1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _GEN_PV_LOCK_SLOWPATH 3 #error "do not include this file" 4 #endif 5 6 #include <linux/hash.h> 7 #include <linux/bootmem.h> 8 #include <linux/debug_locks.h> 9 10 /* 11 * Implement paravirt qspinlocks; the general idea is to halt the vcpus instead 12 * of spinning them. 13 * 14 * This relies on the architecture to provide two paravirt hypercalls: 15 * 16 * pv_wait(u8 *ptr, u8 val) -- suspends the vcpu if *ptr == val 17 * pv_kick(cpu) -- wakes a suspended vcpu 18 * 19 * Using these we implement __pv_queued_spin_lock_slowpath() and 20 * __pv_queued_spin_unlock() to replace native_queued_spin_lock_slowpath() and 21 * native_queued_spin_unlock(). 22 */ 23 24 #define _Q_SLOW_VAL (3U << _Q_LOCKED_OFFSET) 25 26 /* 27 * Queue Node Adaptive Spinning 28 * 29 * A queue node vCPU will stop spinning if the vCPU in the previous node is 30 * not running. The one lock stealing attempt allowed at slowpath entry 31 * mitigates the slight slowdown for non-overcommitted guest with this 32 * aggressive wait-early mechanism. 33 * 34 * The status of the previous node will be checked at fixed interval 35 * controlled by PV_PREV_CHECK_MASK. This is to ensure that we won't 36 * pound on the cacheline of the previous node too heavily. 37 */ 38 #define PV_PREV_CHECK_MASK 0xff 39 40 /* 41 * Queue node uses: vcpu_running & vcpu_halted. 42 * Queue head uses: vcpu_running & vcpu_hashed. 43 */ 44 enum vcpu_state { 45 vcpu_running = 0, 46 vcpu_halted, /* Used only in pv_wait_node */ 47 vcpu_hashed, /* = pv_hash'ed + vcpu_halted */ 48 }; 49 50 struct pv_node { 51 struct mcs_spinlock mcs; 52 struct mcs_spinlock __res[3]; 53 54 int cpu; 55 u8 state; 56 }; 57 58 /* 59 * Include queued spinlock statistics code 60 */ 61 #include "qspinlock_stat.h" 62 63 /* 64 * Hybrid PV queued/unfair lock 65 * 66 * By replacing the regular queued_spin_trylock() with the function below, 67 * it will be called once when a lock waiter enter the PV slowpath before 68 * being queued. 69 * 70 * The pending bit is set by the queue head vCPU of the MCS wait queue in 71 * pv_wait_head_or_lock() to signal that it is ready to spin on the lock. 72 * When that bit becomes visible to the incoming waiters, no lock stealing 73 * is allowed. The function will return immediately to make the waiters 74 * enter the MCS wait queue. So lock starvation shouldn't happen as long 75 * as the queued mode vCPUs are actively running to set the pending bit 76 * and hence disabling lock stealing. 77 * 78 * When the pending bit isn't set, the lock waiters will stay in the unfair 79 * mode spinning on the lock unless the MCS wait queue is empty. In this 80 * case, the lock waiters will enter the queued mode slowpath trying to 81 * become the queue head and set the pending bit. 82 * 83 * This hybrid PV queued/unfair lock combines the best attributes of a 84 * queued lock (no lock starvation) and an unfair lock (good performance 85 * on not heavily contended locks). 86 */ 87 #define queued_spin_trylock(l) pv_hybrid_queued_unfair_trylock(l) 88 static inline bool pv_hybrid_queued_unfair_trylock(struct qspinlock *lock) 89 { 90 struct __qspinlock *l = (void *)lock; 91 92 /* 93 * Stay in unfair lock mode as long as queued mode waiters are 94 * present in the MCS wait queue but the pending bit isn't set. 95 */ 96 for (;;) { 97 int val = atomic_read(&lock->val); 98 99 if (!(val & _Q_LOCKED_PENDING_MASK) && 100 (cmpxchg_acquire(&l->locked, 0, _Q_LOCKED_VAL) == 0)) { 101 qstat_inc(qstat_pv_lock_stealing, true); 102 return true; 103 } 104 if (!