1 #ifndef _GEN_PV_LOCK_SLOWPATH
2 #error "do not include this file"
3 #endif
4 
5 #include <linux/hash.h>
6 #include <linux/bootmem.h>
7 #include <linux/debug_locks.h>
8 
9 /*
10  * Implement paravirt qspinlocks; the general idea is to halt the vcpus instead
11  * of spinning them.
12  *
13  * This relies on the architecture to provide two paravirt hypercalls:
14  *
15  *   pv_wait(u8 *ptr, u8 val) -- suspends the vcpu if *ptr == val
16  *   pv_kick(cpu)             -- wakes a suspended vcpu
17  *
18  * Using these we implement __pv_queued_spin_lock_slowpath() and
19  * __pv_queued_spin_unlock() to replace native_queued_spin_lock_slowpath() and
20  * native_queued_spin_unlock().
21  */
22 
23 #define _Q_SLOW_VAL	(3U << _Q_LOCKED_OFFSET)
24 
25 /*
26  * Queue Node Adaptive Spinning
27  *
28  * A queue node vCPU will stop spinning if the vCPU in the previous node is
29  * not running. The one lock stealing attempt allowed at slowpath entry
30  * mitigates the slight slowdown for non-overcommitted guest with this
31  * aggressive wait-early mechanism.
32  *
33  * The status of the previous node will be checked at fixed interval
34  * controlled by PV_PREV_CHECK_MASK. This is to ensure that we won't
35  * pound on the cacheline of the previous node too heavily.
36  */
37 #define PV_PREV_CHECK_MASK	0xff
38 
39 /*
40  * Queue node uses: vcpu_running & vcpu_halted.
41  * Queue head uses: vcpu_running & vcpu_hashed.
42  */
43 enum vcpu_state {
44 	vcpu_running = 0,
45 	vcpu_halted,		/* Used only in pv_wait_node */
46 	vcpu_hashed,		/* = pv_hash'ed + vcpu_halted */
47 };
48 
49 struct pv_node {
50 	struct mcs_spinlock	mcs;
51 	struct mcs_spinlock	__res[3];
52 
53 	int			cpu;
54 	u8			state;
55 };
56 
57 /*
58  * Include queued spinlock statistics code
59  */
60 #include "qspinlock_stat.h"
61 
62 /*
63  * By replacing the regular queued_spin_trylock() with the function below,
64  * it will be called once when a lock waiter enter the PV slowpath before
65  * being queued. By allowing one lock stealing attempt here when the pending
66  * bit is off, it helps to reduce the performance impact of lock waiter
67  * preemption without the drawback of lock starvation.
68  */
69 #define queued_spin_trylock(l)	pv_queued_spin_steal_lock(l)
70 static inline bool pv_queued_spin_steal_lock(struct qspinlock *lock)
71 {
72 	struct __qspinlock *l = (void *)lock;
73 
74 	if (!(atomic_read(&lock->val) & _Q_LOCKED_PENDING_MASK) &&
75 	    (cmpxchg_acquire(&l->locked, 0, _Q_LOCKED_VAL) == 0)) {
76 		qstat_inc(qstat_pv_lock_stealing, true);
77 		return true;
78 	}
79 
80 	return false;
81 }
82 
83 /*
84  * The pending bit is used by the queue head vCPU to indicate that it
85  * is actively spinning on the lock and no lock stealing is allowed.
86  */
87 #if _Q_PENDING_BITS == 8
88 static __always_inline void set_pending(struct qspinlock *lock)
89 {
90 	struct __qspinlock *l = (void *)lock;
91 
92 	WRITE_ONCE(l->pending, 1);
93 }
94 
95 static __always_inline void clear_pending(struct qspinlock *lock)
96 {
97 	struct __qspinlock *l = (void *)lock;
98 
99 	WRITE_ONCE(l->pending, 0);
100 }
101 
102 /*
103  * The pending bit check in pv_queued_spin_steal_lock() isn't a memory
104  * barrier. Therefore, an atomic cmpxchg_acquire() is used to acquire the
105  * lock just to be sure that it will get it.
