1 /* 2 * Queued spinlock 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P. 15 * (C) Copyright 2013-2014 Red Hat, Inc. 16 * (C) Copyright 2015 Intel Corp. 17 * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP 18 * 19 * Authors: Waiman Long <waiman.long@hpe.com> 20 * Peter Zijlstra <peterz@infradead.org> 21 */ 22 23 #ifndef _GEN_PV_LOCK_SLOWPATH 24 25 #include <linux/smp.h> 26 #include <linux/bug.h> 27 #include <linux/cpumask.h> 28 #include <linux/percpu.h> 29 #include <linux/hardirq.h> 30 #include <linux/mutex.h> 31 #include <linux/prefetch.h> 32 #include <asm/byteorder.h> 33 #include <asm/qspinlock.h> 34 35 /* 36 * The basic principle of a queue-based spinlock can best be understood 37 * by studying a classic queue-based spinlock implementation called the 38 * MCS lock. The paper below provides a good description for this kind 39 * of lock. 40 * 41 * http://www.cise.ufl.edu/tr/DOC/REP-1992-71.pdf 42 * 43 * This queued spinlock implementation is based on the MCS lock, however to make 44 * it fit the 4 bytes we assume spinlock_t to be, and preserve its existing 45 * API, we must modify it somehow. 46 * 47 * In particular; where the traditional MCS lock consists of a tail pointer 48 * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to 49 * unlock the next pending (next->locked), we compress both these: {tail, 50 * next->locked} into a single u32 value. 51 * 52 * Since a spinlock disables recursion of its own context and there is a limit 53 * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there 54 * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now 55 * we can encode the tail by combining the 2-bit nesting level with the cpu 56 * number. With one byte for the lock value and 3 bytes for the tail, only a 57 * 32-bit word is now needed. Even though we only need 1 bit for the lock, 58 * we extend it to a full byte to achieve better performance for architectures 59 * that support atomic byte write. 60 * 61 * We also change the first spinner to spin on the lock bit instead of its 62 * node; whereby avoiding the need to carry a node from lock to unlock, and 63 * preserving existing lock API. This also makes the unlock code simpler and 64 * faster. 65 * 66 * N.B. The current implementation only supports architectures that allow 67 * atomic operations on smaller 8-bit and 16-bit data types. 68 * 69 */ 70 71 #include "mcs_spinlock.h" 72 73 #ifdef CONFIG_PARAVIRT_SPINLOCKS 74 #define MAX_NODES 8 75 #else 76 #define MAX_NODES 4 77 #endif 78 79 /* 80 * Per-CPU queue node structures; we can never have more than 4 nested 81 * contexts: task, softirq, hardirq, nmi. 82 * 83 * Exactly fits one 64-byte cacheline on a 64-bit architecture. 84 * 85 * PV doubles the storage and uses the second cacheline for PV state. 86 */ 87 static DEFINE_PER_CPU_ALIGNED(struct mcs_spinlock, mcs_nodes[MAX_NODES]); 88 89 /* 90 * We must be able to distinguish between no-tail and the tail at 0:0, 91 * therefore increment the cpu number by one. 92 */ 93 94 static inline __pure u32 encode_tail(int cpu, int idx) 95 { 96 u32 tail; 97 98 #ifdef CONFIG_DEBUG_SPINLOCK 99 BUG_ON(idx > 3); 100 #endif 101 tail = (cpu + 1) << _Q_TAIL_CPU_OFFSET; 102 tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */ 103 104 return tail; 105 } 106 107 static inline __pure struct mcs_spinlock *decode_tail(u32 tail) 108 { 109 int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1; 110 int idx = (tail & _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET; 111 112 return per_cpu_ptr(&mcs_nodes[idx], cpu); 113 } 114 115 #define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK) 116 117 /* 118 * By using the whole 2nd least significant byte for the pending bit, we 119 * can allow better optimization of the lock acquisition for the pending 120 * bit holder. 