(val & _Q_TAIL_MASK) || (val & _Q_PENDING_MASK)) 105 break; 106 107 cpu_relax(); 108 } 109 110 return false; 111 } 112 113 /* 114 * The pending bit is used by the queue head vCPU to indicate that it 115 * is actively spinning on the lock and no lock stealing is allowed. 116 */ 117 #if _Q_PENDING_BITS == 8 118 static __always_inline void set_pending(struct qspinlock *lock) 119 { 120 struct __qspinlock *l = (void *)lock; 121 122 WRITE_ONCE(l->pending, 1); 123 } 124 125 static __always_inline void clear_pending(struct qspinlock *lock) 126 { 127 struct __qspinlock *l = (void *)lock; 128 129 WRITE_ONCE(l->pending, 0); 130 } 131 132 /* 133 * The pending bit check in pv_queued_spin_steal_lock() isn't a memory 134 * barrier. Therefore, an atomic cmpxchg_acquire() is used to acquire the 135 * lock just to be sure that it will get it. 136 */ 137 static __always_inline int trylock_clear_pending(struct qspinlock *lock) 138 { 139 struct __qspinlock *l = (void *)lock; 140 141 return !READ_ONCE(l->locked) && 142 (cmpxchg_acquire(&l->locked_pending, _Q_PENDING_VAL, 143 _Q_LOCKED_VAL) == _Q_PENDING_VAL); 144 } 145 #else /* _Q_PENDING_BITS == 8 */ 146 static __always_inline void set_pending(struct qspinlock *lock) 147 { 148 atomic_or(_Q_PENDING_VAL, &lock->val); 149 } 150 151 static __always_inline void clear_pending(struct qspinlock *lock) 152 { 153 atomic_andnot(_Q_PENDING_VAL, &lock->val); 154 } 155 156 static __always_inline int trylock_clear_pending(struct qspinlock *lock) 157 { 158 int val = atomic_read(&lock->val); 159 160 for (;;) { 161 int old, new; 162 163 if (val & _Q_LOCKED_MASK) 164 break; 165 166 /* 167 * Try to clear pending bit & set locked bit 168 */ 169 old = val; 170 new = (val & ~_Q_PENDING_MASK) | _Q_LOCKED_VAL; 171 val = atomic_cmpxchg_acquire(&lock->val, old, new); 172 173 if (val == old) 174 return 1; 175 } 176 return 0; 177 } 178 #endif /* _Q_PENDING_BITS == 8 */ 179 180 /* 181 * Lock and MCS node addresses hash table for fast lookup 182 * 183 * Hashing is done on a per-cacheline basis to minimize the need to access 184 * more than one cacheline. 185 * 186 * Dynamically allocate a hash table big enough to hold at least 4X the 187 * number of possible cpus in the system. Allocation is done on page 188 * granularity. So the minimum number of hash buckets should be at least 189 * 256 (64-bit) or 512 (32-bit) to fully utilize a 4k page. 190 * 191 * Since we should not be holding locks from NMI context (very rare indeed) the 192 * max load factor is 0.75, which is around the point where open addressing 193 * breaks down. 194 * 195 */ 196 struct pv_hash_entry { 197 struct qspinlock *lock; 198 struct pv_node *node; 199 }; 200 201 #define PV_HE_PER_LINE (SMP_CACHE_BYTES / sizeof(struct pv_hash_entry)) 202 #define PV_HE_MIN (PAGE_SIZE / sizeof(struct pv_hash_entry)) 203 204 static struct pv_hash_entry *pv_lock_hash; 205 static unsigned int pv_lock_hash_bits __read_mostly; 206 207 /* 208 * Allocate memory for the PV qspinlock hash buckets 209 * 210 * This function should be called from the paravirt spinlock initialization 211 * routine. 212 */ 213 void __init __pv_init_lock_hash(void) 214 { 215 int pv_hash_size = ALIGN(4 * num_possible_cpus(), PV_HE_PER_LINE); 216 217 if (pv_hash_size < PV_HE_MIN) 218 pv_hash_size = PV_HE_MIN; 219 220 /* 221 * Allocate space from bootmem which should be page-size aligned 222 * and hence cacheline aligned. 