1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Queued spinlock 4 * 5 * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P. 6 * (C) Copyright 2013-2014,2018 Red Hat, Inc. 7 * (C) Copyright 2015 Intel Corp. 8 * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP 9 * 10 * Authors: Waiman Long <longman@redhat.com> 11 * Peter Zijlstra <peterz@infradead.org> 12 */ 13 14 #ifndef _GEN_PV_LOCK_SLOWPATH 15 16 #include <linux/smp.h> 17 #include <linux/bug.h> 18 #include <linux/cpumask.h> 19 #include <linux/percpu.h> 20 #include <linux/hardirq.h> 21 #include <linux/mutex.h> 22 #include <linux/prefetch.h> 23 #include <asm/byteorder.h> 24 #include <asm/qspinlock.h> 25 26 /* 27 * Include queued spinlock statistics code 28 */ 29 #include "qspinlock_stat.h" 30 31 /* 32 * The basic principle of a queue-based spinlock can best be understood 33 * by studying a classic queue-based spinlock implementation called the 34 * MCS lock. The paper below provides a good description for this kind 35 * of lock. 36 * 37 * http://www.cise.ufl.edu/tr/DOC/REP-1992-71.pdf 38 * 39 * This queued spinlock implementation is based on the MCS lock, however to make 40 * it fit the 4 bytes we assume spinlock_t to be, and preserve its existing 41 * API, we must modify it somehow. 42 * 43 * In particular; where the traditional MCS lock consists of a tail pointer 44 * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to 45 * unlock the next pending (next->locked), we compress both these: {tail, 46 * next->locked} into a single u32 value. 47 * 48 * Since a spinlock disables recursion of its own context and there is a limit 49 * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there 50 * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now 51 * we can encode the tail by combining the 2-bit nesting level with the cpu 52 * number. With one byte for the lock value and 3 bytes for the tail, only a 53 * 32-bit word is now needed. Even though we only need 1 bit for the lock, 54 * we extend it to a full byte to achieve better performance for architectures 55 * that support atomic byte write. 56 * 57 * We also change the first spinner to spin on the lock bit instead of its 58 * node; whereby avoiding the need to carry a node from lock to unlock, and 59 * preserving existing lock API. This also makes the unlock code simpler and 60 * faster. 61 * 62 * N.B. The current implementation only supports architectures that allow 63 * atomic operations on smaller 8-bit and 16-bit data types. 64 * 65 */ 66 67 #include "mcs_spinlock.h" 68 #define MAX_NODES 4 69 70 /* 71 * On 64-bit architectures, the mcs_spinlock structure will be 16 bytes in 72 * size and four of them will fit nicely in one 64-byte cacheline. For 73 * pvqspinlock, however, we need more space for extra data. To accommodate 74 * that, we insert two more long words to pad it up to 32 bytes. IOW, only 75 * two of them can fit in a cacheline in this case. That is OK as it is rare 76 * to have more than 2 levels of slowpath nesting in actual use. We don't 77 * want to penalize pvqspinlocks to optimize for a rare case in native 78 * qspinlocks. 79 */ 80 struct qnode { 81 struct mcs_spinlock mcs; 82 #ifdef CONFIG_PARAVIRT_SPINLOCKS 83 long reserved[2]; 84 #endif 85 }; 86 87 /* 88 * The pending bit spinning loop count. 89 * This heuristic is used to limit the number of lockword accesses 90 * made by atomic_cond_read_relaxed when waiting for the lock to 91 * transition out of the "== _Q_PENDING_VAL" state. We don't spin 92 * indefinitely because there's no guarantee that we'll make forward 93 * progress. 