1 /* 2 * Queued spinlock 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P. 15 * (C) Copyright 2013-2014,2018 Red Hat, Inc. 16 * (C) Copyright 2015 Intel Corp. 17 * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP 18 * 19 * Authors: Waiman Long <longman@redhat.com> 20 * Peter Zijlstra <peterz@infradead.org> 21 */ 22 23 #ifndef _GEN_PV_LOCK_SLOWPATH 24 25 #include <linux/smp.h> 26 #include <linux/bug.h> 27 #include <linux/cpumask.h> 28 #include <linux/percpu.h> 29 #include <linux/hardirq.h> 30 #include <linux/mutex.h> 31 #include <linux/prefetch.h> 32 #include <asm/byteorder.h> 33 #include <asm/qspinlock.h> 34 35 /* 36 * Include queued spinlock statistics code 37 */ 38 #include "qspinlock_stat.h" 39 40 /* 41 * The basic principle of a queue-based spinlock can best be understood 42 * by studying a classic queue-based spinlock implementation called the 43 * MCS lock. The paper below provides a good description for this kind 44 * of lock. 45 * 46 * http://www.cise.ufl.edu/tr/DOC/REP-1992-71.pdf 47 * 48 * This queued spinlock implementation is based on the MCS lock, however to make 49 * it fit the 4 bytes we assume spinlock_t to be, and preserve its existing 50 * API, we must modify it somehow. 51 * 52 * In particular; where the traditional MCS lock consists of a tail pointer 53 * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to 54 * unlock the next pending (next->locked), we compress both these: {tail, 55 * next->locked} into a single u32 value. 56 * 57 * Since a spinlock disables recursion of its own context and there is a limit 58 * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there 59 * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now 60 * we can encode the tail by combining the 2-bit nesting level with the cpu 61 * number. With one byte for the lock value and 3 bytes for the tail, only a 62 * 32-bit word is now needed. Even though we only need 1 bit for the lock, 63 * we extend it to a full byte to achieve better performance for architectures 64 * that support atomic byte write. 65 * 66 * We also change the first spinner to spin on the lock bit instead of its 67 * node; whereby avoiding the need to carry a node from lock to unlock, and 68 * preserving existing lock API. This also makes the unlock code simpler and 69 * faster. 70 * 71 * N.B. The current implementation only supports architectures that allow 72 * atomic operations on smaller 8-bit and 16-bit data types. 73 * 74 */ 75 76 #include "mcs_spinlock.h" 77 #define MAX_NODES 4 78 79 /* 80 * On 64-bit architectures, the mcs_spinlock structure will be 16 bytes in 81 * size and four of them will fit nicely in one 64-byte cacheline. For 82 * pvqspinlock, however, we need more space for extra data. To accommodate 83 * that, we insert two more long words to pad it up to 32 bytes. IOW, only 84 * two of them can fit in a cacheline in this case. That is OK as it is rare 85 * to have more than 2 levels of slowpath nesting in actual use. We don't 86 * want to penalize pvqspinlocks to optimize for a rare case in native 87 * qspinlocks. 88 */ 89 struct qnode { 90 struct mcs_spinlock mcs; 91 #ifdef CONFIG_PARAVIRT_SPINLOCKS 92 long reserved[2]; 93 #endif 94 }; 95 96 /* 97 * The pending bit spinning loop count. 98 * This heuristic is used to limit the number of lockword accesses 99 * made by atomic_cond_read_relaxed when waiting for the lock to 100 * transition out of the "== _Q_PENDING_VAL" state. We don't spin 101 * indefinitely because there's no guarantee that we'll make forward 102 * progress. 103 */ 104 #ifndef _Q_PENDING_LOOPS 105 #define _Q_PENDING_LOOPS 1 106 #endif 107 108 /* 109 * Per-CPU queue node structures; we can never have more than 4 nested 110 * contexts: task, softirq, hardirq, nmi. 111 * 112 * Exactly fits one 64-byte cacheline on a 64-bit architecture. 113 * 114 * PV doubles the storage and uses the second cacheline for PV state. 