223 */ 224 pv_lock_hash = alloc_large_system_hash("PV qspinlock", 225 sizeof(struct pv_hash_entry), 226 pv_hash_size, 0, 227 HASH_EARLY | HASH_ZERO, 228 &pv_lock_hash_bits, NULL, 229 pv_hash_size, pv_hash_size); 230 } 231 232 #define for_each_hash_entry(he, offset, hash) \ 233 for (hash &= ~(PV_HE_PER_LINE - 1), he = &pv_lock_hash[hash], offset = 0; \ 234 offset < (1 << pv_lock_hash_bits); \ 235 offset++, he = &pv_lock_hash[(hash + offset) & ((1 << pv_lock_hash_bits) - 1)]) 236 237 static struct qspinlock **pv_hash(struct qspinlock *lock, struct pv_node *node) 238 { 239 unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits); 240 struct pv_hash_entry *he; 241 int hopcnt = 0; 242 243 for_each_hash_entry(he, offset, hash) { 244 hopcnt++; 245 if (!cmpxchg(&he->lock, NULL, lock)) { 246 WRITE_ONCE(he->node, node); 247 qstat_hop(hopcnt); 248 return &he->lock; 249 } 250 } 251 /* 252 * Hard assume there is a free entry for us. 253 * 254 * This is guaranteed by ensuring every blocked lock only ever consumes 255 * a single entry, and since we only have 4 nesting levels per CPU 256 * and allocated 4*nr_possible_cpus(), this must be so. 257 * 258 * The single entry is guaranteed by having the lock owner unhash 259 * before it releases. 260 */ 261 BUG(); 262 } 263 264 static struct pv_node *pv_unhash(struct qspinlock *lock) 265 { 266 unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits); 267 struct pv_hash_entry *he; 268 struct pv_node *node; 269 270 for_each_hash_entry(he, offset, hash) { 271 if (READ_ONCE(he->lock) == lock) { 272 node = READ_ONCE(he->node); 273 WRITE_ONCE(he->lock, NULL); 274 return node; 275 } 276 } 277 /* 278 * Hard assume we'll find an entry. 279 * 280 * This guarantees a limited lookup time and is itself guaranteed by 281 * having the lock owner do the unhash -- IFF the unlock sees the 282 * SLOW flag, there MUST be a hash entry. 283 */ 284 BUG(); 285 } 286 287 /* 288 * Return true if when it is time to check the previous node which is not 289 * in a running state. 290 */ 291 static inline bool 292 pv_wait_early(struct pv_node *prev, int loop) 293 { 294 if ((loop & PV_PREV_CHECK_MASK) != 0) 295 return false; 296 297 return READ_ONCE(prev->state) != vcpu_running || vcpu_is_preempted(prev->cpu); 298 } 299 300 /* 301 * Initialize the PV part of the mcs_spinlock node. 302 */ 303 static void pv_init_node(struct mcs_spinlock *node) 304 { 305 struct pv_node *pn = (struct pv_node *)node; 306 307 BUILD_BUG_ON(sizeof(struct pv_node) > 5*sizeof(struct mcs_spinlock)); 308 309 pn->cpu = smp_processor_id(); 310 pn->state = vcpu_running; 311 } 312 313 /* 314 * Wait for node->locked to become true, halt the vcpu after a short spin. 315 * pv_kick_node() is used to set _Q_SLOW_VAL and fill in hash table on its 316 * behalf. 317 */ 318 static void pv_wait_node(struct mcs_spinlock *node, struct mcs_spinlock *prev) 319 { 320 struct pv_node *pn = (struct pv_node *)node; 321 struct pv_node *pp = (struct pv_node *)prev; 322 int loop; 323 bool wait_early; 324 325 for (;;) { 326 for (wait_early = false, loop = SPIN_THRESHOLD; loop; loop--) { 327 if (READ_ONCE(node->locked)) 328 return; 329 if (pv_wait_early(pp, loop)) { 330 wait_early = true; 331 break; 332 } 333 cpu_relax(); 334 } 335 336 /* 337 * Order pn->state vs pn->locked thusly: 338 * 339 * [S] pn->state = vcpu_halted [S] next->locked = 1 340 * MB MB 341 * [L] pn->locked [RmW] pn->state = vcpu_hashed 342 * 343 * Matches the cmpxchg() from pv_kick_node(). 344 */ 345 smp_store_mb(pn->state, vcpu_halted); 346 347 if (!READ_ONCE(node->locked)) { 348 qstat_inc(qstat_pv_wait_node, true); 349 qstat_inc(qstat_pv_wait_early, wait_early); 350 pv_wait(&pn->state, vcpu_halted); 351 } 352 353 /* 354 * If pv_kick_node() changed us to vcpu_hashed, retain that 355 * value so that pv_wait_head_or_lock() knows to not also try 356 * to hash this lock. 357 */ 358 cmpxchg(&pn->state, vcpu_halted, vcpu_running); 359 360 /* 361 * If the locked flag is still not set after wakeup, it is a 362 * spurious wakeup and the vCPU should wait again. However, 363 * there is a pretty high overhead for CPU halting and kicking. 