1 #ifndef _GEN_PV_LOCK_SLOWPATH 2 #error "do not include this file" 3 #endif 4 5 #include <linux/hash.h> 6 #include <linux/bootmem.h> 7 #include <linux/debug_locks.h> 8 9 /* 10 * Implement paravirt qspinlocks; the general idea is to halt the vcpus instead 11 * of spinning them. 12 * 13 * This relies on the architecture to provide two paravirt hypercalls: 14 * 15 * pv_wait(u8 *ptr, u8 val) -- suspends the vcpu if *ptr == val 16 * pv_kick(cpu) -- wakes a suspended vcpu 17 * 18 * Using these we implement __pv_queued_spin_lock_slowpath() and 19 * __pv_queued_spin_unlock() to replace native_queued_spin_lock_slowpath() and 20 * native_queued_spin_unlock(). 21 */ 22 23 #define _Q_SLOW_VAL (3U << _Q_LOCKED_OFFSET) 24 25 /* 26 * Queue Node Adaptive Spinning 27 * 28 * A queue node vCPU will stop spinning if the vCPU in the previous node is 29 * not running. The one lock stealing attempt allowed at slowpath entry 30 * mitigates the slight slowdown for non-overcommitted guest with this 31 * aggressive wait-early mechanism. 32 * 33 * The status of the previous node will be checked at fixed interval 34 * controlled by PV_PREV_CHECK_MASK. This is to ensure that we won't 35 * pound on the cacheline of the previous node too heavily. 36 */ 37 #define PV_PREV_CHECK_MASK 0xff 38 39 /* 40 * Queue node uses: vcpu_running & vcpu_halted. 41 * Queue head uses: vcpu_running & vcpu_hashed. 42 */ 43 enum vcpu_state { 44 vcpu_running = 0, 45 vcpu_halted, /* Used only in pv_wait_node */ 46 vcpu_hashed, /* = pv_hash'ed + vcpu_halted */ 47 }; 48 49 struct pv_node { 50 struct mcs_spinlock mcs; 51 struct mcs_spinlock __res[3]; 52 53 int cpu; 54 u8 state; 55 }; 56 57 /* 58 * Include queued spinlock statistics code 59 */ 60 #include "qspinlock_stat.h" 61 62 /* 63 * By replacing the regular queued_spin_trylock() with the function below, 64 * it will be called once when a lock waiter enter the PV slowpath before 65 * being queued. By allowing one lock stealing attempt here when the pending 66 * bit is off, it helps to reduce the performance impact of lock waiter 67 * preemption without the drawback of lock starvation. 68 */ 69 #define queued_spin_trylock(l) pv_queued_spin_steal_lock(l) 70 static inline bool pv_queued_spin_steal_lock(struct qspinlock *lock) 71 { 72 struct __qspinlock *l = (void *)lock; 73 74 if (!(atomic_read(&lock->val) & _Q_LOCKED_PENDING_MASK) && 75 (cmpxchg(&l->locked, 0, _Q_LOCKED_VAL) == 0)) { 76 qstat_inc(qstat_pv_lock_stealing, true); 77 return true; 78 } 79 80 return false; 81 } 82 83 /* 84 * The pending bit is used by the queue head vCPU to indicate that it 85 * is actively spinning on the lock and no lock stealing is allowed. 86 */ 87 #if _Q_PENDING_BITS == 8 88 static __always_inline void set_pending(struct qspinlock *lock) 89 { 90 struct __qspinlock *l = (void *)lock; 91 92 WRITE_ONCE(l->pending, 1); 93 } 94 95 static __always_inline void clear_pending(struct qspinlock *lock) 96 { 97 struct __qspinlock *l = (void *)lock; 98 99 WRITE_ONCE(l->pending, 0); 100 } 101 102 /* 103 * The pending bit check in pv_queued_spin_steal_lock() isn't a memory 104 * barrier. Therefore, an atomic cmpxchg() is used to acquire the lock 105 * just to be sure that it will get it. 106 */ 107 static __always_inline int trylock_clear_pending(struct qspinlock *lock) 108 { 109 struct __qspinlock *l = (void *)lock; 110 111 return !READ_ONCE(l->locked) && 112 (cmpxchg(&l->locked_pending, _Q_PENDING_VAL, _Q_LOCKED_VAL) 113 == _Q_PENDING_VAL); 114 } 115 #else /* _Q_PENDING_BITS == 8 */ 116 static __always_inline void set_pending(struct qspinlock *lock) 117 { 118 atomic_or(_Q_PENDING_VAL, &lock->val); 119 } 120 121 static __always_inline void clear_pending(struct qspinlock *lock) 122 { 123 atomic_andnot(_Q_PENDING_VAL, &lock->val); 124 } 125 126 static __always_inline int trylock_clear_pending(struct qspinlock *lock) 127 { 128 int val = atomic_read(&lock->val); 129 130 for (;;) { 131 int old, new; 132 133 if (val & _Q_LOCKED_MASK) 134 break; 135 136 /* 137 * Try to clear pending bit & set locked bit 138 */ 139 old = val; 140 new = (val & ~_Q_PENDING_MASK) | _Q_LOCKED_VAL; 141 val = atomic_cmpxchg(&lock->val, old, new); 142 143 if (val == old) 144 return 1; 145 } 146 return 0; 147 } 148 #endif /* _Q_PENDING_BITS == 8 */ 149 150 /* 151 * Lock and MCS node addresses hash table for fast lookup 152 * 153 * Hashing is done on a per-cacheline basis to minimize the need to access 154 * more than one cacheline. 155 * 156 * Dynamically allocate a hash table big enough to hold at least 4X the 157 * number of possible cpus in the system. Allocation is done on page 158 * granularity. So the minimum number of hash buckets should be at least 159 * 256 (64-bit) or 512 (32-bit) to fully utilize a 4k page. 160 * 161 * Since we should not be holding locks from NMI context (very rare indeed) the 162 * max load factor is 0.75, which is around the point where open addressing 163 * breaks down. 164 * 165 */ 166 struct pv_hash_entry { 167 struct qspinlock *lock; 168 struct pv_node *node; 169 }; 170 171 #define PV_HE_PER_LINE (SMP_CACHE_BYTES / sizeof(struct pv_hash_entry)) 172 #define PV_HE_MIN (PAGE_SIZE / sizeof(struct pv_hash_entry)) 173 174 static struct pv_hash_entry *pv_lock_hash; 175 static unsigned int pv_lock_hash_bits __read_mostly; 176 177 /* 178 * Allocate memory for the PV qspinlock hash buckets 179 * 180 * This function should be called from the paravirt spinlock initialization 181 * routine. 182 */ 183 void __init __pv_init_lock_hash(void) 184 { 185 int pv_hash_size = ALIGN(4 * num_possible_cpus(), PV_HE_PER_LINE); 186 187 if (pv_hash_size < PV_HE_MIN) 188 pv_hash_size = PV_HE_MIN; 189 190 /* 191 * Allocate space from bootmem which should be page-size aligned 192 * and hence cacheline aligned. 193 */ 194 pv_lock_hash = alloc_large_system_hash("PV qspinlock", 195 sizeof(struct pv_hash_entry), 196 pv_hash_size, 0, HASH_EARLY, 197 &pv_lock_hash_bits, NULL, 198 pv_hash_size, pv_hash_size); 199 } 200 201 #define for_each_hash_entry(he, offset, hash) \ 202 for (hash &= ~(PV_HE_PER_LINE - 1), he = &pv_lock_hash[hash], offset = 0; \ 203 offset < (1 << pv_lock_hash_bits); \ 204 offset++, he = &pv_lock_hash[(hash + offset) & ((1 << pv_lock_hash_bits) - 1)]) 205 206 static struct qspinlock **pv_hash(struct qspinlock *lock, struct pv_node *node) 207 { 208 unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits); 209 struct pv_hash_entry *he; 210 int hopcnt = 0; 211 212 for_each_hash_entry(he, offset, hash) { 213 hopcnt++; 214 if (!cmpxchg(&he->lock, NULL, lock)) { 215 WRITE_ONCE(he->node, node); 216 qstat_hop(hopcnt); 217 return &he->lock; 218 } 219 } 220 /* 221 * Hard assume there is a free entry for us. 222 * 223 * This is guaranteed by ensuring every blocked lock only ever consumes 224 * a single entry, and since we only have 4 nesting levels per CPU 225 * and allocated 4*nr_possible_cpus(), this must be so. 226 * 227 * The single entry is guaranteed by having the lock owner unhash 228 * before it releases. 