94 */ 95 #ifndef _Q_PENDING_LOOPS 96 #define _Q_PENDING_LOOPS 1 97 #endif 98 99 /* 100 * Per-CPU queue node structures; we can never have more than 4 nested 101 * contexts: task, softirq, hardirq, nmi. 102 * 103 * Exactly fits one 64-byte cacheline on a 64-bit architecture. 104 * 105 * PV doubles the storage and uses the second cacheline for PV state. 106 */ 107 static DEFINE_PER_CPU_ALIGNED(struct qnode, qnodes[MAX_NODES]); 108 109 /* 110 * We must be able to distinguish between no-tail and the tail at 0:0, 111 * therefore increment the cpu number by one. 112 */ 113 114 static inline __pure u32 encode_tail(int cpu, int idx) 115 { 116 u32 tail; 117 118 tail = (cpu + 1) << _Q_TAIL_CPU_OFFSET; 119 tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */ 120 121 return tail; 122 } 123 124 static inline __pure struct mcs_spinlock *decode_tail(u32 tail) 125 { 126 int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1; 127 int idx = (tail & _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET; 128 129 return per_cpu_ptr(&qnodes[idx].mcs, cpu); 130 } 131 132 static inline __pure 133 struct mcs_spinlock *grab_mcs_node(struct mcs_spinlock *base, int idx) 134 { 135 return &((struct qnode *)base + idx)->mcs; 136 } 137 138 #define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK) 139 140 #if _Q_PENDING_BITS == 8 141 /** 142 * clear_pending - clear the pending bit. 143 * @lock: Pointer to queued spinlock structure 144 * 145 * *,1,* -> *,0,* 146 */ 147 static __always_inline void clear_pending(struct qspinlock *lock) 148 { 149 WRITE_ONCE(lock->pending, 0); 150 } 151 152 /** 153 * clear_pending_set_locked - take ownership and clear the pending bit. 154 * @lock: Pointer to queued spinlock structure 155 * 156 * *,1,0 -> *,0,1 157 * 158 * Lock stealing is not allowed if this function is used. 159 */ 160 static __always_inline void clear_pending_set_locked(struct qspinlock *lock) 161 { 162 WRITE_ONCE(lock->locked_pending, _Q_LOCKED_VAL); 163 } 164 165 /* 166 * xchg_tail - Put in the new queue tail code word & retrieve previous one 167 * @lock : Pointer to queued spinlock structure 168 * @tail : The new queue tail code word 169 * Return: The previous queue tail code word 170 * 171 * xchg(lock, tail), which heads an address dependency 172 * 173 * p,*,* -> n,*,* ; prev = xchg(lock, node) 174 */ 175 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail) 176 { 177 /* 178 * We can use relaxed semantics since the caller ensures that the 179 * MCS node is properly initialized before updating the tail. 180 */ 181 return (u32)xchg_relaxed(&lock->tail, 182 tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET; 183 } 184 185 #else /* _Q_PENDING_BITS == 8 */ 186 187 /** 188 * clear_pending - clear the pending bit. 189 * @lock: Pointer to queued spinlock structure 190 * 191 * *,1,* -> *,0,* 192 */ 193 static __always_inline void clear_pending(struct qspinlock *lock) 194 { 195 atomic_andnot(_Q_PENDING_VAL, &lock->val); 196 } 197 198 /** 199 * clear_pending_set_locked - take ownership and clear the pending bit. 200 * @lock: Pointer to queued spinlock structure 201 * 202 * *,1,0 -> *,0,1 203 */ 204 static __always_inline void clear_pending_set_locked(struct qspinlock *lock) 205 { 206 atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val); 207 } 208 209 /** 210 * xchg_tail - Put in the new queue tail code word & retrieve previous one 211 * @lock : Pointer to queued spinlock structure 212 * @tail : The new queue tail