xref: /openbmc/linux/kernel/locking/qspinlock.c (revision 423997ff)
1 /*
2  * Queued spinlock
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
15  * (C) Copyright 2013-2014,2018 Red Hat, Inc.
16  * (C) Copyright 2015 Intel Corp.
17  * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP
18  *
19  * Authors: Waiman Long <longman@redhat.com>
20  *          Peter Zijlstra <peterz@infradead.org>
21  */
22 
23 #ifndef _GEN_PV_LOCK_SLOWPATH
24 
25 #include <linux/smp.h>
26 #include <linux/bug.h>
27 #include <linux/cpumask.h>
28 #include <linux/percpu.h>
29 #include <linux/hardirq.h>
30 #include <linux/mutex.h>
31 #include <linux/prefetch.h>
32 #include <asm/byteorder.h>
33 #include <asm/qspinlock.h>
34 
35 /*
36  * Include queued spinlock statistics code
37  */
38 #include "qspinlock_stat.h"
39 
40 /*
41  * The basic principle of a queue-based spinlock can best be understood
42  * by studying a classic queue-based spinlock implementation called the
43  * MCS lock. The paper below provides a good description for this kind
44  * of lock.
45  *
46  * http://www.cise.ufl.edu/tr/DOC/REP-1992-71.pdf
47  *
48  * This queued spinlock implementation is based on the MCS lock, however to make
49  * it fit the 4 bytes we assume spinlock_t to be, and preserve its existing
50  * API, we must modify it somehow.
51  *
52  * In particular; where the traditional MCS lock consists of a tail pointer
53  * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to
54  * unlock the next pending (next->locked), we compress both these: {tail,
55  * next->locked} into a single u32 value.
56  *
57  * Since a spinlock disables recursion of its own context and there is a limit
58  * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there
59  * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now
60  * we can encode the tail by combining the 2-bit nesting level with the cpu
61  * number. With one byte for the lock value and 3 bytes for the tail, only a
62  * 32-bit word is now needed. Even though we only need 1 bit for the lock,
63  * we extend it to a full byte to achieve better performance for architectures
64  * that support atomic byte write.
65  *
66  * We also change the first spinner to spin on the lock bit instead of its
67  * node; whereby avoiding the need to carry a node from lock to unlock, and
68  * preserving existing lock API. This also makes the unlock code simpler and
69  * faster.
70  *
71  * N.B. The current implementation only supports architectures that allow
72  *      atomic operations on smaller 8-bit and 16-bit data types.
73  *
74  */
75 
76 #include "mcs_spinlock.h"
77 #define MAX_NODES	4
78 
79 /*
80  * On 64-bit architectures, the mcs_spinlock structure will be 16 bytes in
81  * size and four of them will fit nicely in one 64-byte cacheline. For
82  * pvqspinlock, however, we need more space for extra data. To accommodate
83  * that, we insert two more long words to pad it up to 32 bytes. IOW, only
84  * two of them can fit in a cacheline in this case. That is OK as it is rare
85  * to have more than 2 levels of slowpath nesting in actual use. We don't
86  * want to penalize pvqspinlocks to optimize for a rare case in native
87  * qspinlocks.
88  */
89 struct qnode {
90 	struct mcs_spinlock mcs;
91 #ifdef CONFIG_PARAVIRT_SPINLOCKS
92 	long reserved[2];
93 #endif
94 };
95 
96 /*
97  * The pending bit spinning loop count.
98  * This heuristic is used to limit the number of lockword accesses
99  * made by atomic_cond_read_relaxed when waiting for the lock to
100  * transition out of the "== _Q_PENDING_VAL" state. We don't spin
101  * indefinitely because there's no guarantee that we'll make forward
102  * progress.
103  */
104 #ifndef _Q_PENDING_LOOPS
105 #define _Q_PENDING_LOOPS	1
106 #endif
107 
108 /*
109  * Per-CPU queue node structures; we can never have more than 4 nested
110  * contexts: task, softirq, hardirq, nmi.
111  *
112  * Exactly fits one 64-byte cacheline on a 64-bit architecture.