115 */ 116 static DEFINE_PER_CPU_ALIGNED(struct qnode, qnodes[MAX_NODES]); 117 118 /* 119 * We must be able to distinguish between no-tail and the tail at 0:0, 120 * therefore increment the cpu number by one. 121 */ 122 123 static inline __pure u32 encode_tail(int cpu, int idx) 124 { 125 u32 tail; 126 127 #ifdef CONFIG_DEBUG_SPINLOCK 128 BUG_ON(idx > 3); 129 #endif 130 tail = (cpu + 1) << _Q_TAIL_CPU_OFFSET; 131 tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */ 132 133 return tail; 134 } 135 136 static inline __pure struct mcs_spinlock *decode_tail(u32 tail) 137 { 138 int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1; 139 int idx = (tail & _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET; 140 141 return per_cpu_ptr(&qnodes[idx].mcs, cpu); 142 } 143 144 static inline __pure 145 struct mcs_spinlock *grab_mcs_node(struct mcs_spinlock *base, int idx) 146 { 147 return &((struct qnode *)base + idx)->mcs; 148 } 149 150 #define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK) 151 152 #if _Q_PENDING_BITS == 8 153 /** 154 * clear_pending - clear the pending bit. 155 * @lock: Pointer to queued spinlock structure 156 * 157 * *,1,* -> *,0,* 158 */ 159 static __always_inline void clear_pending(struct qspinlock *lock) 160 { 161 WRITE_ONCE(lock->pending, 0); 162 } 163 164 /** 165 * clear_pending_set_locked - take ownership and clear the pending bit. 166 * @lock: Pointer to queued spinlock structure 167 * 168 * *,1,0 -> *,0,1 169 * 170 * Lock stealing is not allowed if this function is used. 171 */ 172 static __always_inline void clear_pending_set_locked(struct qspinlock *lock) 173 { 174 WRITE_ONCE(lock->locked_pending, _Q_LOCKED_VAL); 175 } 176 177 /* 178 * xchg_tail - Put in the new queue tail code word & retrieve previous one 179 * @lock : Pointer to queued spinlock structure 180 * @tail : The new queue tail code word 181 * Return: The previous queue tail code word 182 * 183 * xchg(lock, tail), which heads an address dependency 184 * 185 * p,*,* -> n,*,* ; prev = xchg(lock, node) 186 */ 187 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail) 188 { 189 /* 190 * We can use relaxed semantics since the caller ensures that the 191 * MCS node is properly initialized before updating the tail. 192 */ 193 return (u32)xchg_relaxed(&lock->tail, 194 tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET; 195 } 196 197 #else /* _Q_PENDING_BITS == 8 */ 198 199 /** 200 * clear_pending - clear the pending bit. 201 * @lock: Pointer to queued spinlock structure 202 * 203 * *,1,* -> *,0,* 204 */ 205 static __always_inline void clear_pending(struct qspinlock *lock) 206 { 207 atomic_andnot(_Q_PENDING_VAL, &lock->val); 208 } 209 210 /** 211 * clear_pending_set_locked - take ownership and clear the pending bit. 212 * @lock: Pointer to queued spinlock structure 213 * 214 * *,1,0 -> *,0,1 215 */ 216 static __always_inline void clear_pending_set_locked(struct qspinlock *lock) 217 { 218 atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val); 219 } 220 221 /** 222 * xchg_tail - Put in the new queue tail code word & retrieve previous one 223 * @lock : Pointer to queued spinlock structure 224 * @tail : The new queue tail code word 225 * Return: The previous queue tail code word 226 * 227 * xchg(lock, tail) 228 * 229 * p,*,* -> n,*,* ; prev = xchg(lock, node) 230 */ 231 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail) 232 { 233 u32 old, new, val = atomic_read(&lock->val); 234 235 for (;;) { 236 new = (val & _Q_LOCKED_PENDING_MASK) | tail; 237 /* 238 * We can use relaxed semantics since the caller ensures that 239 * the MCS node is properly initialized before updating the 240 * tail. 241 */ 242 old = atomic_cmpxchg_relaxed(&lock->val, val, new); 243 if (old == val) 244 break; 245 246 val = old; 247 } 248 return old; 249 } 250 #endif /* _Q_PENDING_BITS == 8 */ 251 252 /** 253 * queued_fetch_set_pending_acquire - fetch the whole lock value and set pending 254 * @lock : Pointer to queued spinlock structure 255 * Return: The previous lock value 256 * 257 * *,*,* -> *,1,* 258 */ 259 #ifndef queued_fetch_set_pending_acquire 260 static __always_inline u32 queued_fetch_set_pending_acquire(struct qspinlock *lock) 261 { 262 return atomic_fetch_or_acquire(_Q_PENDING_VAL, &lock->val); 263 } 264 #endif 265 266 /** 267 * set_locked - Set the lock bit and own the lock 268 * @lock: Pointer to queued spinlock structure 269 * 270 * *,*,0 -> *,0,1 271 */ 272 static __always_inline void set_locked(struct qspinlock *lock) 273 { 274 WRITE_ONCE(lock->locked, _Q_LOCKED_VAL); 275 } 276 277 278 /* 279 * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for 280 * all the PV callbacks. 