code word 213 * Return: The previous queue tail code word 214 * 215 * xchg(lock, tail) 216 * 217 * p,*,* -> n,*,* ; prev = xchg(lock, node) 218 */ 219 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail) 220 { 221 u32 old, new, val = atomic_read(&lock->val); 222 223 for (;;) { 224 new = (val & _Q_LOCKED_PENDING_MASK) | tail; 225 /* 226 * We can use relaxed semantics since the caller ensures that 227 * the MCS node is properly initialized before updating the 228 * tail. 229 */ 230 old = atomic_cmpxchg_relaxed(&lock->val, val, new); 231 if (old == val) 232 break; 233 234 val = old; 235 } 236 return old; 237 } 238 #endif /* _Q_PENDING_BITS == 8 */ 239 240 /** 241 * queued_fetch_set_pending_acquire - fetch the whole lock value and set pending 242 * @lock : Pointer to queued spinlock structure 243 * Return: The previous lock value 244 * 245 * *,*,* -> *,1,* 246 */ 247 #ifndef queued_fetch_set_pending_acquire 248 static __always_inline u32 queued_fetch_set_pending_acquire(struct qspinlock *lock) 249 { 250 return atomic_fetch_or_acquire(_Q_PENDING_VAL, &lock->val); 251 } 252 #endif 253 254 /** 255 * set_locked - Set the lock bit and own the lock 256 * @lock: Pointer to queued spinlock structure 257 * 258 * *,*,0 -> *,0,1 259 */ 260 static __always_inline void set_locked(struct qspinlock *lock) 261 { 262 WRITE_ONCE(lock->locked, _Q_LOCKED_VAL); 263 } 264 265 266 /* 267 * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for 268 * all the PV callbacks. 269 */ 270 271 static __always_inline void __pv_init_node(struct mcs_spinlock *node) { } 272 static __always_inline void __pv_wait_node(struct mcs_spinlock *node, 273 struct mcs_spinlock *prev) { } 274 static __always_inline void __pv_kick_node(struct qspinlock *lock, 275 struct mcs_spinlock *node) { } 276 static __always_inline u32 __pv_wait_head_or_lock(struct qspinlock *lock, 277 struct mcs_spinlock *node) 278 { return 0; } 279 280 #define pv_enabled() false 281 282 #define pv_init_node __pv_init_node 283 #define pv_wait_node __pv_wait_node 284 #define pv_kick_node __pv_kick_node 285 #define pv_wait_head_or_lock __pv_wait_head_or_lock 286 287 #ifdef CONFIG_PARAVIRT_SPINLOCKS 288 #define queued_spin_lock_slowpath native_queued_spin_lock_slowpath 289 #endif 290 291 #endif /* _GEN_PV_LOCK_SLOWPATH */ 292 293 /** 294 * queued_spin_lock_slowpath - acquire the queued spinlock 295 * @lock: Pointer to queued spinlock structure 296 * @val: Current value of the queued spinlock 32-bit word 297 * 298 * (queue tail, pending bit, lock value) 299 * 300 * fast : slow : unlock 301 * : : 302 * uncontended (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0) 303 * : | ^--------.------. / : 304 * : v \ \ | : 305 * pending : (0,1,1) +--> (0,1,0) \ | : 306 * : | ^--' | | : 307 * : v | | : 308 * uncontended : (n,x,y) +--> (n,0,0) --' | : 309 * queue : | ^--' | : 310 * : v | : 311 * contended : (*,x,y) +--> (*,0,0) ---> (*,0,1) -' : 312 * queue : ^--' : 313 */ 314 void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val) 315 { 316 struct mcs_spinlock *prev, *next, *node; 317 u32 old, tail; 318 int idx; 319 320 BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS)); 321 322 if (pv_enabled()) 323 goto pv_queue; 324 325 if (virt_spin_lock(lock)) 326 return; 327 328 /* 329 * Wait for in-progress pending->locked hand-overs with a bounded 330 * number of spins so that we guarantee forward progress. 331 * 332 * 0,1,0 -> 0,0,1 333 */ 334 if (val == _Q_PENDING_VAL) { 335 int cnt = _Q_PENDING_LOOPS; 336 val = atomic_cond_read_relaxed(&lock->val, 337 (VAL != _Q_PENDING_VAL) || !cnt--); 338 } 339 340 /* 341 * If we observe any contention; queue. 