229 */ 230 BUG(); 231 } 232 233 static struct pv_node *pv_unhash(struct qspinlock *lock) 234 { 235 unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits); 236 struct pv_hash_entry *he; 237 struct pv_node *node; 238 239 for_each_hash_entry(he, offset, hash) { 240 if (READ_ONCE(he->lock) == lock) { 241 node = READ_ONCE(he->node); 242 WRITE_ONCE(he->lock, NULL); 243 return node; 244 } 245 } 246 /* 247 * Hard assume we'll find an entry. 248 * 249 * This guarantees a limited lookup time and is itself guaranteed by 250 * having the lock owner do the unhash -- IFF the unlock sees the 251 * SLOW flag, there MUST be a hash entry. 252 */ 253 BUG(); 254 } 255 256 /* 257 * Return true if when it is time to check the previous node which is not 258 * in a running state. 259 */ 260 static inline bool 261 pv_wait_early(struct pv_node *prev, int loop) 262 { 263 if ((loop & PV_PREV_CHECK_MASK) != 0) 264 return false; 265 266 return READ_ONCE(prev->state) != vcpu_running; 267 } 268 269 /* 270 * Initialize the PV part of the mcs_spinlock node. 271 */ 272 static void pv_init_node(struct mcs_spinlock *node) 273 { 274 struct pv_node *pn = (struct pv_node *)node; 275 276 BUILD_BUG_ON(sizeof(struct pv_node) > 5*sizeof(struct mcs_spinlock)); 277 278 pn->cpu = smp_processor_id(); 279 pn->state = vcpu_running; 280 } 281 282 /* 283 * Wait for node->locked to become true, halt the vcpu after a short spin. 284 * pv_kick_node() is used to set _Q_SLOW_VAL and fill in hash table on its 285 * behalf. 286 */ 287 static void pv_wait_node(struct mcs_spinlock *node, struct mcs_spinlock *prev) 288 { 289 struct pv_node *pn = (struct pv_node *)node; 290 struct pv_node *pp = (struct pv_node *)prev; 291 int loop; 292 bool wait_early; 293 294 for (;;) { 295 for (wait_early = false, loop = SPIN_THRESHOLD; loop; loop--) { 296 if (READ_ONCE(node->locked)) 297 return; 298 if (pv_wait_early(pp, loop)) { 299 wait_early = true; 300 break; 301 } 302 cpu_relax(); 303 } 304 305 /* 306 * Order pn->state vs pn->locked thusly: 307 * 308 * [S] pn->state = vcpu_halted [S] next->locked = 1 309 * MB MB 310 * [L] pn->locked [RmW] pn->state = vcpu_hashed 311 * 312 * Matches the cmpxchg() from pv_kick_node(). 313 */ 314 smp_store_mb(pn->state, vcpu_halted); 315 316 if (!READ_ONCE(node->locked)) { 317 qstat_inc(qstat_pv_wait_node, true); 318 qstat_inc(qstat_pv_wait_early, wait_early); 319 pv_wait(&pn->state, vcpu_halted); 320 } 321 322 /* 323 * If pv_kick_node() changed us to vcpu_hashed, retain that 324 * value so that pv_wait_head_or_lock() knows to not also try 325 * to hash this lock. 326 */ 327 cmpxchg(&pn->state, vcpu_halted, vcpu_running); 328 329 /* 330 * If the locked flag is still not set after wakeup, it is a 331 * spurious wakeup and the vCPU should wait again. However, 332 * there is a pretty high overhead for CPU halting and kicking. 