1 #ifndef _GEN_PV_LOCK_SLOWPATH 2 #error "do not include this file" 3 #endif 4 5 #include <linux/hash.h> 6 #include <linux/bootmem.h> 7 #include <linux/debug_locks.h> 8 9 /* 10 * Implement paravirt qspinlocks; the general idea is to halt the vcpus instead 11 * of spinning them. 12 * 13 * This relies on the architecture to provide two paravirt hypercalls: 14 * 15 * pv_wait(u8 *ptr, u8 val) -- suspends the vcpu if *ptr == val 16 * pv_kick(cpu) -- wakes a suspended vcpu 17 * 18 * Using these we implement __pv_queued_spin_lock_slowpath() and 19 * __pv_queued_spin_unlock() to replace native_queued_spin_lock_slowpath() and 20 * native_queued_spin_unlock(). 21 */ 22 23 #define _Q_SLOW_VAL (3U << _Q_LOCKED_OFFSET) 24 25 /* 26 * Queue Node Adaptive Spinning 27 * 28 * A queue node vCPU will stop spinning if the vCPU in the previous node is 29 * not running. The one lock stealing attempt allowed at slowpath entry 30 * mitigates the slight slowdown for non-overcommitted guest with this 31 * aggressive wait-early mechanism. 32 * 33 * The status of the previous node will be checked at fixed interval 34 * controlled by PV_PREV_CHECK_MASK. This is to ensure that we won't 35 * pound on the cacheline of the previous node too heavily. 36 */ 37 #define PV_PREV_CHECK_MASK 0xff 38 39 /* 40 * Queue node uses: vcpu_running & vcpu_halted. 41 * Queue head uses: vcpu_running & vcpu_hashed. 42 */ 43 enum vcpu_state { 44 vcpu_running = 0, 45 vcpu_halted, /* Used only in pv_wait_node */ 46 vcpu_hashed, /* = pv_hash'ed + vcpu_halted */ 47 }; 48 49 struct pv_node { 50 struct mcs_spinlock mcs; 51 struct mcs_spinlock __res[3]; 52 53 int cpu; 54 u8 state; 55 }; 56 57 /* 58 * Include queued spinlock statistics code 59 */ 60 #include "qspinlock_stat.h" 61 62 /* 63 * By replacing the regular queued_spin_trylock() with the function below, 64 * it will be called once when a lock waiter enter the PV slowpath before 65 * being queued. By allowing one lock stealing attempt here when the pending 66 * bit is off, it helps to reduce the performance impact of lock waiter 67 * preemption without the drawback of lock starvation. 68 */ 69 #define queued_spin_trylock(l) pv_queued_spin_steal_lock(l) 70 static inline bool pv_queued_spin_steal_lock(struct qspinlock *lock) 71 { 72 struct __qspinlock *l = (void *)lock; 73 74 if (!(atomic_read(&lock->val) & _Q_LOCKED_PENDING_MASK) && 75 (cmpxchg_acquire(&l->locked, 0, _Q_LOCKED_VAL) == 0)) { 76 qstat_inc(qstat_pv_lock_stealing, true); 77 return true; 78 } 79 80 return false; 81 } 82 83 /* 84 * The pending bit is used by the queue head vCPU to indicate that it 85 * is actively spinning on the lock and no lock stealing is allowed. 86 */ 87 #if _Q_PENDING_BITS == 8 88 static __always_inline void set_pending(struct qspinlock *lock) 89 { 90 struct __qspinlock *l = (void *)lock; 91 92 WRITE_ONCE(l->pending, 1); 93 } 94 95 static __always_inline void clear_pending(struct qspinlock *lock) 96 { 97 struct __qspinlock *l = (void *)lock; 98 99 WRITE_ONCE(l->pending, 0); 100 } 101 102 /* 103 * The pending bit check in pv_queued_spin_steal_lock() isn't a memory 104 * barrier. Therefore, an atomic cmpxchg_acquire() is used to acquire the 105 * lock just to be sure that it will get it. 106 */ 107 static __always_inline int trylock_clear_pending(struct qspinlock *lock) 108 { 109 struct __qspinlock *l = (void *)lock; 110 111 return !READ_ONCE(l->locked) && 112 (cmpxchg_acquire(&l->locked_pending, _Q_PENDING_VAL, 