113  *
114  * PV doubles the storage and uses the second cacheline for PV state.
115  */
116 static DEFINE_PER_CPU_ALIGNED(struct qnode, qnodes[MAX_NODES]);
117 
118 /*
119  * We must be able to distinguish between no-tail and the tail at 0:0,
120  * therefore increment the cpu number by one.
121  */
122 
123 static inline __pure u32 encode_tail(int cpu, int idx)
124 {
125 	u32 tail;
126 
127 	tail  = (cpu + 1) << _Q_TAIL_CPU_OFFSET;
128 	tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */
129 
130 	return tail;
131 }
132 
133 static inline __pure struct mcs_spinlock *decode_tail(u32 tail)
134 {
135 	int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1;
136 	int idx = (tail &  _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET;
137 
138 	return per_cpu_ptr(&qnodes[idx].mcs, cpu);
139 }
140 
141 static inline __pure
142 struct mcs_spinlock *grab_mcs_node(struct mcs_spinlock *base, int idx)
143 {
144 	return &((struct qnode *)base + idx)->mcs;
145 }
146 
147 #define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)
148 
149 #if _Q_PENDING_BITS == 8
150 /**
151  * clear_pending - clear the pending bit.
152  * @lock: Pointer to queued spinlock structure
153  *
154  * *,1,* -> *,0,*
155  */
156 static __always_inline void clear_pending(struct qspinlock *lock)
157 {
158 	WRITE_ONCE(lock->pending, 0);
159 }
160 
161 /**
162  * clear_pending_set_locked - take ownership and clear the pending bit.
163  * @lock: Pointer to queued spinlock structure
164  *
165  * *,1,0 -> *,0,1
166  *
167  * Lock stealing is not allowed if this function is used.
168  */
169 static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
170 {
171 	WRITE_ONCE(lock->locked_pending, _Q_LOCKED_VAL);
172 }
173 
174 /*
175  * xchg_tail - Put in the new queue tail code word & retrieve previous one
176  * @lock : Pointer to queued spinlock structure
177  * @tail : The new queue tail code word
178  * Return: The previous queue tail code word
179  *
180  * xchg(lock, tail), which heads an address dependency
181  *
182  * p,*,* -> n,*,* ; prev = xchg(lock, node)
183  */
184 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
185 {
186 	/*
187 	 * We can use relaxed semantics since the caller ensures that the
188 	 * MCS node is properly initialized before updating the tail.
189 	 */
190 	return (u32)xchg_relaxed(&lock->tail,
191 				 tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
192 }
193 
194 #else /* _Q_PENDING_BITS == 8 */
195 
196 /**
197  * clear_pending - clear the pending bit.
198  * @lock: Pointer to queued spinlock structure
199  *
200  * *,1,* -> *,0,*
201  */
202 static __always_inline void clear_pending(struct qspinlock *lock)
203 {
204 	atomic_andnot(_Q_PENDING_VAL, &lock->val);
205 }
206 
207 /**
208  * clear_pending_set_locked - take ownership and clear the pending bit.
209  * @lock: Pointer to queued spinlock structure
210  *
211  * *,1,0 -> *,0,1
212  */
213 static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
214 {
215 	atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val);
216 }
217 
218 /**
219  * xchg_tail - Put in the new queue tail code word & retrieve previous one
220  * @lock : Pointer to queued spinlock structure
221  * @tail : The new queue tail code word
222  * Return: The previous queue tail code word
223  *
224  * xchg(lock, tail)
225  *
226  * p,*,* -> n,*,* ; prev = xchg(lock, node)
227  */
228 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
229 {
230 	u32 old, new, val = atomic_read(&lock->val);
231 
232 	for (;;) {
233 		new = (val & _Q_LOCKED_PENDING_MASK) | tail;
234 		/*
235 		 * We can use relaxed semantics since the caller ensures that
236 		 * the MCS node is properly initialized before updating the
237 		 * tail.