106  */
107 static __always_inline int trylock_clear_pending(struct qspinlock *lock)
108 {
109 	struct __qspinlock *l = (void *)lock;
110 
111 	return !READ_ONCE(l->locked) &&
112 	       (cmpxchg_acquire(&l->locked_pending, _Q_PENDING_VAL,
113 				_Q_LOCKED_VAL) == _Q_PENDING_VAL);
114 }
115 #else /* _Q_PENDING_BITS == 8 */
116 static __always_inline void set_pending(struct qspinlock *lock)
117 {
118 	atomic_or(_Q_PENDING_VAL, &lock->val);
119 }
120 
121 static __always_inline void clear_pending(struct qspinlock *lock)
122 {
123 	atomic_andnot(_Q_PENDING_VAL, &lock->val);
124 }
125 
126 static __always_inline int trylock_clear_pending(struct qspinlock *lock)
127 {
128 	int val = atomic_read(&lock->val);
129 
130 	for (;;) {
131 		int old, new;
132 
133 		if (val  & _Q_LOCKED_MASK)
134 			break;
135 
136 		/*
137 		 * Try to clear pending bit & set locked bit
138 		 */
139 		old = val;
140 		new = (val & ~_Q_PENDING_MASK) | _Q_LOCKED_VAL;
141 		val = atomic_cmpxchg_acquire(&lock->val, old, new);
142 
143 		if (val == old)
144 			return 1;
145 	}
146 	return 0;
147 }
148 #endif /* _Q_PENDING_BITS == 8 */
149 
150 /*
151  * Lock and MCS node addresses hash table for fast lookup
152  *
153  * Hashing is done on a per-cacheline basis to minimize the need to access
154  * more than one cacheline.
155  *
156  * Dynamically allocate a hash table big enough to hold at least 4X the
157  * number of possible cpus in the system. Allocation is done on page
158  * granularity. So the minimum number of hash buckets should be at least
159  * 256 (64-bit) or 512 (32-bit) to fully utilize a 4k page.
160  *
161  * Since we should not be holding locks from NMI context (very rare indeed) the
162  * max load factor is 0.75, which is around the point where open addressing
163  * breaks down.
164  *
165  */
166 struct pv_hash_entry {
167 	struct qspinlock *lock;
168 	struct pv_node   *node;
169 };
170 
171 #define PV_HE_PER_LINE	(SMP_CACHE_BYTES / sizeof(struct pv_hash_entry))
172 #define PV_HE_MIN	(PAGE_SIZE / sizeof(struct pv_hash_entry))
173 
174 static struct pv_hash_entry *pv_lock_hash;
175 static unsigned int pv_lock_hash_bits __read_mostly;
176 
177 /*
178  * Allocate memory for the PV qspinlock hash buckets
179  *
180  * This function should be called from the paravirt spinlock initialization
181  * routine.
182  */
183 void __init __pv_init_lock_hash(void)
184 {
185 	int pv_hash_size = ALIGN(4 * num_possible_cpus(), PV_HE_PER_LINE);
186 
187 	if (pv_hash_size < PV_HE_MIN)
188 		pv_hash_size = PV_HE_MIN;
189 
190 	/*
191 	 * Allocate space from bootmem which should be page-size aligned
192 	 * and hence cacheline aligned.
193 	 */
194 	pv_lock_hash = alloc_large_system_hash("PV qspinlock",
195 					       sizeof(struct pv_hash_entry),
196 					       pv_hash_size, 0,
197 					       HASH_EARLY | HASH_ZERO,
198 					       &pv_lock_hash_bits, NULL,
199 					       pv_hash_size, pv_hash_size);
200 }
201 
202 #define for_each_hash_entry(he, offset, hash)						\
203 	for (hash &= ~(PV_HE_PER_LINE - 1), he = &pv_lock_hash[hash], offset = 0;	\
204 	     offset < (1 << pv_lock_hash_bits);						\
205 	     offset++, he = &pv_lock_hash[(hash + offset) & ((1 << pv_lock_hash_bits) - 1)])
206 
207 static struct qspinlock **pv_hash(struct qspinlock *lock, struct pv_node *node)
208 {
209 	unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits);
210 	struct pv_hash_entry *he;
211 	int hopcnt = 0;
212 
213 	for_each_hash_entry(he, offset, hash) {
214 		hopcnt++;
215 		if (!cmpxchg(&he->lock, NULL, lock)) {
216 			WRITE_ONCE(he->node, node);
217 			qstat_hop(hopcnt);
218 			return &he->lock;
219 		}
220 	}
221 	/*
222 	 * Hard assume there is a free entry for us.
223 	 *
224 	 * This is guaranteed by ensuring every blocked lock only ever consumes
225 	 * a single entry, and since we only have 4 nesting levels per CPU
226 	 * and allocated 4*nr_possible_cpus(), this must be so.