113 _Q_LOCKED_VAL) == _Q_PENDING_VAL); 114 } 115 #else /* _Q_PENDING_BITS == 8 */ 116 static __always_inline void set_pending(struct qspinlock *lock) 117 { 118 atomic_or(_Q_PENDING_VAL, &lock->val); 119 } 120 121 static __always_inline void clear_pending(struct qspinlock *lock) 122 { 123 atomic_andnot(_Q_PENDING_VAL, &lock->val); 124 } 125 126 static __always_inline int trylock_clear_pending(struct qspinlock *lock) 127 { 128 int val = atomic_read(&lock->val); 129 130 for (;;) { 131 int old, new; 132 133 if (val & _Q_LOCKED_MASK) 134 break; 135 136 /* 137 * Try to clear pending bit & set locked bit 138 */ 139 old = val; 140 new = (val & ~_Q_PENDING_MASK) | _Q_LOCKED_VAL; 141 val = atomic_cmpxchg_acquire(&lock->val, old, new); 142 143 if (val == old) 144 return 1; 145 } 146 return 0; 147 } 148 #endif /* _Q_PENDING_BITS == 8 */ 149 150 /* 151 * Lock and MCS node addresses hash table for fast lookup 152 * 153 * Hashing is done on a per-cacheline basis to minimize the need to access 154 * more than one cacheline. 155 * 156 * Dynamically allocate a hash table big enough to hold at least 4X the 157 * number of possible cpus in the system. Allocation is done on page 158 * granularity. So the minimum number of hash buckets should be at least 159 * 256 (64-bit) or 512 (32-bit) to fully utilize a 4k page. 160 * 161 * Since we should not be holding locks from NMI context (very rare indeed) the 162 * max load factor is 0.75, which is around the point where open addressing 163 * breaks down. 164 * 165 */ 166 struct pv_hash_entry { 167 struct qspinlock *lock; 168 struct pv_node *node; 169 }; 170 171 #define PV_HE_PER_LINE (SMP_CACHE_BYTES / sizeof(struct pv_hash_entry)) 172 #define PV_HE_MIN (PAGE_SIZE / sizeof(struct pv_hash_entry)) 173 174 static struct pv_hash_entry *pv_lock_hash; 175 static unsigned int pv_lock_hash_bits __read_mostly; 176 177 /* 178 * Allocate memory for the PV qspinlock hash buckets 179 * 180 * This function should be called from the paravirt spinlock initialization 181 * routine. 182 */ 183 void __init __pv_init_lock_hash(void) 184 { 185 int pv_hash_size = ALIGN(4 * num_possible_cpus(), PV_HE_PER_LINE); 186 187 if (pv_hash_size < PV_HE_MIN) 188 pv_hash_size = PV_HE_MIN; 189 190 /* 191 * Allocate space from bootmem which should be page-size aligned 192 * and hence cacheline aligned. 193 */ 194 pv_lock_hash = alloc_large_system_hash("PV qspinlock", 195 sizeof(struct pv_hash_entry), 196 pv_hash_size, 0, 197 HASH_EARLY | HASH_ZERO, 198 &pv_lock_hash_bits, NULL, 199 pv_hash_size, pv_hash_size); 200 } 201 202 #define for_each_hash_entry(he, offset, hash) \ 203 for (hash &= ~(PV_HE_PER_LINE - 1), he = &pv_lock_hash[hash], offset = 0; \ 204 offset < (1 << pv_lock_hash_bits); \ 205 offset++, he = &pv_lock_hash[(hash + offset) & ((1 << pv_lock_hash_bits) - 1)]) 206 207 static struct qspinlock **pv_hash(struct qspinlock *lock, struct pv_node *node) 208 { 209 unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits); 210 struct pv_hash_entry *he; 211 int hopcnt = 0; 212 213 for_each_hash_entry(he, offset, hash) { 214 hopcnt++; 215 if (!cmpxchg(&he->lock, NULL, lock)) { 216 WRITE_ONCE(he->node, node); 217 qstat_hop(hopcnt); 218 return &he->lock; 219 } 220 } 221 /* 222 * Hard assume there is a free entry for us. 223 * 224 * This is guaranteed by ensuring every blocked lock only ever consumes 225 * a single entry, and since we only have 4 nesting levels per CPU 226 * and allocated 4*nr_possible_cpus(), this must be so. 227 * 228 * The single entry is guaranteed by having the lock owner unhash 229 * before it releases. 