1 /* 2 * Queued spinlock 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P. 15 * (C) Copyright 2013-2014,2018 Red Hat, Inc. 16 * (C) Copyright 2015 Intel Corp. 17 * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP 18 * 19 * Authors: Waiman Long <longman@redhat.com> 20 * Peter Zijlstra <peterz@infradead.org> 21 */ 22 23 #ifndef _GEN_PV_LOCK_SLOWPATH 24 25 #include <linux/smp.h> 26 #include <linux/bug.h> 27 #include <linux/cpumask.h> 28 #include <linux/percpu.h> 29 #include <linux/hardirq.h> 30 #include <linux/mutex.h> 31 #include <linux/prefetch.h> 32 #include <asm/byteorder.h> 33 #include <asm/qspinlock.h> 34 35 /* 36 * Include queued spinlock statistics code 37 */ 38 #include "qspinlock_stat.h" 39 40 /* 41 * The basic principle of a queue-based spinlock can best be understood 42 * by studying a classic queue-based spinlock implementation called the 43 * MCS lock. The paper below provides a good description for this kind 44 * of lock. 45 * 46 * http://www.cise.ufl.edu/tr/DOC/REP-1992-71.pdf 47 * 48 * This queued spinlock implementation is based on the MCS lock, however to make 49 * it fit the 4 bytes we assume spinlock_t to be, and preserve its existing 50 * API, we must modify it somehow. 51 * 52 * In particular; where the traditional MCS lock consists of a tail pointer 53 * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to 54 * unlock the next pending (next->locked), we compress both these: {tail, 55 * next->locked} into a single u32 value. 56 * 57 * Since a spinlock disables recursion of its own context and there is a limit 58 * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there 59 * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now 60 * we can encode the tail by combining the 2-bit nesting level with the cpu 61 * number. With one byte for the lock value and 3 bytes for the tail, only a 62 * 32-bit word is now needed. Even though we only need 1 bit for the lock, 63 * we extend it to a full byte to achieve better performance for architectures 64 * that support atomic byte write. 65 * 66 * We also change the first spinner to spin on the lock bit instead of its 67 * node; whereby avoiding the need to carry a node from lock to unlock, and 68 * preserving existing lock API. This also makes the unlock code simpler and 69 * faster. 70 * 71 * N.B. The current implementation only supports architectures that allow 72 * atomic operations on smaller 8-bit and 16-bit data types. 73 * 74 */ 75 76 #include "mcs_spinlock.h" 77 78 #ifdef CONFIG_PARAVIRT_SPINLOCKS 79 #define MAX_NODES 8 80 #else 81 #define MAX_NODES 4 82 #endif 83 84 /* 85 * The pending bit spinning loop count. 86 * This heuristic is used to limit the number of lockword accesses 87 * made by atomic_cond_read_relaxed when waiting for the lock to 88 * transition out of the "== _Q_PENDING_VAL" state. We don't spin 89 * indefinitely because there's no guarantee that we'll make forward 90 * progress. 91 */ 92 #ifndef _Q_PENDING_LOOPS 93 #define _Q_PENDING_LOOPS 1 94 #endif 95 96 /* 97 * Per-CPU queue node structures; we can never have more than 4 nested 98 * contexts: task, softirq, hardirq, nmi. 99 * 100 * Exactly fits one 64-byte cacheline on a 64-bit architecture. 101 * 102 * PV doubles the storage and uses the second cacheline for PV state. 