227 	 *
228 	 * The single entry is guaranteed by having the lock owner unhash
229 	 * before it releases.
230 	 */
231 	BUG();
232 }
233 
234 static struct pv_node *pv_unhash(struct qspinlock *lock)
235 {
236 	unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits);
237 	struct pv_hash_entry *he;
238 	struct pv_node *node;
239 
240 	for_each_hash_entry(he, offset, hash) {
241 		if (READ_ONCE(he->lock) == lock) {
242 			node = READ_ONCE(he->node);
243 			WRITE_ONCE(he->lock, NULL);
244 			return node;
245 		}
246 	}
247 	/*
248 	 * Hard assume we'll find an entry.
249 	 *
250 	 * This guarantees a limited lookup time and is itself guaranteed by
251 	 * having the lock owner do the unhash -- IFF the unlock sees the
252 	 * SLOW flag, there MUST be a hash entry.
253 	 */
254 	BUG();
255 }
256 
257 /*
258  * Return true if when it is time to check the previous node which is not
259  * in a running state.
260  */
261 static inline bool
262 pv_wait_early(struct pv_node *prev, int loop)
263 {
264 	if ((loop & PV_PREV_CHECK_MASK) != 0)
265 		return false;
266 
267 	return READ_ONCE(prev->state) != vcpu_running || vcpu_is_preempted(prev->cpu);
268 }
269 
270 /*
271  * Initialize the PV part of the mcs_spinlock node.
272  */
273 static void pv_init_node(struct mcs_spinlock *node)
274 {
275 	struct pv_node *pn = (struct pv_node *)node;
276 
277 	BUILD_BUG_ON(sizeof(struct pv_node) > 5*sizeof(struct mcs_spinlock));
278 
279 	pn->cpu = smp_processor_id();
280 	pn->state = vcpu_running;
281 }
282 
283 /*
284  * Wait for node->locked to become true, halt the vcpu after a short spin.
285  * pv_kick_node() is used to set _Q_SLOW_VAL and fill in hash table on its
286  * behalf.
287  */
288 static void pv_wait_node(struct mcs_spinlock *node, struct mcs_spinlock *prev)
289 {
290 	struct pv_node *pn = (struct pv_node *)node;
291 	struct pv_node *pp = (struct pv_node *)prev;
292 	int loop;
293 	bool wait_early;
294 
295 	for (;;) {
296 		for (wait_early = false, loop = SPIN_THRESHOLD; loop; loop--) {
297 			if (READ_ONCE(node->locked))
298 				return;
299 			if (pv_wait_early(pp, loop)) {
300 				wait_early = true;
301 				break;
302 			}
303 			cpu_relax();
304 		}
305 
306 		/*
307 		 * Order pn->state vs pn->locked thusly:
308 		 *
309 		 * [S] pn->state = vcpu_halted	  [S] next->locked = 1
310 		 *     MB			      MB
311 		 * [L] pn->locked		[RmW] pn->state = vcpu_hashed
312 		 *
313 		 * Matches the cmpxchg() from pv_kick_node().
314 		 */
315 		smp_store_mb(pn->state, vcpu_halted);
316 
317 		if (!READ_ONCE(node->locked)) {
318 			qstat_inc(qstat_pv_wait_node, true);
319 			qstat_inc(qstat_pv_wait_early, wait_early);
320 			pv_wait(&pn->state, vcpu_halted);
321 		}
322 
323 		/*
324 		 * If pv_kick_node() changed us to vcpu_hashed, retain that
325 		 * value so that pv_wait_head_or_lock() knows to not also try
326 		 * to hash this lock.
327 		 */
328 		cmpxchg(&pn->state, vcpu_halted, vcpu_running);
329 
330 		/*
331 		 * If the locked flag is still not set after wakeup, it is a
332 		 * spurious wakeup and the vCPU should wait again. However,
333 		 * there is a pretty high overhead for CPU halting and kicking.
334 		 * So it is better to spin for a while in the hope that the
335 		 * MCS lock will be released soon.
336 		 */
337 		qstat_inc(qstat_pv_spurious_wakeup, !READ_ONCE(node->locked));
338 	}
339 
340 	/*
341 	 * By now our node->locked should be 1 and our caller will not actually
342 	 * spin-wait for it. We do however rely on our caller to do a
343 	 * load-acquire for us.