238 		 */
239 		old = atomic_cmpxchg_relaxed(&lock->val, val, new);
240 		if (old == val)
241 			break;
242 
243 		val = old;
244 	}
245 	return old;
246 }
247 #endif /* _Q_PENDING_BITS == 8 */
248 
249 /**
250  * queued_fetch_set_pending_acquire - fetch the whole lock value and set pending
251  * @lock : Pointer to queued spinlock structure
252  * Return: The previous lock value
253  *
254  * *,*,* -> *,1,*
255  */
256 #ifndef queued_fetch_set_pending_acquire
257 static __always_inline u32 queued_fetch_set_pending_acquire(struct qspinlock *lock)
258 {
259 	return atomic_fetch_or_acquire(_Q_PENDING_VAL, &lock->val);
260 }
261 #endif
262 
263 /**
264  * set_locked - Set the lock bit and own the lock
265  * @lock: Pointer to queued spinlock structure
266  *
267  * *,*,0 -> *,0,1
268  */
269 static __always_inline void set_locked(struct qspinlock *lock)
270 {
271 	WRITE_ONCE(lock->locked, _Q_LOCKED_VAL);
272 }
273 
274 
275 /*
276  * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for
277  * all the PV callbacks.
278  */
279 
280 static __always_inline void __pv_init_node(struct mcs_spinlock *node) { }
281 static __always_inline void __pv_wait_node(struct mcs_spinlock *node,
282 					   struct mcs_spinlock *prev) { }
283 static __always_inline void __pv_kick_node(struct qspinlock *lock,
284 					   struct mcs_spinlock *node) { }
285 static __always_inline u32  __pv_wait_head_or_lock(struct qspinlock *lock,
286 						   struct mcs_spinlock *node)
287 						   { return 0; }
288 
289 #define pv_enabled()		false
290 
291 #define pv_init_node		__pv_init_node
292 #define pv_wait_node		__pv_wait_node
293 #define pv_kick_node		__pv_kick_node
294 #define pv_wait_head_or_lock	__pv_wait_head_or_lock
295 
296 #ifdef CONFIG_PARAVIRT_SPINLOCKS
297 #define queued_spin_lock_slowpath	native_queued_spin_lock_slowpath
298 #endif
299 
300 #endif /* _GEN_PV_LOCK_SLOWPATH */
301 
302 /**
303  * queued_spin_lock_slowpath - acquire the queued spinlock
304  * @lock: Pointer to queued spinlock structure
305  * @val: Current value of the queued spinlock 32-bit word
306  *
307  * (queue tail, pending bit, lock value)
308  *
309  *              fast     :    slow                                  :    unlock
310  *                       :                                          :
311  * uncontended  (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0)
312  *                       :       | ^--------.------.             /  :
313  *                       :       v           \      \            |  :
314  * pending               :    (0,1,1) +--> (0,1,0)   \           |  :
315  *                       :       | ^--'              |           |  :
316  *                       :       v                   |           |  :
317  * uncontended           :    (n,x,y) +--> (n,0,0) --'           |  :
318  *   queue               :       | ^--'                          |  :
319  *                       :       v                               |  :
320  * contended             :    (*,x,y) +--> (*,0,0) ---> (*,0,1) -'  :
321  *   queue               :         ^--'                             :
322  */
323 void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
324 {
325 	struct mcs_spinlock *prev, *next, *node;
326 	u32 old, tail;
327 	int idx;
328 
329 	BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
330 
331 	if (pv_enabled())
332 		goto pv_queue;
333 
334 	if (virt_spin_lock(lock))
335 		return;
336 
337 	/*
338 	 * Wait for in-progress pending->locked hand-overs with a bounded
339 	 * number of spins so that we guarantee forward progress.
340 	 *
341 	 * 0,1,0 -> 0,0,1
342 	 */
343 	if (val == _Q_PENDING_VAL) {
344 		int cnt = _Q_PENDING_LOOPS;
345 		val = atomic_cond_read_relaxed(&lock->val,
346 					       (VAL != _Q_PENDING_VAL) || !cnt--);
347 	}
348 
349 	/*
350 	 * If we observe any contention; queue.