103 */ 104 static DEFINE_PER_CPU_ALIGNED(struct mcs_spinlock, mcs_nodes[MAX_NODES]); 105 106 /* 107 * We must be able to distinguish between no-tail and the tail at 0:0, 108 * therefore increment the cpu number by one. 109 */ 110 111 static inline __pure u32 encode_tail(int cpu, int idx) 112 { 113 u32 tail; 114 115 #ifdef CONFIG_DEBUG_SPINLOCK 116 BUG_ON(idx > 3); 117 #endif 118 tail = (cpu + 1) << _Q_TAIL_CPU_OFFSET; 119 tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */ 120 121 return tail; 122 } 123 124 static inline __pure struct mcs_spinlock *decode_tail(u32 tail) 125 { 126 int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1; 127 int idx = (tail & _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET; 128 129 return per_cpu_ptr(&mcs_nodes[idx], cpu); 130 } 131 132 #define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK) 133 134 #if _Q_PENDING_BITS == 8 135 /** 136 * clear_pending - clear the pending bit. 137 * @lock: Pointer to queued spinlock structure 138 * 139 * *,1,* -> *,0,* 140 */ 141 static __always_inline void clear_pending(struct qspinlock *lock) 142 { 143 WRITE_ONCE(lock->pending, 0); 144 } 145 146 /** 147 * clear_pending_set_locked - take ownership and clear the pending bit. 148 * @lock: Pointer to queued spinlock structure 149 * 150 * *,1,0 -> *,0,1 151 * 152 * Lock stealing is not allowed if this function is used. 153 */ 154 static __always_inline void clear_pending_set_locked(struct qspinlock *lock) 155 { 156 WRITE_ONCE(lock->locked_pending, _Q_LOCKED_VAL); 157 } 158 159 /* 160 * xchg_tail - Put in the new queue tail code word & retrieve previous one 161 * @lock : Pointer to queued spinlock structure 162 * @tail : The new queue tail code word 163 * Return: The previous queue tail code word 164 * 165 * xchg(lock, tail), which heads an address dependency 166 * 167 * p,*,* -> n,*,* ; prev = xchg(lock, node) 168 */ 169 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail) 170 { 171 /* 172 * We can use relaxed semantics since the caller ensures that the 173 * MCS node is properly initialized before updating the tail. 174 */ 175 return (u32)xchg_relaxed(&lock->tail, 176 tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET; 177 } 178 179 #else /* _Q_PENDING_BITS == 8 */ 180 181 /** 182 * clear_pending - clear the pending bit. 183 * @lock: Pointer to queued spinlock structure 184 * 185 * *,1,* -> *,0,* 186 */ 187 static __always_inline void clear_pending(struct qspinlock *lock) 188 { 189 atomic_andnot(_Q_PENDING_VAL, &lock->val); 190 } 191 192 /** 193 * clear_pending_set_locked - take ownership and clear the pending bit. 194 * @lock: Pointer to queued spinlock structure 195 * 196 * *,1,0 -> *,0,1 197 */ 198 static __always_inline void clear_pending_set_locked(struct qspinlock *lock) 199 { 200 atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val); 201 } 202 203 /** 204 * xchg_tail - Put in the new queue tail code word & retrieve previous one 205 * @lock : Pointer to queued spinlock structure 206 * @tail : The new queue tail code word 207 * Return: The previous queue tail code word 208 * 209 * xchg(lock, tail) 210 * 211 * p,*,* -> n,*,* ; prev = xchg(lock, node) 212 */ 213 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail) 214 { 215 u32 old, new, val = atomic_read(&lock->val); 216 217 for (;;) { 218 new = (val & _Q_LOCKED_PENDING_MASK) | tail; 219 /* 220 * We can use relaxed semantics since the caller ensures that 221 * the MCS node is properly initialized before updating the 222 * tail. 223 */ 224 old = atomic_cmpxchg_relaxed(&lock->val, val, new); 225 if (old == val) 226 break; 227 228 val = old; 229 } 230 return old; 231 } 232 #endif /* _Q_PENDING_BITS == 8 */ 233 234 /** 235 * set_locked - Set the lock bit and own the lock 236 * @lock: Pointer to queued spinlock structure 237 * 238 * *,*,0 -> *,0,1 239 */ 240 static __always_inline void set_locked(struct qspinlock *lock) 241 { 242 WRITE_ONCE(lock->locked, _Q_LOCKED_VAL); 243 } 244 245 246 /* 247 * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for 248 * all the PV callbacks. 