xref: /openbmc/linux/kernel/locking/qspinlock.c (revision 5214cae7)
1 /*
2  * Queued spinlock
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
15  * (C) Copyright 2013-2014 Red Hat, Inc.
16  * (C) Copyright 2015 Intel Corp.
17  * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP
18  *
19  * Authors: Waiman Long <waiman.long@hpe.com>
20  *          Peter Zijlstra <peterz@infradead.org>
21  */
22 
23 #ifndef _GEN_PV_LOCK_SLOWPATH
24 
25 #include <linux/smp.h>
26 #include <linux/bug.h>
27 #include <linux/cpumask.h>
28 #include <linux/percpu.h>
29 #include <linux/hardirq.h>
30 #include <linux/mutex.h>
31 #include <asm/byteorder.h>
32 #include <asm/qspinlock.h>
33 
34 /*
35  * The basic principle of a queue-based spinlock can best be understood
36  * by studying a classic queue-based spinlock implementation called the
37  * MCS lock. The paper below provides a good description for this kind
38  * of lock.
39  *
40  * http://www.cise.ufl.edu/tr/DOC/REP-1992-71.pdf
41  *
42  * This queued spinlock implementation is based on the MCS lock, however to make
43  * it fit the 4 bytes we assume spinlock_t to be, and preserve its existing
44  * API, we must modify it somehow.
45  *
46  * In particular; where the traditional MCS lock consists of a tail pointer
47  * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to
48  * unlock the next pending (next->locked), we compress both these: {tail,
49  * next->locked} into a single u32 value.
50  *
51  * Since a spinlock disables recursion of its own context and there is a limit
52  * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there
53  * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now
54  * we can encode the tail by combining the 2-bit nesting level with the cpu
55  * number. With one byte for the lock value and 3 bytes for the tail, only a
56  * 32-bit word is now needed. Even though we only need 1 bit for the lock,
57  * we extend it to a full byte to achieve better performance for architectures
58  * that support atomic byte write.
59  *
60  * We also change the first spinner to spin on the lock bit instead of its
61  * node; whereby avoiding the need to carry a node from lock to unlock, and
62  * preserving existing lock API. This also makes the unlock code simpler and
63  * faster.
64  *
65  * N.B. The current implementation only supports architectures that allow
66  *      atomic operations on smaller 8-bit and 16-bit data types.
67  *
68  */
69 
70 #include "mcs_spinlock.h"
71 
72 #ifdef CONFIG_PARAVIRT_SPINLOCKS
73 #define MAX_NODES	8
74 #else
75 #define MAX_NODES	4
76 #endif
77 
78 /*
79  * Per-CPU queue node structures; we can never have more than 4 nested
80  * contexts: task, softirq, hardirq, nmi.
81  *
82  * Exactly fits one 64-byte cacheline on a 64-bit architecture.
83  *
84  * PV doubles the storage and uses the second cacheline for PV state.
85  */
86 static DEFINE_PER_CPU_ALIGNED(struct mcs_spinlock, mcs_nodes[MAX_NODES]);
87 
88 /*
89  * We must be able to distinguish between no-tail and the tail at 0:0,
90  * therefore increment the cpu number by one.
91  */
92 
93 static inline u32 encode_tail(int cpu, int idx)
94 {
95 	u32 tail;
96 
97 #ifdef CONFIG_DEBUG_SPINLOCK
98 	BUG_ON(idx > 3);
99 #endif
100 	tail  = (cpu + 1) << _Q_TAIL_CPU_OFFSET;
101 	tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */
102 
103 	return tail;
104 }
105 
106 static inline struct mcs_spinlock *decode_tail(u32 tail)
107 {
108 	int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1;
109 	int idx = (tail &  _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET;
110 
111 	return per_cpu_ptr(&mcs_nodes[idx], cpu);
112 }
113 
114 #define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)
115 
116 /*
117  * By using the whole 2nd least significant byte for the pending bit, we
118  * can allow better optimization of the lock acquisition for the pending
119  * bit holder.
120  *
121  * This internal structure is also used by the set_locked function which
122  * is not restricted to _Q_PENDING_BITS == 8.