342 */ 343 if (val & ~_Q_LOCKED_MASK) 344 goto queue; 345 346 /* 347 * trylock || pending 348 * 349 * 0,0,* -> 0,1,* -> 0,0,1 pending, trylock 350 */ 351 val = queued_fetch_set_pending_acquire(lock); 352 353 /* 354 * If we observe contention, there is a concurrent locker. 355 * 356 * Undo and queue; our setting of PENDING might have made the 357 * n,0,0 -> 0,0,0 transition fail and it will now be waiting 358 * on @next to become !NULL. 359 */ 360 if (unlikely(val & ~_Q_LOCKED_MASK)) { 361 362 /* Undo PENDING if we set it. */ 363 if (!(val & _Q_PENDING_MASK)) 364 clear_pending(lock); 365 366 goto queue; 367 } 368 369 /* 370 * We're pending, wait for the owner to go away. 371 * 372 * 0,1,1 -> 0,1,0 373 * 374 * this wait loop must be a load-acquire such that we match the 375 * store-release that clears the locked bit and create lock 376 * sequentiality; this is because not all 377 * clear_pending_set_locked() implementations imply full 378 * barriers. 379 */ 380 if (val & _Q_LOCKED_MASK) 381 atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_MASK)); 382 383 /* 384 * take ownership and clear the pending bit. 385 * 386 * 0,1,0 -> 0,0,1 387 */ 388 clear_pending_set_locked(lock); 389 lockevent_inc(lock_pending); 390 return; 391 392 /* 393 * End of pending bit optimistic spinning and beginning of MCS 394 * queuing. 395 */ 396 queue: 397 lockevent_inc(lock_slowpath); 398 pv_queue: 399 node = this_cpu_ptr(&qnodes[0].mcs); 400 idx = node->count++; 401 tail = encode_tail(smp_processor_id(), idx); 402 403 /* 404 * 4 nodes are allocated based on the assumption that there will 405 * not be nested NMIs taking spinlocks. That may not be true in 406 * some architectures even though the chance of needing more than 407 * 4 nodes will still be extremely unlikely. When that happens, 408 * we fall back to spinning on the lock directly without using 409 * any MCS node. This is not the most elegant solution, but is 410 * simple enough. 411 */ 412 if (unlikely(idx >= MAX_NODES)) { 413 lockevent_inc(lock_no_node); 414 while (!queued_spin_trylock(lock)) 415 cpu_relax(); 416 goto release; 417 } 418 419 node = grab_mcs_node(node, idx); 420 421 /* 422 * Keep counts of non-zero index values: 423 */ 424 lockevent_cond_inc(lock_use_node2 + idx - 1, idx); 425 426 /* 427 * Ensure that we increment the head node->count before initialising 428 * the actual node. If the compiler is kind enough to reorder these 429 * stores, then an IRQ could overwrite our assignments. 430 */ 431 barrier(); 432 433 node->locked = 0; 434 node->next = NULL; 435 pv_init_node(node); 436 437 /* 438 * We touched a (possibly) cold cacheline in the per-cpu queue node; 439 * attempt the trylock once more in the hope someone let go while we 440 * weren't watching. 441 */ 442 if (queued_spin_trylock(lock)) 443 goto release; 444 445 /* 446 * Ensure that the initialisation of @node is complete before we 447 * publish the updated tail via xchg_tail() and potentially link 448 * @node into the waitqueue via WRITE_ONCE(prev->next, node) below. 449 */ 450 smp_wmb(); 451 452 /* 453 * Publish the updated tail. 454 * We have already touched the queueing cacheline; don't bother with 455 * pending stuff. 456 * 457 * p,*,* -> n,*,* 458 */ 459 old = xchg_tail(lock, tail); 460 next = NULL; 461 462 /* 463 * if there was a previous node; link it and wait until reaching the 464 * head of the waitqueue. 