230 */ 231 BUG(); 232 } 233 234 static struct pv_node *pv_unhash(struct qspinlock *lock) 235 { 236 unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits); 237 struct pv_hash_entry *he; 238 struct pv_node *node; 239 240 for_each_hash_entry(he, offset, hash) { 241 if (READ_ONCE(he->lock) == lock) { 242 node = READ_ONCE(he->node); 243 WRITE_ONCE(he->lock, NULL); 244 return node; 245 } 246 } 247 /* 248 * Hard assume we'll find an entry. 249 * 250 * This guarantees a limited lookup time and is itself guaranteed by 251 * having the lock owner do the unhash -- IFF the unlock sees the 252 * SLOW flag, there MUST be a hash entry. 253 */ 254 BUG(); 255 } 256 257 /* 258 * Return true if when it is time to check the previous node which is not 259 * in a running state. 260 */ 261 static inline bool 262 pv_wait_early(struct pv_node *prev, int loop) 263 { 264 if ((loop & PV_PREV_CHECK_MASK) != 0) 265 return false; 266 267 return READ_ONCE(prev->state) != vcpu_running || vcpu_is_preempted(prev->cpu); 268 } 269 270 /* 271 * Initialize the PV part of the mcs_spinlock node. 272 */ 273 static void pv_init_node(struct mcs_spinlock *node) 274 { 275 struct pv_node *pn = (struct pv_node *)node; 276 277 BUILD_BUG_ON(sizeof(struct pv_node) > 5*sizeof(struct mcs_spinlock)); 278 279 pn->cpu = smp_processor_id(); 280 pn->state = vcpu_running; 281 } 282 283 /* 284 * Wait for node->locked to become true, halt the vcpu after a short spin. 285 * pv_kick_node() is used to set _Q_SLOW_VAL and fill in hash table on its 286 * behalf. 287 */ 288 static void pv_wait_node(struct mcs_spinlock *node, struct mcs_spinlock *prev) 289 { 290 struct pv_node *pn = (struct pv_node *)node; 291 struct pv_node *pp = (struct pv_node *)prev; 292 int loop; 293 bool wait_early; 294 295 for (;;) { 296 for (wait_early = false, loop = SPIN_THRESHOLD; loop; loop--) { 297 if (READ_ONCE(node->locked)) 298 return; 299 if (pv_wait_early(pp, loop)) { 300 wait_early = true; 301 break; 302 } 303 cpu_relax(); 304 } 305 306 /* 307 * Order pn->state vs pn->locked thusly: 308 * 309 * [S] pn->state = vcpu_halted [S] next->locked = 1 310 * MB MB 311 * [L] pn->locked [RmW] pn->state = vcpu_hashed 312 * 313 * Matches the cmpxchg() from pv_kick_node(). 314 */ 315 smp_store_mb(pn->state, vcpu_halted); 316 317 if (!READ_ONCE(node->locked)) { 318 qstat_inc(qstat_pv_wait_node, true); 319 qstat_inc(qstat_pv_wait_early, wait_early); 320 pv_wait(&pn->state, vcpu_halted); 321 } 322 323 /* 324 * If pv_kick_node() changed us to vcpu_hashed, retain that 325 * value so that pv_wait_head_or_lock() knows to not also try 326 * to hash this lock. 327 */ 328 cmpxchg(&pn->state, vcpu_halted, vcpu_running); 329 330 /* 331 * If the locked flag is still not set after wakeup, it is a 332 * spurious wakeup and the vCPU should wait again. However, 333 * there is a pretty high overhead for CPU halting and kicking. 334 * So it is better to spin for a while in the hope that the 335 * MCS lock will be released soon. 336 */ 337 qstat_inc(qstat_pv_spurious_wakeup, !READ_ONCE(node->locked)); 338 } 339 340 /* 341 * By now our node->locked should be 1 and our caller will not actually 342 * spin-wait for it. We do however rely on our caller to do a 343 * load-acquire for us. 344 */ 345 } 346 347 /* 348 * Called after setting next->locked = 1 when we're the lock owner. 