281 */ 282 283 static __always_inline void __pv_init_node(struct mcs_spinlock *node) { } 284 static __always_inline void __pv_wait_node(struct mcs_spinlock *node, 285 struct mcs_spinlock *prev) { } 286 static __always_inline void __pv_kick_node(struct qspinlock *lock, 287 struct mcs_spinlock *node) { } 288 static __always_inline u32 __pv_wait_head_or_lock(struct qspinlock *lock, 289 struct mcs_spinlock *node) 290 { return 0; } 291 292 #define pv_enabled() false 293 294 #define pv_init_node __pv_init_node 295 #define pv_wait_node __pv_wait_node 296 #define pv_kick_node __pv_kick_node 297 #define pv_wait_head_or_lock __pv_wait_head_or_lock 298 299 #ifdef CONFIG_PARAVIRT_SPINLOCKS 300 #define queued_spin_lock_slowpath native_queued_spin_lock_slowpath 301 #endif 302 303 #endif /* _GEN_PV_LOCK_SLOWPATH */ 304 305 /** 306 * queued_spin_lock_slowpath - acquire the queued spinlock 307 * @lock: Pointer to queued spinlock structure 308 * @val: Current value of the queued spinlock 32-bit word 309 * 310 * (queue tail, pending bit, lock value) 311 * 312 * fast : slow : unlock 313 * : : 314 * uncontended (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0) 315 * : | ^--------.------. / : 316 * : v \ \ | : 317 * pending : (0,1,1) +--> (0,1,0) \ | : 318 * : | ^--' | | : 319 * : v | | : 320 * uncontended : (n,x,y) +--> (n,0,0) --' | : 321 * queue : | ^--' | : 322 * : v | : 323 * contended : (*,x,y) +--> (*,0,0) ---> (*,0,1) -' : 324 * queue : ^--' : 325 */ 326 void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val) 327 { 328 struct mcs_spinlock *prev, *next, *node; 329 u32 old, tail; 330 int idx; 331 332 BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS)); 333 334 if (pv_enabled()) 335 goto pv_queue; 336 337 if (virt_spin_lock(lock)) 338 return; 339 340 /* 341 * Wait for in-progress pending->locked hand-overs with a bounded 342 * number of spins so that we guarantee forward progress. 343 * 344 * 0,1,0 -> 0,0,1 345 */ 346 if (val == _Q_PENDING_VAL) { 347 int cnt = _Q_PENDING_LOOPS; 348 val = atomic_cond_read_relaxed(&lock->val, 349 (VAL != _Q_PENDING_VAL) || !cnt--); 350 } 351 352 /* 353 * If we observe any contention; queue. 354 */ 355 if (val & ~_Q_LOCKED_MASK) 356 goto queue; 357 358 /* 359 * trylock || pending 360 * 361 * 0,0,* -> 0,1,* -> 0,0,1 pending, trylock 362 */ 363 val = queued_fetch_set_pending_acquire(lock); 364 365 /* 366 * If we observe contention, there is a concurrent locker. 367 * 368 * Undo and queue; our setting of PENDING might have made the 369 * n,0,0 -> 0,0,0 transition fail and it will now be waiting 370 * on @next to become !NULL. 371 */ 372 if (unlikely(val & ~_Q_LOCKED_MASK)) { 373 374 /* Undo PENDING if we set it. */ 375 if (!(val & _Q_PENDING_MASK)) 376 clear_pending(lock); 377 378 goto queue; 379 } 380 381 /* 382 * We're pending, wait for the owner to go away. 383 * 384 * 0,1,1 -> 0,1,0 385 * 386 * this wait loop must be a load-acquire such that we match the 387 * store-release that clears the locked bit and create lock 388 * sequentiality; this is because not all 389 * clear_pending_set_locked() implementations imply full 390 * barriers. 391 */ 392 if (val & _Q_LOCKED_MASK) 393 atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_MASK)); 394 395 /* 396 * take ownership and clear the pending bit. 397 * 398 * 0,1,0 -> 0,0,1 399 */ 400 clear_pending_set_locked(lock); 401 qstat_inc(qstat_lock_pending, true); 402 return; 403 404 /* 405 * End of pending bit optimistic spinning and beginning of MCS 406 * queuing. 407 */ 408 queue: 409 qstat_inc(qstat_lock_slowpath, true); 410 pv_queue: 411 node = this_cpu_ptr(&qnodes[0].mcs); 412 idx = node->count++; 413 tail = encode_tail(smp_processor_id(), idx); 414 415 node = grab_mcs_node(node, idx); 416 417 /* 418 * Keep counts of non-zero index values: 419 */ 420 qstat_inc(qstat_lock_idx1 + idx - 1, idx); 421 422 /* 423 * Ensure that we increment the head node->count before initialising 424 * the actual node. If the compiler is kind enough to reorder these 425 * stores, then an IRQ could overwrite our assignments. 426 */ 427 barrier(); 428 429 node->locked = 0; 430 node->next = NULL; 431 pv_init_node(node); 432 433 /* 434 * We touched a (possibly) cold cacheline in the per-cpu queue node; 435 * attempt the trylock once more in the hope someone let go while we 436 * weren't watching. 