123  */
124 struct __qspinlock {
125 	union {
126 		atomic_t val;
127 #ifdef __LITTLE_ENDIAN
128 		struct {
129 			u8	locked;
130 			u8	pending;
131 		};
132 		struct {
133 			u16	locked_pending;
134 			u16	tail;
135 		};
136 #else
137 		struct {
138 			u16	tail;
139 			u16	locked_pending;
140 		};
141 		struct {
142 			u8	reserved[2];
143 			u8	pending;
144 			u8	locked;
145 		};
146 #endif
147 	};
148 };
149 
150 #if _Q_PENDING_BITS == 8
151 /**
152  * clear_pending_set_locked - take ownership and clear the pending bit.
153  * @lock: Pointer to queued spinlock structure
154  *
155  * *,1,0 -> *,0,1
156  *
157  * Lock stealing is not allowed if this function is used.
158  */
159 static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
160 {
161 	struct __qspinlock *l = (void *)lock;
162 
163 	WRITE_ONCE(l->locked_pending, _Q_LOCKED_VAL);
164 }
165 
166 /*
167  * xchg_tail - Put in the new queue tail code word & retrieve previous one
168  * @lock : Pointer to queued spinlock structure
169  * @tail : The new queue tail code word
170  * Return: The previous queue tail code word
171  *
172  * xchg(lock, tail)
173  *
174  * p,*,* -> n,*,* ; prev = xchg(lock, node)
175  */
176 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
177 {
178 	struct __qspinlock *l = (void *)lock;
179 
180 	/*
181 	 * Use release semantics to make sure that the MCS node is properly
182 	 * initialized before changing the tail code.
183 	 */
184 	return (u32)xchg_release(&l->tail,
185 				 tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
186 }
187 
188 #else /* _Q_PENDING_BITS == 8 */
189 
190 /**
191  * clear_pending_set_locked - take ownership and clear the pending bit.
192  * @lock: Pointer to queued spinlock structure
193  *
194  * *,1,0 -> *,0,1
195  */
196 static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
197 {
198 	atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val);
199 }
200 
201 /**
202  * xchg_tail - Put in the new queue tail code word & retrieve previous one
203  * @lock : Pointer to queued spinlock structure
204  * @tail : The new queue tail code word
205  * Return: The previous queue tail code word
206  *
207  * xchg(lock, tail)
208  *
209  * p,*,* -> n,*,* ; prev = xchg(lock, node)
210  */
211 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
212 {
213 	u32 old, new, val = atomic_read(&lock->val);
214 
215 	for (;;) {
216 		new = (val & _Q_LOCKED_PENDING_MASK) | tail;
217 		/*
218 		 * Use release semantics to make sure that the MCS node is
219 		 * properly initialized before changing the tail code.
220 		 */
221 		old = atomic_cmpxchg_release(&lock->val, val, new);
222 		if (old == val)
223 			break;
224 
225 		val = old;
226 	}
227 	return old;
228 }
229 #endif /* _Q_PENDING_BITS == 8 */
230 
231 /**
232  * set_locked - Set the lock bit and own the lock
233  * @lock: Pointer to queued spinlock structure
234  *
235  * *,*,0 -> *,0,1
236  */
237 static __always_inline void set_locked(struct qspinlock *lock)
238 {
239 	struct __qspinlock *l = (void *)lock;
240 
241 	WRITE_ONCE(l->locked, _Q_LOCKED_VAL);
242 }
243 
244 
245 /*
246  * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for
247  * all the PV callbacks.