344 	 */
345 }
346 
347 /*
348  * Called after setting next->locked = 1 when we're the lock owner.
349  *
350  * Instead of waking the waiters stuck in pv_wait_node() advance their state
351  * such that they're waiting in pv_wait_head_or_lock(), this avoids a
352  * wake/sleep cycle.
353  */
354 static void pv_kick_node(struct qspinlock *lock, struct mcs_spinlock *node)
355 {
356 	struct pv_node *pn = (struct pv_node *)node;
357 	struct __qspinlock *l = (void *)lock;
358 
359 	/*
360 	 * If the vCPU is indeed halted, advance its state to match that of
361 	 * pv_wait_node(). If OTOH this fails, the vCPU was running and will
362 	 * observe its next->locked value and advance itself.
363 	 *
364 	 * Matches with smp_store_mb() and cmpxchg() in pv_wait_node()
365 	 *
366 	 * The write to next->locked in arch_mcs_spin_unlock_contended()
367 	 * must be ordered before the read of pn->state in the cmpxchg()
368 	 * below for the code to work correctly. To guarantee full ordering
369 	 * irrespective of the success or failure of the cmpxchg(),
370 	 * a relaxed version with explicit barrier is used. The control
371 	 * dependency will order the reading of pn->state before any
372 	 * subsequent writes.
373 	 */
374 	smp_mb__before_atomic();
375 	if (cmpxchg_relaxed(&pn->state, vcpu_halted, vcpu_hashed)
376 	    != vcpu_halted)
377 		return;
378 
379 	/*
380 	 * Put the lock into the hash table and set the _Q_SLOW_VAL.
381 	 *
382 	 * As this is the same vCPU that will check the _Q_SLOW_VAL value and
383 	 * the hash table later on at unlock time, no atomic instruction is
384 	 * needed.
385 	 */
386 	WRITE_ONCE(l->locked, _Q_SLOW_VAL);
387 	(void)pv_hash(lock, pn);
388 }
389 
390 /*
391  * Wait for l->locked to become clear and acquire the lock;
392  * halt the vcpu after a short spin.
393  * __pv_queued_spin_unlock() will wake us.
394  *
395  * The current value of the lock will be returned for additional processing.
396  */
397 static u32
398 pv_wait_head_or_lock(struct qspinlock *lock, struct mcs_spinlock *node)
399 {
400 	struct pv_node *pn = (struct pv_node *)node;
401 	struct __qspinlock *l = (void *)lock;
402 	struct qspinlock **lp = NULL;
403 	int waitcnt = 0;
404 	int loop;
405 
406 	/*
407 	 * If pv_kick_node() already advanced our state, we don't need to
408 	 * insert ourselves into the hash table anymore.
409 	 */
410 	if (READ_ONCE(pn->state) == vcpu_hashed)
411 		lp = (struct qspinlock **)1;
412 
413 	/*
414 	 * Tracking # of slowpath locking operations
415 	 */
416 	qstat_inc(qstat_pv_lock_slowpath, true);
417 
418 	for (;; waitcnt++) {
419 		/*
420 		 * Set correct vCPU state to be used by queue node wait-early
421 		 * mechanism.
422 		 */
423 		WRITE_ONCE(pn->state, vcpu_running);
424 
425 		/*
426 		 * Set the pending bit in the active lock spinning loop to
427 		 * disable lock stealing before attempting to acquire the lock.
428 		 */
429 		set_pending(lock);
430 		for (loop = SPIN_THRESHOLD; loop; loop--) {
431 			if (trylock_clear_pending(lock))
432 				goto gotlock;
433 			cpu_relax();
434 		}
435 		clear_pending(lock);
436 
437 
438 		if (!lp) { /* ONCE */
439 			lp = pv_hash(lock, pn);
440 
441 			/*
442 			 * We must hash before setting _Q_SLOW_VAL, such that
443 			 * when we observe _Q_SLOW_VAL in __pv_queued_spin_unlock()
444 			 * we'll be sure to be able to observe our hash entry.
445 			 *
446 			 *   [S] <hash>                 [Rmw] l->locked == _Q_SLOW_VAL
447 			 *       MB                           RMB
448 			 * [RmW] l->locked = _Q_SLOW_VAL  [L] <unhash>
449 			 *
450 			 * Matches the smp_rmb() in __pv_queued_spin_unlock().
