xref: /openbmc/linux/kernel/locking/qspinlock_paravirt.h (revision 4ed91d48259d9ddd378424d008f2e6559f7e78f8)
1 #ifndef _GEN_PV_LOCK_SLOWPATH
2 #error "do not include this file"
3 #endif
4 
5 #include <linux/hash.h>
6 #include <linux/bootmem.h>
7 #include <linux/debug_locks.h>
8 
9 /*
10  * Implement paravirt qspinlocks; the general idea is to halt the vcpus instead
11  * of spinning them.
12  *
13  * This relies on the architecture to provide two paravirt hypercalls:
14  *
15  *   pv_wait(u8 *ptr, u8 val) -- suspends the vcpu if *ptr == val
16  *   pv_kick(cpu)             -- wakes a suspended vcpu
17  *
18  * Using these we implement __pv_queued_spin_lock_slowpath() and
19  * __pv_queued_spin_unlock() to replace native_queued_spin_lock_slowpath() and
20  * native_queued_spin_unlock().
21  */
22 
23 #define _Q_SLOW_VAL	(3U << _Q_LOCKED_OFFSET)
24 
25 /*
26  * Queue Node Adaptive Spinning
27  *
28  * A queue node vCPU will stop spinning if the vCPU in the previous node is
29  * not running. The one lock stealing attempt allowed at slowpath entry
30  * mitigates the slight slowdown for non-overcommitted guest with this
31  * aggressive wait-early mechanism.
32  *
33  * The status of the previous node will be checked at fixed interval
34  * controlled by PV_PREV_CHECK_MASK. This is to ensure that we won't
35  * pound on the cacheline of the previous node too heavily.
36  */
37 #define PV_PREV_CHECK_MASK	0xff
38 
39 /*
40  * Queue node uses: vcpu_running & vcpu_halted.
41  * Queue head uses: vcpu_running & vcpu_hashed.
42  */
43 enum vcpu_state {
44 	vcpu_running = 0,
45 	vcpu_halted,		/* Used only in pv_wait_node */
46 	vcpu_hashed,		/* = pv_hash'ed + vcpu_halted */
47 };
48 
49 struct pv_node {
50 	struct mcs_spinlock	mcs;
51 	struct mcs_spinlock	__res[3];
52 
53 	int			cpu;
54 	u8			state;
55 };
56 
57 /*
58  * Include queued spinlock statistics code
59  */
60 #include "qspinlock_stat.h"
61 
62 /*
63  * By replacing the regular queued_spin_trylock() with the function below,
64  * it will be called once when a lock waiter enter the PV slowpath before
65  * being queued. By allowing one lock stealing attempt here when the pending
66  * bit is off, it helps to reduce the performance impact of lock waiter
67  * preemption without the drawback of lock starvation.
68  */
69 #define queued_spin_trylock(l)	pv_queued_spin_steal_lock(l)
70 static inline bool pv_queued_spin_steal_lock(struct qspinlock *lock)
71 {
72 	struct __qspinlock *l = (void *)lock;
73 
74 	if (!(atomic_read(&lock->val) & _Q_LOCKED_PENDING_MASK) &&
75 	    (cmpxchg(&l->locked, 0, _Q_LOCKED_VAL) == 0)) {
76 		qstat_inc(qstat_pv_lock_stealing, true);
77 		return true;
78 	}
79 
80 	return false;
81 }
82 
83 /*
84  * The pending bit is used by the queue head vCPU to indicate that it
85  * is actively spinning on the lock and no lock stealing is allowed.
86  */
87 #if _Q_PENDING_BITS == 8
88 static __always_inline void set_pending(struct qspinlock *lock)
89 {
90 	struct __qspinlock *l = (void *)lock;
91 
92 	WRITE_ONCE(l->pending, 1);
93 }
94 
95 static __always_inline void clear_pending(struct qspinlock *lock)
96 {
97 	struct __qspinlock *l = (void *)lock;
98 
99 	WRITE_ONCE(l->pending, 0);
100 }
101 
102 /*
103  * The pending bit check in pv_queued_spin_steal_lock() isn't a memory
104  * barrier. Therefore, an atomic cmpxchg() is used to acquire the lock
105  * just to be sure that it will get it.