349 * 350 * Instead of waking the waiters stuck in pv_wait_node() advance their state 351 * such that they're waiting in pv_wait_head_or_lock(), this avoids a 352 * wake/sleep cycle. 353 */ 354 static void pv_kick_node(struct qspinlock *lock, struct mcs_spinlock *node) 355 { 356 struct pv_node *pn = (struct pv_node *)node; 357 struct __qspinlock *l = (void *)lock; 358 359 /* 360 * If the vCPU is indeed halted, advance its state to match that of 361 * pv_wait_node(). If OTOH this fails, the vCPU was running and will 362 * observe its next->locked value and advance itself. 363 * 364 * Matches with smp_store_mb() and cmpxchg() in pv_wait_node() 365 * 366 * The write to next->locked in arch_mcs_spin_unlock_contended() 367 * must be ordered before the read of pn->state in the cmpxchg() 368 * below for the code to work correctly. To guarantee full ordering 369 * irrespective of the success or failure of the cmpxchg(), 370 * a relaxed version with explicit barrier is used. The control 371 * dependency will order the reading of pn->state before any 372 * subsequent writes. 373 */ 374 smp_mb__before_atomic(); 375 if (cmpxchg_relaxed(&pn->state, vcpu_halted, vcpu_hashed) 376 != vcpu_halted) 377 return; 378 379 /* 380 * Put the lock into the hash table and set the _Q_SLOW_VAL. 381 * 382 * As this is the same vCPU that will check the _Q_SLOW_VAL value and 383 * the hash table later on at unlock time, no atomic instruction is 384 * needed. 385 */ 386 WRITE_ONCE(l->locked, _Q_SLOW_VAL); 387 (void)pv_hash(lock, pn); 388 } 389 390 /* 391 * Wait for l->locked to become clear and acquire the lock; 392 * halt the vcpu after a short spin. 393 * __pv_queued_spin_unlock() will wake us. 394 * 395 * The current value of the lock will be returned for additional processing. 396 */ 397 static u32 398 pv_wait_head_or_lock(struct qspinlock *lock, struct mcs_spinlock *node) 399 { 400 struct pv_node *pn = (struct pv_node *)node; 401 struct __qspinlock *l = (void *)lock; 402 struct qspinlock **lp = NULL; 403 int waitcnt = 0; 404 int loop; 405 406 /* 407 * If pv_kick_node() already advanced our state, we don't need to 408 * insert ourselves into the hash table anymore. 409 */ 410 if (READ_ONCE(pn->state) == vcpu_hashed) 411 lp = (struct qspinlock **)1; 412 413 /* 414 * Tracking # of slowpath locking operations 415 */ 416 qstat_inc(qstat_pv_lock_slowpath, true); 417 418 for (;; waitcnt++) { 419 /* 420 * Set correct vCPU state to be used by queue node wait-early 421 * mechanism. 422 */ 423 WRITE_ONCE(pn->state, vcpu_running); 424 425 /* 426 * Set the pending bit in the active lock spinning loop to 427 * disable lock stealing before attempting to acquire the lock. 428 */ 429 set_pending(lock); 430 for (loop = SPIN_THRESHOLD; loop; loop--) { 431 if (trylock_clear_pending(lock)) 432 goto gotlock; 433 cpu_relax(); 434 } 435 clear_pending(lock); 436 437 438 if (!lp) { /* ONCE */ 439 lp = pv_hash(lock, pn); 440 441 /* 442 * We must hash before setting _Q_SLOW_VAL, such that 443 * when we observe _Q_SLOW_VAL in __pv_queued_spin_unlock() 444 * we'll be sure to be able to observe our hash entry. 445 * 446 * [S] <hash> [Rmw] l->locked == _Q_SLOW_VAL 447 * MB RMB 448 * [RmW] l->locked = _Q_SLOW_VAL [L] <unhash> 449 * 450 * Matches the smp_rmb() in __pv_queued_spin_unlock(). 