 197 * By now our node->locked should be 1 and our caller will not actually 198 * spin-wait for it. We do however rely on our caller to do a 199 * load-acquire for us. 200 */ 201 } 202 203 /* 204 * Called after setting next->locked = 1, used to wake those stuck in 205 * pv_wait_node(). 206 */ 207 static void pv_kick_node(struct mcs_spinlock *node) 208 { 209 struct pv_node *pn = (struct pv_node *)node; 210 211 /* 212 * Note that because node->locked is already set, this actual 213 * mcs_spinlock entry could be re-used already. 214 * 215 * This should be fine however, kicking people for no reason is 216 * harmless. 217 * 218 * See the comment in pv_wait_node(). 219 */ 220 if (xchg(&pn->state, vcpu_running) == vcpu_halted) 221 pv_kick(pn->cpu); 222 } 223 224 /* 225 * Wait for l->locked to become clear; halt the vcpu after a short spin. 226 * __pv_queued_spin_unlock() will wake us. 227 */ 228 static void pv_wait_head(struct qspinlock *lock, struct mcs_spinlock *node) 229 { 230 struct pv_node *pn = (struct pv_node *)node; 231 struct __qspinlock *l = (void *)lock; 232 struct qspinlock **lp = NULL; 233 int loop; 234 235 for (;;) { 236 for (loop = SPIN_THRESHOLD; loop; loop--) { 237 if (!READ_ONCE(l->locked)) 238 return; 239 cpu_relax(); 240 } 241 242 WRITE_ONCE(pn->state, vcpu_halted); 243 if (!lp) { /* ONCE */ 244 lp = pv_hash(lock, pn); 245 /* 246 * lp must be set before setting _Q_SLOW_VAL 247 * 248 * [S] lp = lock [RmW] l = l->locked = 0 249 * MB MB 250 * [S] l->locked = _Q_SLOW_VAL [L] lp 251 * 252 * Matches the cmpxchg() in __pv_queued_spin_unlock(). 253 */ 254 if (!cmpxchg(&l->locked, _Q_LOCKED_VAL, _Q_SLOW_VAL)) { 255 /* 256 * The lock is free and _Q_SLOW_VAL has never 257 * been set. Therefore we need to unhash before 258 * getting the lock. 259 */ 260 WRITE_ONCE(*lp, NULL); 261 return; 262 } 263 } 264 pv_wait(&l->locked, _Q_SLOW_VAL); 265 266 /* 267 * The unlocker should have freed the lock before kicking the 268 * CPU. So if the lock is still not free, it is a spurious 269 * wakeup and so the vCPU should wait again after spinning for 270 * a while. 271 */ 272 } 273 274 /* 275 * Lock is unlocked now; the caller will acquire it without waiting. 276 * As with pv_wait_node() we rely on the caller to do a load-acquire 277 * for us. 278 */ 279 } 280 281 /* 282 * PV version of the unlock function to be used in stead of 283 * queued_spin_unlock(). 284 */ 285 __visible void __pv_queued_spin_unlock(struct qspinlock *lock) 286 { 287 struct __qspinlock *l = (void *)lock; 288 struct pv_node *node; 289 290 /* 291 * We must not unlock if SLOW, because in that case we must first 292 * unhash. Otherwise it would be possible to have multiple @lock 293 * entries, which would be BAD. 294 */ 295 if (likely(cmpxchg(&l->locked, _Q_LOCKED_VAL, 0) == _Q_LOCKED_VAL)) 296 return; 297 298 /* 299 * Since the above failed to release, this must be the SLOW path. 300 * Therefore start by looking up the blocked node and unhashing it. 301 */ 302 node = pv_unhash(lock); 303 304 /* 305 * Now that we have a reference to the (likely) blocked pv_node, 306 * release the lock. 307 */ 308 smp_store_release(&l->locked, 0); 309 310 /* 311 * At this point the memory pointed at by lock can be freed/reused, 312 * however we can still use the pv_node to kick the CPU. 313 */ 314 if (READ_ONCE(node->state) == vcpu_halted) 315 pv_kick(node->cpu); 316 } 317 /* 318 * Include the architecture specific callee-save thunk of the 319 * __pv_queued_spin_unlock(). This thunk is put together with 320 * __pv_queued_spin_unlock() near the top of the file to make sure 321 * that the callee-save thunk and the real unlock function are close 322 * to each other sharing consecutive instruction cachelines. 323 */ 324 #include <asm/qspinlock_paravirt.h> 325 326