106  */
107 static __always_inline int trylock_clear_pending(struct qspinlock *lock)
108 {
109 	struct __qspinlock *l = (void *)lock;
110 
111 	return !READ_ONCE(l->locked) &&
112 	       (cmpxchg(&l->locked_pending, _Q_PENDING_VAL, _Q_LOCKED_VAL)
113 			== _Q_PENDING_VAL);
114 }
115 #else /* _Q_PENDING_BITS == 8 */
116 static __always_inline void set_pending(struct qspinlock *lock)
117 {
118 	atomic_or(_Q_PENDING_VAL, &lock->val);
119 }
120 
121 static __always_inline void clear_pending(struct qspinlock *lock)
122 {
123 	atomic_andnot(_Q_PENDING_VAL, &lock->val);
124 }
125 
126 static __always_inline int trylock_clear_pending(struct qspinlock *lock)
127 {
128 	int val = atomic_read(&lock->val);
129 
130 	for (;;) {
131 		int old, new;
132 
133 		if (val  & _Q_LOCKED_MASK)
134 			break;
135 
136 		/*
137 		 * Try to clear pending bit & set locked bit
138 		 */
139 		old = val;
140 		new = (val & ~_Q_PENDING_MASK) | _Q_LOCKED_VAL;
141 		val = atomic_cmpxchg(&lock->val, old, new);
142 
143 		if (val == old)
144 			return 1;
145 	}
146 	return 0;
147 }
148 #endif /* _Q_PENDING_BITS == 8 */
149 
150 /*
151  * Lock and MCS node addresses hash table for fast lookup
152  *
153  * Hashing is done on a per-cacheline basis to minimize the need to access
154  * more than one cacheline.
155  *
156  * Dynamically allocate a hash table big enough to hold at least 4X the
157  * number of possible cpus in the system. Allocation is done on page
158  * granularity. So the minimum number of hash buckets should be at least
159  * 256 (64-bit) or 512 (32-bit) to fully utilize a 4k page.
160  *
161  * Since we should not be holding locks from NMI context (very rare indeed) the
162  * max load factor is 0.75, which is around the point where open addressing
163  * breaks down.
164  *
165  */
166 struct pv_hash_entry {
167 	struct qspinlock *lock;
168 	struct pv_node   *node;
169 };
170 
171 #define PV_HE_PER_LINE	(SMP_CACHE_BYTES / sizeof(struct pv_hash_entry))
172 #define PV_HE_MIN	(PAGE_SIZE / sizeof(struct pv_hash_entry))
173 
174 static struct pv_hash_entry *pv_lock_hash;
175 static unsigned int pv_lock_hash_bits __read_mostly;
176 
177 /*
178  * Allocate memory for the PV qspinlock hash buckets
179  *
180  * This function should be called from the paravirt spinlock initialization
181  * routine.
182  */
183 void __init __pv_init_lock_hash(void)
184 {
185 	int pv_hash_size = ALIGN(4 * num_possible_cpus(), PV_HE_PER_LINE);
186 
187 	if (pv_hash_size < PV_HE_MIN)
188 		pv_hash_size = PV_HE_MIN;
189 
190 	/*
191 	 * Allocate space from bootmem which should be page-size aligned
192 	 * and hence cacheline aligned.
193 	 */
194 	pv_lock_hash = alloc_large_system_hash("PV qspinlock",
195 					       sizeof(struct pv_hash_entry),
196 					       pv_hash_size, 0, HASH_EARLY,
197 					       &pv_lock_hash_bits, NULL,
198 					       pv_hash_size, pv_hash_size);
199 }
200 
201 #define for_each_hash_entry(he, offset, hash)						\
202 	for (hash &= ~(PV_HE_PER_LINE - 1), he = &pv_lock_hash[hash], offset = 0;	\
203 	     offset < (1 << pv_lock_hash_bits);						\
204 	     offset++, he = &pv_lock_hash[(hash + offset) & ((1 << pv_lock_hash_bits) - 1)])
205 
206 static struct qspinlock **pv_hash(struct qspinlock *lock, struct pv_node *node)
207 {
208 	unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits);
209 	struct pv_hash_entry *he;
210 	int hopcnt = 0;
211 
212 	for_each_hash_entry(he, offset, hash) {
213 		hopcnt++;
214 		if (!cmpxchg(&he->lock, NULL, lock)) {
215 			WRITE_ONCE(he->node, node);
216 			qstat_hop(hopcnt);
217 			return &he->lock;
218 		}
219 	}
220 	/*
221 	 * Hard assume there is a free entry for us.