333 * So it is better to spin for a while in the hope that the 334 * MCS lock will be released soon. 335 */ 336 qstat_inc(qstat_pv_spurious_wakeup, !READ_ONCE(node->locked)); 337 } 338 339 /* 340 * By now our node->locked should be 1 and our caller will not actually 341 * spin-wait for it. We do however rely on our caller to do a 342 * load-acquire for us. 343 */ 344 } 345 346 /* 347 * Called after setting next->locked = 1 when we're the lock owner. 348 * 349 * Instead of waking the waiters stuck in pv_wait_node() advance their state 350 * such that they're waiting in pv_wait_head_or_lock(), this avoids a 351 * wake/sleep cycle. 352 */ 353 static void pv_kick_node(struct qspinlock *lock, struct mcs_spinlock *node) 354 { 355 struct pv_node *pn = (struct pv_node *)node; 356 struct __qspinlock *l = (void *)lock; 357 358 /* 359 * If the vCPU is indeed halted, advance its state to match that of 360 * pv_wait_node(). If OTOH this fails, the vCPU was running and will 361 * observe its next->locked value and advance itself. 362 * 363 * Matches with smp_store_mb() and cmpxchg() in pv_wait_node() 364 */ 365 if (cmpxchg(&pn->state, vcpu_halted, vcpu_hashed) != vcpu_halted) 366 return; 367 368 /* 369 * Put the lock into the hash table and set the _Q_SLOW_VAL. 370 * 371 * As this is the same vCPU that will check the _Q_SLOW_VAL value and 372 * the hash table later on at unlock time, no atomic instruction is 373 * needed. 374 */ 375 WRITE_ONCE(l->locked, _Q_SLOW_VAL); 376 (void)pv_hash(lock, pn); 377 } 378 379 /* 380 * Wait for l->locked to become clear and acquire the lock; 381 * halt the vcpu after a short spin. 382 * __pv_queued_spin_unlock() will wake us. 383 * 384 * The current value of the lock will be returned for additional processing. 385 */ 386 static u32 387 pv_wait_head_or_lock(struct qspinlock *lock, struct mcs_spinlock *node) 388 { 389 struct pv_node *pn = (struct pv_node *)node; 390 struct __qspinlock *l = (void *)lock; 391 struct qspinlock **lp = NULL; 392 int waitcnt = 0; 393 int loop; 394 395 /* 396 * If pv_kick_node() already advanced our state, we don't need to 397 * insert ourselves into the hash table anymore. 398 */ 399 if (READ_ONCE(pn->state) == vcpu_hashed) 400 lp = (struct qspinlock **)1; 401 402 /* 403 * Tracking # of slowpath locking operations 404 */ 405 qstat_inc(qstat_pv_lock_slowpath, true); 406 407 for (;; waitcnt++) { 408 /* 409 * Set correct vCPU state to be used by queue node wait-early 410 * mechanism. 411 */ 412 WRITE_ONCE(pn->state, vcpu_running); 413 414 /* 415 * Set the pending bit in the active lock spinning loop to 416 * disable lock stealing before attempting to acquire the lock. 417 */ 418 set_pending(lock); 419 for (loop = SPIN_THRESHOLD; loop; loop--) { 420 if (trylock_clear_pending(lock)) 421 goto gotlock; 422 cpu_relax(); 423 } 424 clear_pending(lock); 425 426 427 if (!lp) { /* ONCE */ 428 lp = pv_hash(lock, pn); 429 430 /* 431 * We must hash before setting _Q_SLOW_VAL, such that 432 * when we observe _Q_SLOW_VAL in __pv_queued_spin_unlock() 433 * we'll be sure to be able to observe our hash entry. 434 * 435 * [S] <hash> [Rmw] l->locked == _Q_SLOW_VAL 436 * MB RMB 437 * [RmW] l->locked = _Q_SLOW_VAL [L] <unhash> 438 * 439 * Matches the smp_rmb() in __pv_queued_spin_unlock(). 440 */ 441 if (xchg(&l->locked, _Q_SLOW_VAL) == 0) { 442 /* 443 * The lock was free and now we own the lock. 444 * Change the lock value back to _Q_LOCKED_VAL 445 * and unhash the table. 