248  */
249 
250 static __always_inline void __pv_init_node(struct mcs_spinlock *node) { }
251 static __always_inline void __pv_wait_node(struct mcs_spinlock *node,
252 					   struct mcs_spinlock *prev) { }
253 static __always_inline void __pv_kick_node(struct qspinlock *lock,
254 					   struct mcs_spinlock *node) { }
255 static __always_inline u32  __pv_wait_head_or_lock(struct qspinlock *lock,
256 						   struct mcs_spinlock *node)
257 						   { return 0; }
258 
259 #define pv_enabled()		false
260 
261 #define pv_init_node		__pv_init_node
262 #define pv_wait_node		__pv_wait_node
263 #define pv_kick_node		__pv_kick_node
264 #define pv_wait_head_or_lock	__pv_wait_head_or_lock
265 
266 #ifdef CONFIG_PARAVIRT_SPINLOCKS
267 #define queued_spin_lock_slowpath	native_queued_spin_lock_slowpath
268 #endif
269 
270 #endif /* _GEN_PV_LOCK_SLOWPATH */
271 
272 /**
273  * queued_spin_lock_slowpath - acquire the queued spinlock
274  * @lock: Pointer to queued spinlock structure
275  * @val: Current value of the queued spinlock 32-bit word
276  *
277  * (queue tail, pending bit, lock value)
278  *
279  *              fast     :    slow                                  :    unlock
280  *                       :                                          :
281  * uncontended  (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0)
282  *                       :       | ^--------.------.             /  :
283  *                       :       v           \      \            |  :
284  * pending               :    (0,1,1) +--> (0,1,0)   \           |  :
285  *                       :       | ^--'              |           |  :
286  *                       :       v                   |           |  :
287  * uncontended           :    (n,x,y) +--> (n,0,0) --'           |  :
288  *   queue               :       | ^--'                          |  :
289  *                       :       v                               |  :
290  * contended             :    (*,x,y) +--> (*,0,0) ---> (*,0,1) -'  :
291  *   queue               :         ^--'                             :
292  */
293 void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
294 {
295 	struct mcs_spinlock *prev, *next, *node;
296 	u32 new, old, tail;
297 	int idx;
298 
299 	BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
300 
301 	if (pv_enabled())
302 		goto queue;
303 
304 	if (virt_spin_lock(lock))
305 		return;
306 
307 	/*
308 	 * wait for in-progress pending->locked hand-overs
309 	 *
310 	 * 0,1,0 -> 0,0,1
311 	 */
312 	if (val == _Q_PENDING_VAL) {
313 		while ((val = atomic_read(&lock->val)) == _Q_PENDING_VAL)
314 			cpu_relax();
315 	}
316 
317 	/*
318 	 * trylock || pending
319 	 *
320 	 * 0,0,0 -> 0,0,1 ; trylock
321 	 * 0,0,1 -> 0,1,1 ; pending
322 	 */
323 	for (;;) {
324 		/*
325 		 * If we observe any contention; queue.
326 		 */
327 		if (val & ~_Q_LOCKED_MASK)
328 			goto queue;
329 
330 		new = _Q_LOCKED_VAL;
331 		if (val == new)
332 			new |= _Q_PENDING_VAL;
333 
334 		/*
335 		 * Acquire semantic is required here as the function may
336 		 * return immediately if the lock was free.
337 		 */
338 		old = atomic_cmpxchg_acquire(&lock->val, val, new);
339 		if (old == val)
340 			break;
341 
342 		val = old;
343 	}
344 
345 	/*
346 	 * we won the trylock
347 	 */
348 	if (new == _Q_LOCKED_VAL)
349 		return;
350 
351 	/*
352 	 * we're pending, wait for the owner to go away.
353 	 *
354 	 * *,1,1 -> *,1,0
355 	 *
356 	 * this wait loop must be a load-acquire such that we match the
357 	 * store-release that clears the locked bit and create lock
358 	 * sequentiality; this is because not all clear_pending_set_locked()
359 	 * implementations imply full barriers.
360 	 */
361 	smp_cond_acquire(!(atomic_read(&lock->val) & _Q_LOCKED_MASK));
362 
363 	/*
364 	 * take ownership and clear the pending bit.
365 	 *
366 	 * *,1,0 -> *,0,1
367 	 */
368 	clear_pending_set_locked(lock);
369 	return;
370 
371 	/*
372 	 * End of pending bit optimistic spinning and beginning of MCS
373 	 * queuing.
374 	 */
375 queue:
376 	node = this_cpu_ptr(&mcs_nodes[0]);
377 	idx = node->count++;
378 	tail = encode_tail(smp_processor_id(), idx);
379 
380 	node += idx;
381 	node->locked = 0;
382 	node->next = NULL;
383 	pv_init_node(node);
384 
385 	/*
386 	 * We touched a (possibly) cold cacheline in the per-cpu queue node;
387 	 * attempt the trylock once more in the hope someone let go while we
388 	 * weren't watching.
389 	 */
390 	if (queued_spin_trylock(lock))
391 		goto release;
392 
393 	/*
394 	 * We have already touched the queueing cacheline; don't bother with
395 	 * pending stuff.