351 	 */
352 	if (val & ~_Q_LOCKED_MASK)
353 		goto queue;
354 
355 	/*
356 	 * trylock || pending
357 	 *
358 	 * 0,0,* -> 0,1,* -> 0,0,1 pending, trylock
359 	 */
360 	val = queued_fetch_set_pending_acquire(lock);
361 
362 	/*
363 	 * If we observe contention, there is a concurrent locker.
364 	 *
365 	 * Undo and queue; our setting of PENDING might have made the
366 	 * n,0,0 -> 0,0,0 transition fail and it will now be waiting
367 	 * on @next to become !NULL.
368 	 */
369 	if (unlikely(val & ~_Q_LOCKED_MASK)) {
370 
371 		/* Undo PENDING if we set it. */
372 		if (!(val & _Q_PENDING_MASK))
373 			clear_pending(lock);
374 
375 		goto queue;
376 	}
377 
378 	/*
379 	 * We're pending, wait for the owner to go away.
380 	 *
381 	 * 0,1,1 -> 0,1,0
382 	 *
383 	 * this wait loop must be a load-acquire such that we match the
384 	 * store-release that clears the locked bit and create lock
385 	 * sequentiality; this is because not all
386 	 * clear_pending_set_locked() implementations imply full
387 	 * barriers.
388 	 */
389 	if (val & _Q_LOCKED_MASK)
390 		atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_MASK));
391 
392 	/*
393 	 * take ownership and clear the pending bit.
394 	 *
395 	 * 0,1,0 -> 0,0,1
396 	 */
397 	clear_pending_set_locked(lock);
398 	lockevent_inc(lock_pending);
399 	return;
400 
401 	/*
402 	 * End of pending bit optimistic spinning and beginning of MCS
403 	 * queuing.
404 	 */
405 queue:
406 	lockevent_inc(lock_slowpath);
407 pv_queue:
408 	node = this_cpu_ptr(&qnodes[0].mcs);
409 	idx = node->count++;
410 	tail = encode_tail(smp_processor_id(), idx);
411 
412 	/*
413 	 * 4 nodes are allocated based on the assumption that there will
414 	 * not be nested NMIs taking spinlocks. That may not be true in
415 	 * some architectures even though the chance of needing more than
416 	 * 4 nodes will still be extremely unlikely. When that happens,
417 	 * we fall back to spinning on the lock directly without using
418 	 * any MCS node. This is not the most elegant solution, but is
419 	 * simple enough.
420 	 */
421 	if (unlikely(idx >= MAX_NODES)) {
422 		lockevent_inc(lock_no_node);
423 		while (!queued_spin_trylock(lock))
424 			cpu_relax();
425 		goto release;
426 	}
427 
428 	node = grab_mcs_node(node, idx);
429 
430 	/*
431 	 * Keep counts of non-zero index values:
432 	 */
433 	lockevent_cond_inc(lock_use_node2 + idx - 1, idx);
434 
435 	/*
436 	 * Ensure that we increment the head node->count before initialising
437 	 * the actual node. If the compiler is kind enough to reorder these
438 	 * stores, then an IRQ could overwrite our assignments.
439 	 */
440 	barrier();
441 
442 	node->locked = 0;
443 	node->next = NULL;
444 	pv_init_node(node);
445 
446 	/*
447 	 * We touched a (possibly) cold cacheline in the per-cpu queue node;
448 	 * attempt the trylock once more in the hope someone let go while we
449 	 * weren't watching.
450 	 */
451 	if (queued_spin_trylock(lock))
452 		goto release;
453 
454 	/*
455 	 * Ensure that the initialisation of @node is complete before we
456 	 * publish the updated tail via xchg_tail() and potentially link
457 	 * @node into the waitqueue via WRITE_ONCE(prev->next, node) below.
458 	 */
459 	smp_wmb();
460 
461 	/*
462 	 * Publish the updated tail.
463 	 * We have already touched the queueing cacheline; don't bother with
464 	 * pending stuff.