437 */ 438 if (queued_spin_trylock(lock)) 439 goto release; 440 441 /* 442 * Ensure that the initialisation of @node is complete before we 443 * publish the updated tail via xchg_tail() and potentially link 444 * @node into the waitqueue via WRITE_ONCE(prev->next, node) below. 445 */ 446 smp_wmb(); 447 448 /* 449 * Publish the updated tail. 450 * We have already touched the queueing cacheline; don't bother with 451 * pending stuff. 452 * 453 * p,*,* -> n,*,* 454 */ 455 old = xchg_tail(lock, tail); 456 next = NULL; 457 458 /* 459 * if there was a previous node; link it and wait until reaching the 460 * head of the waitqueue. 461 */ 462 if (old & _Q_TAIL_MASK) { 463 prev = decode_tail(old); 464 465 /* Link @node into the waitqueue. */ 466 WRITE_ONCE(prev->next, node); 467 468 pv_wait_node(node, prev); 469 arch_mcs_spin_lock_contended(&node->locked); 470 471 /* 472 * While waiting for the MCS lock, the next pointer may have 473 * been set by another lock waiter. We optimistically load 474 * the next pointer & prefetch the cacheline for writing 475 * to reduce latency in the upcoming MCS unlock operation. 476 */ 477 next = READ_ONCE(node->next); 478 if (next) 479 prefetchw(next); 480 } 481 482 /* 483 * we're at the head of the waitqueue, wait for the owner & pending to 484 * go away. 485 * 486 * *,x,y -> *,0,0 487 * 488 * this wait loop must use a load-acquire such that we match the 489 * store-release that clears the locked bit and create lock 490 * sequentiality; this is because the set_locked() function below 491 * does not imply a full barrier. 492 * 493 * The PV pv_wait_head_or_lock function, if active, will acquire 494 * the lock and return a non-zero value. So we have to skip the 495 * atomic_cond_read_acquire() call. As the next PV queue head hasn't 496 * been designated yet, there is no way for the locked value to become 497 * _Q_SLOW_VAL. So both the set_locked() and the 498 * atomic_cmpxchg_relaxed() calls will be safe. 499 * 500 * If PV isn't active, 0 will be returned instead. 501 * 502 */ 503 if ((val = pv_wait_head_or_lock(lock, node))) 504 goto locked; 505 506 val = atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_PENDING_MASK)); 507 508 locked: 509 /* 510 * claim the lock: 511 * 512 * n,0,0 -> 0,0,1 : lock, uncontended 513 * *,*,0 -> *,*,1 : lock, contended 514 * 515 * If the queue head is the only one in the queue (lock value == tail) 516 * and nobody is pending, clear the tail code and grab the lock. 517 * Otherwise, we only need to grab the lock. 518 */ 519 520 /* 521 * In the PV case we might already have _Q_LOCKED_VAL set, because 522 * of lock stealing; therefore we must also allow: 523 * 524 * n,0,1 -> 0,0,1 525 * 526 * Note: at this point: (val & _Q_PENDING_MASK) == 0, because of the 527 * above wait condition, therefore any concurrent setting of 528 * PENDING will make the uncontended transition fail. 529 */ 530 if ((val & _Q_TAIL_MASK) == tail) { 531 if (atomic_try_cmpxchg_relaxed(&lock->val, &val, _Q_LOCKED_VAL)) 532 goto release; /* No contention */ 533 } 534 535 /* 536 * Either somebody is queued behind us or _Q_PENDING_VAL got set 537 * which will then detect the remaining tail and queue behind us 538 * ensuring we'll see a @next. 539 */ 540 set_locked(lock); 541 542 /* 543 * contended path; wait for next if not observed yet, release. 544 */ 545 if (!next) 546 next = smp_cond_load_relaxed(&node->next, (VAL)); 547 548 arch_mcs_spin_unlock_contended(&next->locked); 549 pv_kick_node(lock, next); 550 551 release: 552 /* 553 * release the node 554 */ 555 __this_cpu_dec(qnodes[0].mcs.count); 556 } 557 EXPORT_SYMBOL(queued_spin_lock_slowpath); 558 559 /* 560 * Generate the paravirt code for queued_spin_unlock_slowpath(). 561 */ 562 #if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS) 563 #define _GEN_PV_LOCK_SLOWPATH 564 565 #undef pv_enabled 566 #define pv_enabled() true 567 568 #undef pv_init_node 569 #undef pv_wait_node 570 #undef pv_kick_node 571 #undef pv_wait_head_or_lock 572 573 #undef queued_spin_lock_slowpath 574 #define queued_spin_lock_slowpath __pv_queued_spin_lock_slowpath 575 576 #include "qspinlock_paravirt.h" 577 #include "qspinlock.c" 578 579 #endif 580