249 */ 250 251 static __always_inline void __pv_init_node(struct mcs_spinlock *node) { } 252 static __always_inline void __pv_wait_node(struct mcs_spinlock *node, 253 struct mcs_spinlock *prev) { } 254 static __always_inline void __pv_kick_node(struct qspinlock *lock, 255 struct mcs_spinlock *node) { } 256 static __always_inline u32 __pv_wait_head_or_lock(struct qspinlock *lock, 257 struct mcs_spinlock *node) 258 { return 0; } 259 260 #define pv_enabled() false 261 262 #define pv_init_node __pv_init_node 263 #define pv_wait_node __pv_wait_node 264 #define pv_kick_node __pv_kick_node 265 #define pv_wait_head_or_lock __pv_wait_head_or_lock 266 267 #ifdef CONFIG_PARAVIRT_SPINLOCKS 268 #define queued_spin_lock_slowpath native_queued_spin_lock_slowpath 269 #endif 270 271 #endif /* _GEN_PV_LOCK_SLOWPATH */ 272 273 /** 274 * queued_spin_lock_slowpath - acquire the queued spinlock 275 * @lock: Pointer to queued spinlock structure 276 * @val: Current value of the queued spinlock 32-bit word 277 * 278 * (queue tail, pending bit, lock value) 279 * 280 * fast : slow : unlock 281 * : : 282 * uncontended (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0) 283 * : | ^--------.------. / : 284 * : v \ \ | : 285 * pending : (0,1,1) +--> (0,1,0) \ | : 286 * : | ^--' | | : 287 * : v | | : 288 * uncontended : (n,x,y) +--> (n,0,0) --' | : 289 * queue : | ^--' | : 290 * : v | : 291 * contended : (*,x,y) +--> (*,0,0) ---> (*,0,1) -' : 292 * queue : ^--' : 293 */ 294 void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val) 295 { 296 struct mcs_spinlock *prev, *next, *node; 297 u32 old, tail; 298 int idx; 299 300 BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS)); 301 302 if (pv_enabled()) 303 goto pv_queue; 304 305 if (virt_spin_lock(lock)) 306 return; 307 308 /* 309 * Wait for in-progress pending->locked hand-overs with a bounded 310 * number of spins so that we guarantee forward progress. 311 * 312 * 0,1,0 -> 0,0,1 313 */ 314 if (val == _Q_PENDING_VAL) { 315 int cnt = _Q_PENDING_LOOPS; 316 val = atomic_cond_read_relaxed(&lock->val, 317 (VAL != _Q_PENDING_VAL) || !cnt--); 318 } 319 320 /* 321 * If we observe any contention; queue. 322 */ 323 if (val & ~_Q_LOCKED_MASK) 324 goto queue; 325 326 /* 327 * trylock || pending 328 * 329 * 0,0,0 -> 0,0,1 ; trylock 330 * 0,0,1 -> 0,1,1 ; pending 331 */ 332 val = atomic_fetch_or_acquire(_Q_PENDING_VAL, &lock->val); 333 if (!(val & ~_Q_LOCKED_MASK)) { 334 /* 335 * We're pending, wait for the owner to go away. 336 * 337 * *,1,1 -> *,1,0 338 * 339 * this wait loop must be a load-acquire such that we match the 340 * store-release that clears the locked bit and create lock 341 * sequentiality; this is because not all 342 * clear_pending_set_locked() implementations imply full 343 * barriers. 344 */ 345 if (val & _Q_LOCKED_MASK) { 346 atomic_cond_read_acquire(&lock->val, 347 !(VAL & _Q_LOCKED_MASK)); 348 } 349 350 /* 351 * take ownership and clear the pending bit. 352 * 353 * *,1,0 -> *,0,1 354 */ 355 clear_pending_set_locked(lock); 356 qstat_inc(qstat_lock_pending, true); 357 return; 358 } 359 360 /* 361 * If pending was clear but there are waiters in the queue, then 362 * we need to undo our setting of pending before we queue ourselves. 363 */ 364 if (!(val & _Q_PENDING_MASK)) 365 clear_pending(lock); 366 367 /* 368 * End of pending bit optimistic spinning and beginning of MCS 369 * queuing. 370 */ 371 queue: 372 qstat_inc(qstat_lock_slowpath, true); 373 pv_queue: 374 node = this_cpu_ptr(&mcs_nodes[0]); 375 idx = node->count++; 376 tail = encode_tail(smp_processor_id(), idx); 377 378 node += idx; 379 380 /* 381 * Ensure that we increment the head node->count before initialising 382 * the actual node. If the compiler is kind enough to reorder these 383 * stores, then an IRQ could overwrite our assignments. 384 */ 385 barrier(); 386 387 node->locked = 0; 388 node->next = NULL; 389 pv_init_node(node); 390 391 /* 392 * We touched a (possibly) cold cacheline in the per-cpu queue node; 393 * attempt the trylock once more in the hope someone let go while we 394 * weren't watching. 