121 * 122 * This internal structure is also used by the set_locked function which 123 * is not restricted to _Q_PENDING_BITS == 8. 124 */ 125 struct __qspinlock { 126 union { 127 atomic_t val; 128 #ifdef __LITTLE_ENDIAN 129 struct { 130 u8 locked; 131 u8 pending; 132 }; 133 struct { 134 u16 locked_pending; 135 u16 tail; 136 }; 137 #else 138 struct { 139 u16 tail; 140 u16 locked_pending; 141 }; 142 struct { 143 u8 reserved[2]; 144 u8 pending; 145 u8 locked; 146 }; 147 #endif 148 }; 149 }; 150 151 #if _Q_PENDING_BITS == 8 152 /** 153 * clear_pending_set_locked - take ownership and clear the pending bit. 154 * @lock: Pointer to queued spinlock structure 155 * 156 * *,1,0 -> *,0,1 157 * 158 * Lock stealing is not allowed if this function is used. 159 */ 160 static __always_inline void clear_pending_set_locked(struct qspinlock *lock) 161 { 162 struct __qspinlock *l = (void *)lock; 163 164 WRITE_ONCE(l->locked_pending, _Q_LOCKED_VAL); 165 } 166 167 /* 168 * xchg_tail - Put in the new queue tail code word & retrieve previous one 169 * @lock : Pointer to queued spinlock structure 170 * @tail : The new queue tail code word 171 * Return: The previous queue tail code word 172 * 173 * xchg(lock, tail), which heads an address dependency 174 * 175 * p,*,* -> n,*,* ; prev = xchg(lock, node) 176 */ 177 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail) 178 { 179 struct __qspinlock *l = (void *)lock; 180 181 /* 182 * Use release semantics to make sure that the MCS node is properly 183 * initialized before changing the tail code. 184 */ 185 return (u32)xchg_release(&l->tail, 186 tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET; 187 } 188 189 #else /* _Q_PENDING_BITS == 8 */ 190 191 /** 192 * clear_pending_set_locked - take ownership and clear the pending bit. 193 * @lock: Pointer to queued spinlock structure 194 * 195 * *,1,0 -> *,0,1 196 */ 197 static __always_inline void clear_pending_set_locked(struct qspinlock *lock) 198 { 199 atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val); 200 } 201 202 /** 203 * xchg_tail - Put in the new queue tail code word & retrieve previous one 204 * @lock : Pointer to queued spinlock structure 205 * @tail : The new queue tail code word 206 * Return: The previous queue tail code word 207 * 208 * xchg(lock, tail) 209 * 210 * p,*,* -> n,*,* ; prev = xchg(lock, node) 211 */ 212 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail) 213 { 214 u32 old, new, val = atomic_read(&lock->val); 215 216 for (;;) { 217 new = (val & _Q_LOCKED_PENDING_MASK) | tail; 218 /* 219 * Use release semantics to make sure that the MCS node is 220 * properly initialized before changing the tail code. 221 */ 222 old = atomic_cmpxchg_release(&lock->val, val, new); 223 if (old == val) 224 break; 225 226 val = old; 227 } 228 return old; 229 } 230 #endif /* _Q_PENDING_BITS == 8 */ 231 232 /** 233 * set_locked - Set the lock bit and own the lock 234 * @lock: Pointer to queued spinlock structure 235 * 236 * *,*,0 -> *,0,1 237 */ 238 static __always_inline void set_locked(struct qspinlock *lock) 239 { 240 struct __qspinlock *l = (void *)lock; 241 242 WRITE_ONCE(l->locked, _Q_LOCKED_VAL); 243 } 244 245 246 /* 247 * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for 248 * all the PV callbacks. 