364 * So it is better to spin for a while in the hope that the 365 * MCS lock will be released soon. 366 */ 367 qstat_inc(qstat_pv_spurious_wakeup, !READ_ONCE(node->locked)); 368 } 369 370 /* 371 * By now our node->locked should be 1 and our caller will not actually 372 * spin-wait for it. We do however rely on our caller to do a 373 * load-acquire for us. 374 */ 375 } 376 377 /* 378 * Called after setting next->locked = 1 when we're the lock owner. 379 * 380 * Instead of waking the waiters stuck in pv_wait_node() advance their state 381 * such that they're waiting in pv_wait_head_or_lock(), this avoids a 382 * wake/sleep cycle. 383 */ 384 static void pv_kick_node(struct qspinlock *lock, struct mcs_spinlock *node) 385 { 386 struct pv_node *pn = (struct pv_node *)node; 387 struct __qspinlock *l = (void *)lock; 388 389 /* 390 * If the vCPU is indeed halted, advance its state to match that of 391 * pv_wait_node(). If OTOH this fails, the vCPU was running and will 392 * observe its next->locked value and advance itself. 393 * 394 * Matches with smp_store_mb() and cmpxchg() in pv_wait_node() 395 * 396 * The write to next->locked in arch_mcs_spin_unlock_contended() 397 * must be ordered before the read of pn->state in the cmpxchg() 398 * below for the code to work correctly. To guarantee full ordering 399 * irrespective of the success or failure of the cmpxchg(), 400 * a relaxed version with explicit barrier is used. The control 401 * dependency will order the reading of pn->state before any 402 * subsequent writes. 403 */ 404 smp_mb__before_atomic(); 405 if (cmpxchg_relaxed(&pn->state, vcpu_halted, vcpu_hashed) 406 != vcpu_halted) 407 return; 408 409 /* 410 * Put the lock into the hash table and set the _Q_SLOW_VAL. 411 * 412 * As this is the same vCPU that will check the _Q_SLOW_VAL value and 413 * the hash table later on at unlock time, no atomic instruction is 414 * needed. 415 */ 416 WRITE_ONCE(l->locked, _Q_SLOW_VAL); 417 (void)pv_hash(lock, pn); 418 } 419 420 /* 421 * Wait for l->locked to become clear and acquire the lock; 422 * halt the vcpu after a short spin. 423 * __pv_queued_spin_unlock() will wake us. 424 * 425 * The current value of the lock will be returned for additional processing. 426 */ 427 static u32 428 pv_wait_head_or_lock(struct qspinlock *lock, struct mcs_spinlock *node) 429 { 430 struct pv_node *pn = (struct pv_node *)node; 431 struct __qspinlock *l = (void *)lock; 432 struct qspinlock **lp = NULL; 433 int waitcnt = 0; 434 int loop; 435 436 /* 437 * If pv_kick_node() already advanced our state, we don't need to 438 * insert ourselves into the hash table anymore. 439 */ 440 if (READ_ONCE(pn->state) == vcpu_hashed) 441 lp = (struct qspinlock **)1; 442 443 /* 444 * Tracking # of slowpath locking operations 445 */ 446 qstat_inc(qstat_pv_lock_slowpath, true); 447 448 for (;; waitcnt++) { 449 /* 450 * Set correct vCPU state to be used by queue node wait-early 451 * mechanism. 452 */ 453 WRITE_ONCE(pn->state, vcpu_running); 454 455 /* 456 * Set the pending bit in the active lock spinning loop to 457 * disable lock stealing before attempting to acquire the lock. 458 */ 459 set_pending(lock); 460 for (loop = SPIN_THRESHOLD; loop; loop--) { 461 if (trylock_clear_pending(lock)) 462 goto gotlock; 463 cpu_relax(); 464 } 465 clear_pending(lock); 466 467 468 if (!lp) { /* ONCE */ 469 lp = pv_hash(lock, pn); 470 471 /* 472 * We must hash before setting _Q_SLOW_VAL, such that 473 * when we observe _Q_SLOW_VAL in __pv_queued_spin_unlock() 474 * we'll be sure to be able to observe our hash entry. 