222 	 *
223 	 * This is guaranteed by ensuring every blocked lock only ever consumes
224 	 * a single entry, and since we only have 4 nesting levels per CPU
225 	 * and allocated 4*nr_possible_cpus(), this must be so.
226 	 *
227 	 * The single entry is guaranteed by having the lock owner unhash
228 	 * before it releases.
229 	 */
230 	BUG();
231 }
232 
233 static struct pv_node *pv_unhash(struct qspinlock *lock)
234 {
235 	unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits);
236 	struct pv_hash_entry *he;
237 	struct pv_node *node;
238 
239 	for_each_hash_entry(he, offset, hash) {
240 		if (READ_ONCE(he->lock) == lock) {
241 			node = READ_ONCE(he->node);
242 			WRITE_ONCE(he->lock, NULL);
243 			return node;
244 		}
245 	}
246 	/*
247 	 * Hard assume we'll find an entry.
248 	 *
249 	 * This guarantees a limited lookup time and is itself guaranteed by
250 	 * having the lock owner do the unhash -- IFF the unlock sees the
251 	 * SLOW flag, there MUST be a hash entry.
252 	 */
253 	BUG();
254 }
255 
256 /*
257  * Return true if when it is time to check the previous node which is not
258  * in a running state.
259  */
260 static inline bool
261 pv_wait_early(struct pv_node *prev, int loop)
262 {
263 	if ((loop & PV_PREV_CHECK_MASK) != 0)
264 		return false;
265 
266 	return READ_ONCE(prev->state) != vcpu_running || vcpu_is_preempted(prev->cpu);
267 }
268 
269 /*
270  * Initialize the PV part of the mcs_spinlock node.
271  */
272 static void pv_init_node(struct mcs_spinlock *node)
273 {
274 	struct pv_node *pn = (struct pv_node *)node;
275 
276 	BUILD_BUG_ON(sizeof(struct pv_node) > 5*sizeof(struct mcs_spinlock));
277 
278 	pn->cpu = smp_processor_id();
279 	pn->state = vcpu_running;
280 }
281 
282 /*
283  * Wait for node->locked to become true, halt the vcpu after a short spin.
284  * pv_kick_node() is used to set _Q_SLOW_VAL and fill in hash table on its
285  * behalf.
286  */
287 static void pv_wait_node(struct mcs_spinlock *node, struct mcs_spinlock *prev)
288 {
289 	struct pv_node *pn = (struct pv_node *)node;
290 	struct pv_node *pp = (struct pv_node *)prev;
291 	int loop;
292 	bool wait_early;
293 
294 	for (;;) {
295 		for (wait_early = false, loop = SPIN_THRESHOLD; loop; loop--) {
296 			if (READ_ONCE(node->locked))
297 				return;
298 			if (pv_wait_early(pp, loop)) {
299 				wait_early = true;
300 				break;
301 			}
302 			cpu_relax();
303 		}
304 
305 		/*
306 		 * Order pn->state vs pn->locked thusly:
307 		 *
308 		 * [S] pn->state = vcpu_halted	  [S] next->locked = 1
309 		 *     MB			      MB
310 		 * [L] pn->locked		[RmW] pn->state = vcpu_hashed
311 		 *
312 		 * Matches the cmpxchg() from pv_kick_node().
313 		 */
314 		smp_store_mb(pn->state, vcpu_halted);
315 
316 		if (!READ_ONCE(node->locked)) {
317 			qstat_inc(qstat_pv_wait_node, true);
318 			qstat_inc(qstat_pv_wait_early, wait_early);
319 			pv_wait(&pn->state, vcpu_halted);
320 		}
321 
322 		/*
323 		 * If pv_kick_node() changed us to vcpu_hashed, retain that
324 		 * value so that pv_wait_head_or_lock() knows to not also try
325 		 * to hash this lock.
326 		 */
327 		cmpxchg(&pn->state, vcpu_halted, vcpu_running);
328 
329 		/*
330 		 * If the locked flag is still not set after wakeup, it is a
331 		 * spurious wakeup and the vCPU should wait again. However,
332 		 * there is a pretty high overhead for CPU halting and kicking.
333 		 * So it is better to spin for a while in the hope that the
334 		 * MCS lock will be released soon.