465 */ 466 if (old & _Q_TAIL_MASK) { 467 prev = decode_tail(old); 468 469 /* Link @node into the waitqueue. */ 470 WRITE_ONCE(prev->next, node); 471 472 pv_wait_node(node, prev); 473 arch_mcs_spin_lock_contended(&node->locked); 474 475 /* 476 * While waiting for the MCS lock, the next pointer may have 477 * been set by another lock waiter. We optimistically load 478 * the next pointer & prefetch the cacheline for writing 479 * to reduce latency in the upcoming MCS unlock operation. 480 */ 481 next = READ_ONCE(node->next); 482 if (next) 483 prefetchw(next); 484 } 485 486 /* 487 * we're at the head of the waitqueue, wait for the owner & pending to 488 * go away. 489 * 490 * *,x,y -> *,0,0 491 * 492 * this wait loop must use a load-acquire such that we match the 493 * store-release that clears the locked bit and create lock 494 * sequentiality; this is because the set_locked() function below 495 * does not imply a full barrier. 496 * 497 * The PV pv_wait_head_or_lock function, if active, will acquire 498 * the lock and return a non-zero value. So we have to skip the 499 * atomic_cond_read_acquire() call. As the next PV queue head hasn't 500 * been designated yet, there is no way for the locked value to become 501 * _Q_SLOW_VAL. So both the set_locked() and the 502 * atomic_cmpxchg_relaxed() calls will be safe. 503 * 504 * If PV isn't active, 0 will be returned instead. 505 * 506 */ 507 if ((val = pv_wait_head_or_lock(lock, node))) 508 goto locked; 509 510 val = atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_PENDING_MASK)); 511 512 locked: 513 /* 514 * claim the lock: 515 * 516 * n,0,0 -> 0,0,1 : lock, uncontended 517 * *,*,0 -> *,*,1 : lock, contended 518 * 519 * If the queue head is the only one in the queue (lock value == tail) 520 * and nobody is pending, clear the tail code and grab the lock. 521 * Otherwise, we only need to grab the lock. 522 */ 523 524 /* 525 * In the PV case we might already have _Q_LOCKED_VAL set, because 526 * of lock stealing; therefore we must also allow: 527 * 528 * n,0,1 -> 0,0,1 529 * 530 * Note: at this point: (val & _Q_PENDING_MASK) == 0, because of the 531 * above wait condition, therefore any concurrent setting of 532 * PENDING will make the uncontended transition fail. 533 */ 534 if ((val & _Q_TAIL_MASK) == tail) { 535 if (atomic_try_cmpxchg_relaxed(&lock->val, &val, _Q_LOCKED_VAL)) 536 goto release; /* No contention */ 537 } 538 539 /* 540 * Either somebody is queued behind us or _Q_PENDING_VAL got set 541 * which will then detect the remaining tail and queue behind us 542 * ensuring we'll see a @next. 543 */ 544 set_locked(lock); 545 546 /* 547 * contended path; wait for next if not observed yet, release. 548 */ 549 if (!next) 550 next = smp_cond_load_relaxed(&node->next, (VAL)); 551 552 arch_mcs_spin_unlock_contended(&next->locked); 553 pv_kick_node(lock, next); 554 555 release: 556 /* 557 * release the node 558 */ 559 __this_cpu_dec(qnodes[0].mcs.count); 560 } 561 EXPORT_SYMBOL(queued_spin_lock_slowpath); 562 563 /* 564 * Generate the paravirt code for queued_spin_unlock_slowpath(). 565 */ 566 #if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS) 567 #define _GEN_PV_LOCK_SLOWPATH 568 569 #undef pv_enabled 570 #define pv_enabled() true 571 572 #undef pv_init_node 573 #undef pv_wait_node 574 #undef pv_kick_node 575 #undef pv_wait_head_or_lock 576 577 #undef queued_spin_lock_slowpath 578 #define queued_spin_lock_slowpath __pv_queued_spin_lock_slowpath 579 580 #include "qspinlock_paravirt.h" 581 #include "qspinlock.c" 582 583 #endif 584