475 * 476 * [S] <hash> [Rmw] l->locked == _Q_SLOW_VAL 477 * MB RMB 478 * [RmW] l->locked = _Q_SLOW_VAL [L] <unhash> 479 * 480 * Matches the smp_rmb() in __pv_queued_spin_unlock(). 481 */ 482 if (xchg(&l->locked, _Q_SLOW_VAL) == 0) { 483 /* 484 * The lock was free and now we own the lock. 485 * Change the lock value back to _Q_LOCKED_VAL 486 * and unhash the table. 487 */ 488 WRITE_ONCE(l->locked, _Q_LOCKED_VAL); 489 WRITE_ONCE(*lp, NULL); 490 goto gotlock; 491 } 492 } 493 WRITE_ONCE(pn->state, vcpu_hashed); 494 qstat_inc(qstat_pv_wait_head, true); 495 qstat_inc(qstat_pv_wait_again, waitcnt); 496 pv_wait(&l->locked, _Q_SLOW_VAL); 497 498 /* 499 * Because of lock stealing, the queue head vCPU may not be 500 * able to acquire the lock before it has to wait again. 501 */ 502 } 503 504 /* 505 * The cmpxchg() or xchg() call before coming here provides the 506 * acquire semantics for locking. The dummy ORing of _Q_LOCKED_VAL 507 * here is to indicate to the compiler that the value will always 508 * be nozero to enable better code optimization. 509 */ 510 gotlock: 511 return (u32)(atomic_read(&lock->val) | _Q_LOCKED_VAL); 512 } 513 514 /* 515 * PV versions of the unlock fastpath and slowpath functions to be used 516 * instead of queued_spin_unlock(). 517 */ 518 __visible void 519 __pv_queued_spin_unlock_slowpath(struct qspinlock *lock, u8 locked) 520 { 521 struct __qspinlock *l = (void *)lock; 522 struct pv_node *node; 523 524 if (unlikely(locked != _Q_SLOW_VAL)) { 525 WARN(!debug_locks_silent, 526 "pvqspinlock: lock 0x%lx has corrupted value 0x%x!\n", 527 (unsigned long)lock, atomic_read(&lock->val)); 528 return; 529 } 530 531 /* 532 * A failed cmpxchg doesn't provide any memory-ordering guarantees, 533 * so we need a barrier to order the read of the node data in 534 * pv_unhash *after* we've read the lock being _Q_SLOW_VAL. 535 * 536 * Matches the cmpxchg() in pv_wait_head_or_lock() setting _Q_SLOW_VAL. 537 */ 538 smp_rmb(); 539 540 /* 541 * Since the above failed to release, this must be the SLOW path. 542 * Therefore start by looking up the blocked node and unhashing it. 543 */ 544 node = pv_unhash(lock); 545 546 /* 547 * Now that we have a reference to the (likely) blocked pv_node, 548 * release the lock. 549 */ 550 smp_store_release(&l->locked, 0); 551 552 /* 553 * At this point the memory pointed at by lock can be freed/reused, 554 * however we can still use the pv_node to kick the CPU. 555 * The other vCPU may not really be halted, but kicking an active 556 * vCPU is harmless other than the additional latency in completing 557 * the unlock. 558 */ 559 qstat_inc(qstat_pv_kick_unlock, true); 560 pv_kick(node->cpu); 561 } 562 563 /* 564 * Include the architecture specific callee-save thunk of the 565 * __pv_queued_spin_unlock(). This thunk is put together with 566 * __pv_queued_spin_unlock() to make the callee-save thunk and the real unlock 567 * function close to each other sharing consecutive instruction cachelines. 568 * Alternatively, architecture specific version of __pv_queued_spin_unlock() 569 * can be defined. 570 */ 571 #include <asm/qspinlock_paravirt.h> 572 573 #ifndef __pv_queued_spin_unlock 574 __visible void __pv_queued_spin_unlock(struct qspinlock *lock) 575 { 576 struct __qspinlock *l = (void *)lock; 577 u8 locked; 578 579 /* 580 * We must not unlock if SLOW, because in that case we must first 581 * unhash. Otherwise it would be possible to have multiple @lock 582 * entries, which would be BAD. 583 */ 584 locked = cmpxchg_release(&l->locked, _Q_LOCKED_VAL, 0); 585 if (likely(locked == _Q_LOCKED_VAL)) 586 return; 587 588 __pv_queued_spin_unlock_slowpath(lock, locked); 589 } 590 #endif /* __pv_queued_spin_unlock */ 591