395 */ 396 if (queued_spin_trylock(lock)) 397 goto release; 398 399 /* 400 * Ensure that the initialisation of @node is complete before we 401 * publish the updated tail via xchg_tail() and potentially link 402 * @node into the waitqueue via WRITE_ONCE(prev->next, node) below. 403 */ 404 smp_wmb(); 405 406 /* 407 * Publish the updated tail. 408 * We have already touched the queueing cacheline; don't bother with 409 * pending stuff. 410 * 411 * p,*,* -> n,*,* 412 */ 413 old = xchg_tail(lock, tail); 414 next = NULL; 415 416 /* 417 * if there was a previous node; link it and wait until reaching the 418 * head of the waitqueue. 419 */ 420 if (old & _Q_TAIL_MASK) { 421 prev = decode_tail(old); 422 423 /* Link @node into the waitqueue. */ 424 WRITE_ONCE(prev->next, node); 425 426 pv_wait_node(node, prev); 427 arch_mcs_spin_lock_contended(&node->locked); 428 429 /* 430 * While waiting for the MCS lock, the next pointer may have 431 * been set by another lock waiter. We optimistically load 432 * the next pointer & prefetch the cacheline for writing 433 * to reduce latency in the upcoming MCS unlock operation. 434 */ 435 next = READ_ONCE(node->next); 436 if (next) 437 prefetchw(next); 438 } 439 440 /* 441 * we're at the head of the waitqueue, wait for the owner & pending to 442 * go away. 443 * 444 * *,x,y -> *,0,0 445 * 446 * this wait loop must use a load-acquire such that we match the 447 * store-release that clears the locked bit and create lock 448 * sequentiality; this is because the set_locked() function below 449 * does not imply a full barrier. 450 * 451 * The PV pv_wait_head_or_lock function, if active, will acquire 452 * the lock and return a non-zero value. So we have to skip the 453 * atomic_cond_read_acquire() call. As the next PV queue head hasn't 454 * been designated yet, there is no way for the locked value to become 455 * _Q_SLOW_VAL. So both the set_locked() and the 456 * atomic_cmpxchg_relaxed() calls will be safe. 457 * 458 * If PV isn't active, 0 will be returned instead. 459 * 460 */ 461 if ((val = pv_wait_head_or_lock(lock, node))) 462 goto locked; 463 464 val = atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_PENDING_MASK)); 465 466 locked: 467 /* 468 * claim the lock: 469 * 470 * n,0,0 -> 0,0,1 : lock, uncontended 471 * *,*,0 -> *,*,1 : lock, contended 472 * 473 * If the queue head is the only one in the queue (lock value == tail) 474 * and nobody is pending, clear the tail code and grab the lock. 475 * Otherwise, we only need to grab the lock. 476 */ 477 478 /* 479 * In the PV case we might already have _Q_LOCKED_VAL set. 480 * 481 * The atomic_cond_read_acquire() call above has provided the 482 * necessary acquire semantics required for locking. 483 */ 484 if (((val & _Q_TAIL_MASK) == tail) && 485 atomic_try_cmpxchg_relaxed(&lock->val, &val, _Q_LOCKED_VAL)) 486 goto release; /* No contention */ 487 488 /* Either somebody is queued behind us or _Q_PENDING_VAL is set */ 489 set_locked(lock); 490 491 /* 492 * contended path; wait for next if not observed yet, release. 493 */ 494 if (!next) 495 next = smp_cond_load_relaxed(&node->next, (VAL)); 496 497 arch_mcs_spin_unlock_contended(&next->locked); 498 pv_kick_node(lock, next); 499 500 release: 501 /* 502 * release the node 503 */ 504 __this_cpu_dec(mcs_nodes[0].count); 505 } 506 EXPORT_SYMBOL(queued_spin_lock_slowpath); 507 508 /* 509 * Generate the paravirt code for queued_spin_unlock_slowpath(). 510 */ 511 #if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS) 512 #define _GEN_PV_LOCK_SLOWPATH 513 514 #undef pv_enabled 515 #define pv_enabled() true 516 517 #undef pv_init_node 518 #undef pv_wait_node 519 #undef pv_kick_node 520 #undef pv_wait_head_or_lock 521 522 #undef queued_spin_lock_slowpath 523 #define queued_spin_lock_slowpath __pv_queued_spin_lock_slowpath 524 525 #include "qspinlock_paravirt.h" 526 #include "qspinlock.c" 527 528 #endif 529