335 		 */
336 		qstat_inc(qstat_pv_spurious_wakeup, !READ_ONCE(node->locked));
337 	}
338 
339 	/*
340 	 * By now our node->locked should be 1 and our caller will not actually
341 	 * spin-wait for it. We do however rely on our caller to do a
342 	 * load-acquire for us.
343 	 */
344 }
345 
346 /*
347  * Called after setting next->locked = 1 when we're the lock owner.
348  *
349  * Instead of waking the waiters stuck in pv_wait_node() advance their state
350  * such that they're waiting in pv_wait_head_or_lock(), this avoids a
351  * wake/sleep cycle.
352  */
353 static void pv_kick_node(struct qspinlock *lock, struct mcs_spinlock *node)
354 {
355 	struct pv_node *pn = (struct pv_node *)node;
356 	struct __qspinlock *l = (void *)lock;
357 
358 	/*
359 	 * If the vCPU is indeed halted, advance its state to match that of
360 	 * pv_wait_node(). If OTOH this fails, the vCPU was running and will
361 	 * observe its next->locked value and advance itself.
362 	 *
363 	 * Matches with smp_store_mb() and cmpxchg() in pv_wait_node()
364 	 */
365 	if (cmpxchg(&pn->state, vcpu_halted, vcpu_hashed) != vcpu_halted)
366 		return;
367 
368 	/*
369 	 * Put the lock into the hash table and set the _Q_SLOW_VAL.
370 	 *
371 	 * As this is the same vCPU that will check the _Q_SLOW_VAL value and
372 	 * the hash table later on at unlock time, no atomic instruction is
373 	 * needed.
374 	 */
375 	WRITE_ONCE(l->locked, _Q_SLOW_VAL);
376 	(void)pv_hash(lock, pn);
377 }
378 
379 /*
380  * Wait for l->locked to become clear and acquire the lock;
381  * halt the vcpu after a short spin.
382  * __pv_queued_spin_unlock() will wake us.
383  *
384  * The current value of the lock will be returned for additional processing.
385  */
386 static u32
387 pv_wait_head_or_lock(struct qspinlock *lock, struct mcs_spinlock *node)
388 {
389 	struct pv_node *pn = (struct pv_node *)node;
390 	struct __qspinlock *l = (void *)lock;
391 	struct qspinlock **lp = NULL;
392 	int waitcnt = 0;
393 	int loop;
394 
395 	/*
396 	 * If pv_kick_node() already advanced our state, we don't need to
397 	 * insert ourselves into the hash table anymore.
398 	 */
399 	if (READ_ONCE(pn->state) == vcpu_hashed)
400 		lp = (struct qspinlock **)1;
401 
402 	/*
403 	 * Tracking # of slowpath locking operations
404 	 */
405 	qstat_inc(qstat_pv_lock_slowpath, true);
406 
407 	for (;; waitcnt++) {
408 		/*
409 		 * Set correct vCPU state to be used by queue node wait-early
410 		 * mechanism.
411 		 */
412 		WRITE_ONCE(pn->state, vcpu_running);
413 
414 		/*
415 		 * Set the pending bit in the active lock spinning loop to
416 		 * disable lock stealing before attempting to acquire the lock.
417 		 */
418 		set_pending(lock);
419 		for (loop = SPIN_THRESHOLD; loop; loop--) {
420 			if (trylock_clear_pending(lock))
421 				goto gotlock;
422 			cpu_relax();
423 		}
424 		clear_pending(lock);
425 
426 
427 		if (!lp) { /* ONCE */
428 			lp = pv_hash(lock, pn);
429 
430 			/*
431 			 * We must hash before setting _Q_SLOW_VAL, such that
432 			 * when we observe _Q_SLOW_VAL in __pv_queued_spin_unlock()
433 			 * we'll be sure to be able to observe our hash entry.
434 			 *
435 			 *   [S] <hash>                 [Rmw] l->locked == _Q_SLOW_VAL
436 			 *       MB                           RMB
437 			 * [RmW] l->locked = _Q_SLOW_VAL  [L] <unhash>
438 			 *
439 			 * Matches the smp_rmb() in __pv_queued_spin_unlock().
440 			 */
441 			if (xchg(&l->locked, _Q_SLOW_VAL) == 0) {
442 				/*
443 				 * The lock was free and now we own the lock.