451 */ 452 if (xchg(&l->locked, _Q_SLOW_VAL) == 0) { 453 /* 454 * The lock was free and now we own the lock. 455 * Change the lock value back to _Q_LOCKED_VAL 456 * and unhash the table. 457 */ 458 WRITE_ONCE(l->locked, _Q_LOCKED_VAL); 459 WRITE_ONCE(*lp, NULL); 460 goto gotlock; 461 } 462 } 463 WRITE_ONCE(pn->state, vcpu_hashed); 464 qstat_inc(qstat_pv_wait_head, true); 465 qstat_inc(qstat_pv_wait_again, waitcnt); 466 pv_wait(&l->locked, _Q_SLOW_VAL); 467 468 /* 469 * Because of lock stealing, the queue head vCPU may not be 470 * able to acquire the lock before it has to wait again. 471 */ 472 } 473 474 /* 475 * The cmpxchg() or xchg() call before coming here provides the 476 * acquire semantics for locking. The dummy ORing of _Q_LOCKED_VAL 477 * here is to indicate to the compiler that the value will always 478 * be nozero to enable better code optimization. 479 */ 480 gotlock: 481 return (u32)(atomic_read(&lock->val) | _Q_LOCKED_VAL); 482 } 483 484 /* 485 * PV versions of the unlock fastpath and slowpath functions to be used 486 * instead of queued_spin_unlock(). 487 */ 488 __visible void 489 __pv_queued_spin_unlock_slowpath(struct qspinlock *lock, u8 locked) 490 { 491 struct __qspinlock *l = (void *)lock; 492 struct pv_node *node; 493 494 if (unlikely(locked != _Q_SLOW_VAL)) { 495 WARN(!debug_locks_silent, 496 "pvqspinlock: lock 0x%lx has corrupted value 0x%x!\n", 497 (unsigned long)lock, atomic_read(&lock->val)); 498 return; 499 } 500 501 /* 502 * A failed cmpxchg doesn't provide any memory-ordering guarantees, 503 * so we need a barrier to order the read of the node data in 504 * pv_unhash *after* we've read the lock being _Q_SLOW_VAL. 505 * 506 * Matches the cmpxchg() in pv_wait_head_or_lock() setting _Q_SLOW_VAL. 507 */ 508 smp_rmb(); 509 510 /* 511 * Since the above failed to release, this must be the SLOW path. 512 * Therefore start by looking up the blocked node and unhashing it. 513 */ 514 node = pv_unhash(lock); 515 516 /* 517 * Now that we have a reference to the (likely) blocked pv_node, 518 * release the lock. 519 */ 520 smp_store_release(&l->locked, 0); 521 522 /* 523 * At this point the memory pointed at by lock can be freed/reused, 524 * however we can still use the pv_node to kick the CPU. 525 * The other vCPU may not really be halted, but kicking an active 526 * vCPU is harmless other than the additional latency in completing 527 * the unlock. 528 */ 529 qstat_inc(qstat_pv_kick_unlock, true); 530 pv_kick(node->cpu); 531 } 532 533 /* 534 * Include the architecture specific callee-save thunk of the 535 * __pv_queued_spin_unlock(). This thunk is put together with 536 * __pv_queued_spin_unlock() to make the callee-save thunk and the real unlock 537 * function close to each other sharing consecutive instruction cachelines. 538 * Alternatively, architecture specific version of __pv_queued_spin_unlock() 539 * can be defined. 540 */ 541 #include <asm/qspinlock_paravirt.h> 542 543 #ifndef __pv_queued_spin_unlock 544 __visible void __pv_queued_spin_unlock(struct qspinlock *lock) 545 { 546 struct __qspinlock *l = (void *)lock; 547 u8 locked; 548 549 /* 550 * We must not unlock if SLOW, because in that case we must first 551 * unhash. Otherwise it would be possible to have multiple @lock 552 * entries, which would be BAD. 553 */ 554 locked = cmpxchg_release(&l->locked, _Q_LOCKED_VAL, 0); 555 if (likely(locked == _Q_LOCKED_VAL)) 556 return; 557 558 __pv_queued_spin_unlock_slowpath(lock, locked); 559 } 560 #endif /* __pv_queued_spin_unlock */ 561