396 	 *
397 	 * p,*,* -> n,*,*
398 	 */
399 	old = xchg_tail(lock, tail);
400 	next = NULL;
401 
402 	/*
403 	 * if there was a previous node; link it and wait until reaching the
404 	 * head of the waitqueue.
405 	 */
406 	if (old & _Q_TAIL_MASK) {
407 		prev = decode_tail(old);
408 		WRITE_ONCE(prev->next, node);
409 
410 		pv_wait_node(node, prev);
411 		arch_mcs_spin_lock_contended(&node->locked);
412 
413 		/*
414 		 * While waiting for the MCS lock, the next pointer may have
415 		 * been set by another lock waiter. We optimistically load
416 		 * the next pointer & prefetch the cacheline for writing
417 		 * to reduce latency in the upcoming MCS unlock operation.
418 		 */
419 		next = READ_ONCE(node->next);
420 		if (next)
421 			prefetchw(next);
422 	}
423 
424 	/*
425 	 * we're at the head of the waitqueue, wait for the owner & pending to
426 	 * go away.
427 	 *
428 	 * *,x,y -> *,0,0
429 	 *
430 	 * this wait loop must use a load-acquire such that we match the
431 	 * store-release that clears the locked bit and create lock
432 	 * sequentiality; this is because the set_locked() function below
433 	 * does not imply a full barrier.
434 	 *
435 	 * The PV pv_wait_head_or_lock function, if active, will acquire
436 	 * the lock and return a non-zero value. So we have to skip the
437 	 * smp_cond_acquire() call. As the next PV queue head hasn't been
438 	 * designated yet, there is no way for the locked value to become
439 	 * _Q_SLOW_VAL. So both the set_locked() and the
440 	 * atomic_cmpxchg_relaxed() calls will be safe.
441 	 *
442 	 * If PV isn't active, 0 will be returned instead.
443 	 *
444 	 */
445 	if ((val = pv_wait_head_or_lock(lock, node)))
446 		goto locked;
447 
448 	smp_cond_acquire(!((val = atomic_read(&lock->val)) & _Q_LOCKED_PENDING_MASK));
449 
450 locked:
451 	/*
452 	 * claim the lock:
453 	 *
454 	 * n,0,0 -> 0,0,1 : lock, uncontended
455 	 * *,0,0 -> *,0,1 : lock, contended
456 	 *
457 	 * If the queue head is the only one in the queue (lock value == tail),
458 	 * clear the tail code and grab the lock. Otherwise, we only need
459 	 * to grab the lock.
460 	 */
461 	for (;;) {
462 		/* In the PV case we might already have _Q_LOCKED_VAL set */
463 		if ((val & _Q_TAIL_MASK) != tail) {
464 			set_locked(lock);
465 			break;
466 		}
467 		/*
468 		 * The smp_cond_acquire() call above has provided the necessary
469 		 * acquire semantics required for locking. At most two
470 		 * iterations of this loop may be ran.
471 		 */
472 		old = atomic_cmpxchg_relaxed(&lock->val, val, _Q_LOCKED_VAL);
473 		if (old == val)
474 			goto release;	/* No contention */
475 
476 		val = old;
477 	}
478 
479 	/*
480 	 * contended path; wait for next if not observed yet, release.
481 	 */
482 	if (!next) {
483 		while (!(next = READ_ONCE(node->next)))
484 			cpu_relax();
485 	}
486 
487 	arch_mcs_spin_unlock_contended(&next->locked);
488 	pv_kick_node(lock, next);
489 
490 release:
491 	/*
492 	 * release the node
493 	 */
494 	this_cpu_dec(mcs_nodes[0].count);
495 }
496 EXPORT_SYMBOL(queued_spin_lock_slowpath);
497 
498 /*
499  * Generate the paravirt code for queued_spin_unlock_slowpath().
500  */
501 #if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS)
502 #define _GEN_PV_LOCK_SLOWPATH
503 
504 #undef  pv_enabled
505 #define pv_enabled()	true
506 
507 #undef pv_init_node
508 #undef pv_wait_node
509 #undef pv_kick_node
510 #undef pv_wait_head_or_lock
511 
512 #undef  queued_spin_lock_slowpath
513 #define queued_spin_lock_slowpath	__pv_queued_spin_lock_slowpath
514 
515 #include "qspinlock_paravirt.h"
516 #include "qspinlock.c"
517 
518 #endif
519