249 */ 250 251 static __always_inline void __pv_init_node(struct mcs_spinlock *node) { } 252 static __always_inline void __pv_wait_node(struct mcs_spinlock *node, 253 struct mcs_spinlock *prev) { } 254 static __always_inline void __pv_kick_node(struct qspinlock *lock, 255 struct mcs_spinlock *node) { } 256 static __always_inline u32 __pv_wait_head_or_lock(struct qspinlock *lock, 257 struct mcs_spinlock *node) 258 { return 0; } 259 260 #define pv_enabled() false 261 262 #define pv_init_node __pv_init_node 263 #define pv_wait_node __pv_wait_node 264 #define pv_kick_node __pv_kick_node 265 #define pv_wait_head_or_lock __pv_wait_head_or_lock 266 267 #ifdef CONFIG_PARAVIRT_SPINLOCKS 268 #define queued_spin_lock_slowpath native_queued_spin_lock_slowpath 269 #endif 270 271 #endif /* _GEN_PV_LOCK_SLOWPATH */ 272 273 /** 274 * queued_spin_lock_slowpath - acquire the queued spinlock 275 * @lock: Pointer to queued spinlock structure 276 * @val: Current value of the queued spinlock 32-bit word 277 * 278 * (queue tail, pending bit, lock value) 279 * 280 * fast : slow : unlock 281 * : : 282 * uncontended (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0) 283 * : | ^--------.------. / : 284 * : v \ \ | : 285 * pending : (0,1,1) +--> (0,1,0) \ | : 286 * : | ^--' | | : 287 * : v | | : 288 * uncontended : (n,x,y) +--> (n,0,0) --' | : 289 * queue : | ^--' | : 290 * : v | : 291 * contended : (*,x,y) +--> (*,0,0) ---> (*,0,1) -' : 292 * queue : ^--' : 293 */ 294 void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val) 295 { 296 struct mcs_spinlock *prev, *next, *node; 297 u32 new, old, tail; 298 int idx; 299 300 BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS)); 301 302 if (pv_enabled()) 303 goto queue; 304 305 if (virt_spin_lock(lock)) 306 return; 307 308 /* 309 * wait for in-progress pending->locked hand-overs 310 * 311 * 0,1,0 -> 0,0,1 312 */ 313 if (val == _Q_PENDING_VAL) { 314 while ((val = atomic_read(&lock->val)) == _Q_PENDING_VAL) 315 cpu_relax(); 316 } 317 318 /* 319 * trylock || pending 320 * 321 * 0,0,0 -> 0,0,1 ; trylock 322 * 0,0,1 -> 0,1,1 ; pending 323 */ 324 for (;;) { 325 /* 326 * If we observe any contention; queue. 327 */ 328 if (val & ~_Q_LOCKED_MASK) 329 goto queue; 330 331 new = _Q_LOCKED_VAL; 332 if (val == new) 333 new |= _Q_PENDING_VAL; 334 335 /* 336 * Acquire semantic is required here as the function may 337 * return immediately if the lock was free. 338 */ 339 old = atomic_cmpxchg_acquire(&lock->val, val, new); 340 if (old == val) 341 break; 342 343 val = old; 344 } 345 346 /* 347 * we won the trylock 348 */ 349 if (new == _Q_LOCKED_VAL) 350 return; 351 352 /* 353 * we're pending, wait for the owner to go away. 354 * 355 * *,1,1 -> *,1,0 356 * 357 * this wait loop must be a load-acquire such that we match the 358 * store-release that clears the locked bit and create lock 359 * sequentiality; this is because not all clear_pending_set_locked() 360 * implementations imply full barriers. 361 */ 362 smp_cond_load_acquire(&lock->val.counter, !(VAL & _Q_LOCKED_MASK)); 363 364 /* 365 * take ownership and clear the pending bit. 366 * 367 * *,1,0 -> *,0,1 368 */ 369 clear_pending_set_locked(lock); 370 return; 371 372 /* 373 * End of pending bit optimistic spinning and beginning of MCS 374 * queuing. 375 */ 376 queue: 377 node = this_cpu_ptr(&mcs_nodes[0]); 378 idx = node->count++; 379 tail = encode_tail(smp_processor_id(), idx); 380 381 node += idx; 382 383 /* 384 * Ensure that we increment the head node->count before initialising 385 * the actual node. If the compiler is kind enough to reorder these 386 * stores, then an IRQ could overwrite our assignments. 387 */ 388 barrier(); 389 390 node->locked = 0; 391 node->next = NULL; 392 pv_init_node(node); 393 394 /* 395 * We touched a (possibly) cold cacheline in the per-cpu queue node; 396 * attempt the trylock once more in the hope someone let go while we 397 * weren't watching. 398 */ 399 if (queued_spin_trylock(lock)) 400 goto release; 401 402 /* 403 * We have already touched the queueing cacheline; don't bother with 404 * pending stuff. 405 * 406 * p,*,* -> n,*,* 407 * 408 * RELEASE, such that the stores to @node must be complete. 