444 				 * Change the lock value back to _Q_LOCKED_VAL
445 				 * and unhash the table.
446 				 */
447 				WRITE_ONCE(l->locked, _Q_LOCKED_VAL);
448 				WRITE_ONCE(*lp, NULL);
449 				goto gotlock;
450 			}
451 		}
452 		WRITE_ONCE(pn->state, vcpu_hashed);
453 		qstat_inc(qstat_pv_wait_head, true);
454 		qstat_inc(qstat_pv_wait_again, waitcnt);
455 		pv_wait(&l->locked, _Q_SLOW_VAL);
456 
457 		/*
458 		 * Because of lock stealing, the queue head vCPU may not be
459 		 * able to acquire the lock before it has to wait again.
460 		 */
461 	}
462 
463 	/*
464 	 * The cmpxchg() or xchg() call before coming here provides the
465 	 * acquire semantics for locking. The dummy ORing of _Q_LOCKED_VAL
466 	 * here is to indicate to the compiler that the value will always
467 	 * be nozero to enable better code optimization.
468 	 */
469 gotlock:
470 	return (u32)(atomic_read(&lock->val) | _Q_LOCKED_VAL);
471 }
472 
473 /*
474  * PV versions of the unlock fastpath and slowpath functions to be used
475  * instead of queued_spin_unlock().
476  */
477 __visible void
478 __pv_queued_spin_unlock_slowpath(struct qspinlock *lock, u8 locked)
479 {
480 	struct __qspinlock *l = (void *)lock;
481 	struct pv_node *node;
482 
483 	if (unlikely(locked != _Q_SLOW_VAL)) {
484 		WARN(!debug_locks_silent,
485 		     "pvqspinlock: lock 0x%lx has corrupted value 0x%x!\n",
486 		     (unsigned long)lock, atomic_read(&lock->val));
487 		return;
488 	}
489 
490 	/*
491 	 * A failed cmpxchg doesn't provide any memory-ordering guarantees,
492 	 * so we need a barrier to order the read of the node data in
493 	 * pv_unhash *after* we've read the lock being _Q_SLOW_VAL.
494 	 *
495 	 * Matches the cmpxchg() in pv_wait_head_or_lock() setting _Q_SLOW_VAL.
496 	 */
497 	smp_rmb();
498 
499 	/*
500 	 * Since the above failed to release, this must be the SLOW path.
501 	 * Therefore start by looking up the blocked node and unhashing it.
502 	 */
503 	node = pv_unhash(lock);
504 
505 	/*
506 	 * Now that we have a reference to the (likely) blocked pv_node,
507 	 * release the lock.
508 	 */
509 	smp_store_release(&l->locked, 0);
510 
511 	/*
512 	 * At this point the memory pointed at by lock can be freed/reused,
513 	 * however we can still use the pv_node to kick the CPU.
514 	 * The other vCPU may not really be halted, but kicking an active
515 	 * vCPU is harmless other than the additional latency in completing
516 	 * the unlock.
517 	 */
518 	qstat_inc(qstat_pv_kick_unlock, true);
519 	pv_kick(node->cpu);
520 }
521 
522 /*
523  * Include the architecture specific callee-save thunk of the
524  * __pv_queued_spin_unlock(). This thunk is put together with
525  * __pv_queued_spin_unlock() to make the callee-save thunk and the real unlock
526  * function close to each other sharing consecutive instruction cachelines.
527  * Alternatively, architecture specific version of __pv_queued_spin_unlock()
528  * can be defined.
529  */
530 #include <asm/qspinlock_paravirt.h>
531 
532 #ifndef __pv_queued_spin_unlock
533 __visible void __pv_queued_spin_unlock(struct qspinlock *lock)
534 {
535 	struct __qspinlock *l = (void *)lock;
536 	u8 locked;
537 
538 	/*
539 	 * We must not unlock if SLOW, because in that case we must first
540 	 * unhash. Otherwise it would be possible to have multiple @lock
541 	 * entries, which would be BAD.
542 	 */
543 	locked = cmpxchg_release(&l->locked, _Q_LOCKED_VAL, 0);
544 	if (likely(locked == _Q_LOCKED_VAL))
545 		return;
546 
547 	__pv_queued_spin_unlock_slowpath(lock, locked);
548 }
549 #endif /* __pv_queued_spin_unlock */
550