451 			 */
452 			if (xchg(&l->locked, _Q_SLOW_VAL) == 0) {
453 				/*
454 				 * The lock was free and now we own the lock.
455 				 * Change the lock value back to _Q_LOCKED_VAL
456 				 * and unhash the table.
457 				 */
458 				WRITE_ONCE(l->locked, _Q_LOCKED_VAL);
459 				WRITE_ONCE(*lp, NULL);
460 				goto gotlock;
461 			}
462 		}
463 		WRITE_ONCE(pn->state, vcpu_hashed);
464 		qstat_inc(qstat_pv_wait_head, true);
465 		qstat_inc(qstat_pv_wait_again, waitcnt);
466 		pv_wait(&l->locked, _Q_SLOW_VAL);
467 
468 		/*
469 		 * Because of lock stealing, the queue head vCPU may not be
470 		 * able to acquire the lock before it has to wait again.
471 		 */
472 	}
473 
474 	/*
475 	 * The cmpxchg() or xchg() call before coming here provides the
476 	 * acquire semantics for locking. The dummy ORing of _Q_LOCKED_VAL
477 	 * here is to indicate to the compiler that the value will always
478 	 * be nozero to enable better code optimization.
479 	 */
480 gotlock:
481 	return (u32)(atomic_read(&lock->val) | _Q_LOCKED_VAL);
482 }
483 
484 /*
485  * PV versions of the unlock fastpath and slowpath functions to be used
486  * instead of queued_spin_unlock().
487  */
488 __visible void
489 __pv_queued_spin_unlock_slowpath(struct qspinlock *lock, u8 locked)
490 {
491 	struct __qspinlock *l = (void *)lock;
492 	struct pv_node *node;
493 
494 	if (unlikely(locked != _Q_SLOW_VAL)) {
495 		WARN(!debug_locks_silent,
496 		     "pvqspinlock: lock 0x%lx has corrupted value 0x%x!\n",
497 		     (unsigned long)lock, atomic_read(&lock->val));
498 		return;
499 	}
500 
501 	/*
502 	 * A failed cmpxchg doesn't provide any memory-ordering guarantees,
503 	 * so we need a barrier to order the read of the node data in
504 	 * pv_unhash *after* we've read the lock being _Q_SLOW_VAL.
505 	 *
506 	 * Matches the cmpxchg() in pv_wait_head_or_lock() setting _Q_SLOW_VAL.
507 	 */
508 	smp_rmb();
509 
510 	/*
511 	 * Since the above failed to release, this must be the SLOW path.
512 	 * Therefore start by looking up the blocked node and unhashing it.
513 	 */
514 	node = pv_unhash(lock);
515 
516 	/*
517 	 * Now that we have a reference to the (likely) blocked pv_node,
518 	 * release the lock.
519 	 */
520 	smp_store_release(&l->locked, 0);
521 
522 	/*
523 	 * At this point the memory pointed at by lock can be freed/reused,
524 	 * however we can still use the pv_node to kick the CPU.
525 	 * The other vCPU may not really be halted, but kicking an active
526 	 * vCPU is harmless other than the additional latency in completing
527 	 * the unlock.
528 	 */
529 	qstat_inc(qstat_pv_kick_unlock, true);
530 	pv_kick(node->cpu);
531 }
532 
533 /*
534  * Include the architecture specific callee-save thunk of the
535  * __pv_queued_spin_unlock(). This thunk is put together with
536  * __pv_queued_spin_unlock() to make the callee-save thunk and the real unlock
537  * function close to each other sharing consecutive instruction cachelines.
538  * Alternatively, architecture specific version of __pv_queued_spin_unlock()
539  * can be defined.
540  */
541 #include <asm/qspinlock_paravirt.h>
542 
543 #ifndef __pv_queued_spin_unlock
544 __visible void __pv_queued_spin_unlock(struct qspinlock *lock)
545 {
546 	struct __qspinlock *l = (void *)lock;
547 	u8 locked;
548 
549 	/*
550 	 * We must not unlock if SLOW, because in that case we must first
551 	 * unhash. Otherwise it would be possible to have multiple @lock
552 	 * entries, which would be BAD.
553 	 */
554 	locked = cmpxchg_release(&l->locked, _Q_LOCKED_VAL, 0);
555 	if (likely(locked == _Q_LOCKED_VAL))
556 		return;
557 
558 	__pv_queued_spin_unlock_slowpath(lock, locked);
559 }
560 #endif /* __pv_queued_spin_unlock */
561