409 */ 410 old = xchg_tail(lock, tail); 411 next = NULL; 412 413 /* 414 * if there was a previous node; link it and wait until reaching the 415 * head of the waitqueue. 416 */ 417 if (old & _Q_TAIL_MASK) { 418 prev = decode_tail(old); 419 420 /* 421 * We must ensure that the stores to @node are observed before 422 * the write to prev->next. The address dependency from 423 * xchg_tail is not sufficient to ensure this because the read 424 * component of xchg_tail is unordered with respect to the 425 * initialisation of @node. 426 */ 427 smp_store_release(&prev->next, node); 428 429 pv_wait_node(node, prev); 430 arch_mcs_spin_lock_contended(&node->locked); 431 432 /* 433 * While waiting for the MCS lock, the next pointer may have 434 * been set by another lock waiter. We optimistically load 435 * the next pointer & prefetch the cacheline for writing 436 * to reduce latency in the upcoming MCS unlock operation. 437 */ 438 next = READ_ONCE(node->next); 439 if (next) 440 prefetchw(next); 441 } 442 443 /* 444 * we're at the head of the waitqueue, wait for the owner & pending to 445 * go away. 446 * 447 * *,x,y -> *,0,0 448 * 449 * this wait loop must use a load-acquire such that we match the 450 * store-release that clears the locked bit and create lock 451 * sequentiality; this is because the set_locked() function below 452 * does not imply a full barrier. 453 * 454 * The PV pv_wait_head_or_lock function, if active, will acquire 455 * the lock and return a non-zero value. So we have to skip the 456 * smp_cond_load_acquire() call. As the next PV queue head hasn't been 457 * designated yet, there is no way for the locked value to become 458 * _Q_SLOW_VAL. So both the set_locked() and the 459 * atomic_cmpxchg_relaxed() calls will be safe. 460 * 461 * If PV isn't active, 0 will be returned instead. 462 * 463 */ 464 if ((val = pv_wait_head_or_lock(lock, node))) 465 goto locked; 466 467 val = smp_cond_load_acquire(&lock->val.counter, !(VAL & _Q_LOCKED_PENDING_MASK)); 468 469 locked: 470 /* 471 * claim the lock: 472 * 473 * n,0,0 -> 0,0,1 : lock, uncontended 474 * *,0,0 -> *,0,1 : lock, contended 475 * 476 * If the queue head is the only one in the queue (lock value == tail), 477 * clear the tail code and grab the lock. Otherwise, we only need 478 * to grab the lock. 479 */ 480 for (;;) { 481 /* In the PV case we might already have _Q_LOCKED_VAL set */ 482 if ((val & _Q_TAIL_MASK) != tail) { 483 set_locked(lock); 484 break; 485 } 486 /* 487 * The smp_cond_load_acquire() call above has provided the 488 * necessary acquire semantics required for locking. At most 489 * two iterations of this loop may be ran. 490 */ 491 old = atomic_cmpxchg_relaxed(&lock->val, val, _Q_LOCKED_VAL); 492 if (old == val) 493 goto release; /* No contention */ 494 495 val = old; 496 } 497 498 /* 499 * contended path; wait for next if not observed yet, release. 500 */ 501 if (!next) { 502 while (!(next = READ_ONCE(node->next))) 503 cpu_relax(); 504 } 505 506 arch_mcs_spin_unlock_contended(&next->locked); 507 pv_kick_node(lock, next); 508 509 release: 510 /* 511 * release the node 512 */ 513 __this_cpu_dec(mcs_nodes[0].count); 514 } 515 EXPORT_SYMBOL(queued_spin_lock_slowpath); 516 517 /* 518 * Generate the paravirt code for queued_spin_unlock_slowpath(). 519 */ 520 #if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS) 521 #define _GEN_PV_LOCK_SLOWPATH 522 523 #undef pv_enabled 524 #define pv_enabled() true 525 526 #undef pv_init_node 527 #undef pv_wait_node 528 #undef pv_kick_node 529 #undef pv_wait_head_or_lock 530 531 #undef queued_spin_lock_slowpath 532 #define queued_spin_lock_slowpath __pv_queued_spin_lock_slowpath 533 534 #include "qspinlock_paravirt.h" 535 #include "qspinlock.c" 536 537 #endif 538