446 */ 447 WRITE_ONCE(l->locked, _Q_LOCKED_VAL); 448 WRITE_ONCE(*lp, NULL); 449 goto gotlock; 450 } 451 } 452 WRITE_ONCE(pn->state, vcpu_hashed); 453 qstat_inc(qstat_pv_wait_head, true); 454 qstat_inc(qstat_pv_wait_again, waitcnt); 455 pv_wait(&l->locked, _Q_SLOW_VAL); 456 457 /* 458 * Because of lock stealing, the queue head vCPU may not be 459 * able to acquire the lock before it has to wait again. 460 */ 461 } 462 463 /* 464 * The cmpxchg() or xchg() call before coming here provides the 465 * acquire semantics for locking. The dummy ORing of _Q_LOCKED_VAL 466 * here is to indicate to the compiler that the value will always 467 * be nozero to enable better code optimization. 468 */ 469 gotlock: 470 return (u32)(atomic_read(&lock->val) | _Q_LOCKED_VAL); 471 } 472 473 /* 474 * PV versions of the unlock fastpath and slowpath functions to be used 475 * instead of queued_spin_unlock(). 476 */ 477 __visible void 478 __pv_queued_spin_unlock_slowpath(struct qspinlock *lock, u8 locked) 479 { 480 struct __qspinlock *l = (void *)lock; 481 struct pv_node *node; 482 483 if (unlikely(locked != _Q_SLOW_VAL)) { 484 WARN(!debug_locks_silent, 485 "pvqspinlock: lock 0x%lx has corrupted value 0x%x!\n", 486 (unsigned long)lock, atomic_read(&lock->val)); 487 return; 488 } 489 490 /* 491 * A failed cmpxchg doesn't provide any memory-ordering guarantees, 492 * so we need a barrier to order the read of the node data in 493 * pv_unhash *after* we've read the lock being _Q_SLOW_VAL. 494 * 495 * Matches the cmpxchg() in pv_wait_head_or_lock() setting _Q_SLOW_VAL. 496 */ 497 smp_rmb(); 498 499 /* 500 * Since the above failed to release, this must be the SLOW path. 501 * Therefore start by looking up the blocked node and unhashing it. 502 */ 503 node = pv_unhash(lock); 504 505 /* 506 * Now that we have a reference to the (likely) blocked pv_node, 507 * release the lock. 508 */ 509 smp_store_release(&l->locked, 0); 510 511 /* 512 * At this point the memory pointed at by lock can be freed/reused, 513 * however we can still use the pv_node to kick the CPU. 514 * The other vCPU may not really be halted, but kicking an active 515 * vCPU is harmless other than the additional latency in completing 516 * the unlock. 517 */ 518 qstat_inc(qstat_pv_kick_unlock, true); 519 pv_kick(node->cpu); 520 } 521 522 /* 523 * Include the architecture specific callee-save thunk of the 524 * __pv_queued_spin_unlock(). This thunk is put together with 525 * __pv_queued_spin_unlock() to make the callee-save thunk and the real unlock 526 * function close to each other sharing consecutive instruction cachelines. 527 * Alternatively, architecture specific version of __pv_queued_spin_unlock() 528 * can be defined. 529 */ 530 #include <asm/qspinlock_paravirt.h> 531 532 #ifndef __pv_queued_spin_unlock 533 __visible void __pv_queued_spin_unlock(struct qspinlock *lock) 534 { 535 struct __qspinlock *l = (void *)lock; 536 u8 locked; 537 538 /* 539 * We must not unlock if SLOW, because in that case we must first 540 * unhash. Otherwise it would be possible to have multiple @lock 541 * entries, which would be BAD. 542 */ 543 locked = cmpxchg_release(&l->locked, _Q_LOCKED_VAL, 0); 544 if (likely(locked == _Q_LOCKED_VAL)) 545 return; 546 547 __pv_queued_spin_unlock_slowpath(lock, locked); 548 } 549 #endif /* __pv_queued_spin_unlock */ 550