465 	 *
466 	 * p,*,* -> n,*,*
467 	 */
468 	old = xchg_tail(lock, tail);
469 	next = NULL;
470 
471 	/*
472 	 * if there was a previous node; link it and wait until reaching the
473 	 * head of the waitqueue.
474 	 */
475 	if (old & _Q_TAIL_MASK) {
476 		prev = decode_tail(old);
477 
478 		/* Link @node into the waitqueue. */
479 		WRITE_ONCE(prev->next, node);
480 
481 		pv_wait_node(node, prev);
482 		arch_mcs_spin_lock_contended(&node->locked);
483 
484 		/*
485 		 * While waiting for the MCS lock, the next pointer may have
486 		 * been set by another lock waiter. We optimistically load
487 		 * the next pointer & prefetch the cacheline for writing
488 		 * to reduce latency in the upcoming MCS unlock operation.
489 		 */
490 		next = READ_ONCE(node->next);
491 		if (next)
492 			prefetchw(next);
493 	}
494 
495 	/*
496 	 * we're at the head of the waitqueue, wait for the owner & pending to
497 	 * go away.
498 	 *
499 	 * *,x,y -> *,0,0
500 	 *
501 	 * this wait loop must use a load-acquire such that we match the
502 	 * store-release that clears the locked bit and create lock
503 	 * sequentiality; this is because the set_locked() function below
504 	 * does not imply a full barrier.
505 	 *
506 	 * The PV pv_wait_head_or_lock function, if active, will acquire
507 	 * the lock and return a non-zero value. So we have to skip the
508 	 * atomic_cond_read_acquire() call. As the next PV queue head hasn't
509 	 * been designated yet, there is no way for the locked value to become
510 	 * _Q_SLOW_VAL. So both the set_locked() and the
511 	 * atomic_cmpxchg_relaxed() calls will be safe.
512 	 *
513 	 * If PV isn't active, 0 will be returned instead.
514 	 *
515 	 */
516 	if ((val = pv_wait_head_or_lock(lock, node)))
517 		goto locked;
518 
519 	val = atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_PENDING_MASK));
520 
521 locked:
522 	/*
523 	 * claim the lock:
524 	 *
525 	 * n,0,0 -> 0,0,1 : lock, uncontended
526 	 * *,*,0 -> *,*,1 : lock, contended
527 	 *
528 	 * If the queue head is the only one in the queue (lock value == tail)
529 	 * and nobody is pending, clear the tail code and grab the lock.
530 	 * Otherwise, we only need to grab the lock.
531 	 */
532 
533 	/*
534 	 * In the PV case we might already have _Q_LOCKED_VAL set, because
535 	 * of lock stealing; therefore we must also allow:
536 	 *
537 	 * n,0,1 -> 0,0,1
538 	 *
539 	 * Note: at this point: (val & _Q_PENDING_MASK) == 0, because of the
540 	 *       above wait condition, therefore any concurrent setting of
541 	 *       PENDING will make the uncontended transition fail.
542 	 */
543 	if ((val & _Q_TAIL_MASK) == tail) {
544 		if (atomic_try_cmpxchg_relaxed(&lock->val, &val, _Q_LOCKED_VAL))
545 			goto release; /* No contention */
546 	}
547 
548 	/*
549 	 * Either somebody is queued behind us or _Q_PENDING_VAL got set
550 	 * which will then detect the remaining tail and queue behind us
551 	 * ensuring we'll see a @next.
552 	 */
553 	set_locked(lock);
554 
555 	/*
556 	 * contended path; wait for next if not observed yet, release.
557 	 */
558 	if (!next)
559 		next = smp_cond_load_relaxed(&node->next, (VAL));
560 
561 	arch_mcs_spin_unlock_contended(&next->locked);
562 	pv_kick_node(lock, next);
563 
564 release:
565 	/*
566 	 * release the node
567 	 */
568 	__this_cpu_dec(qnodes[0].mcs.count);
569 }
570 EXPORT_SYMBOL(queued_spin_lock_slowpath);
571 
572 /*
573  * Generate the paravirt code for queued_spin_unlock_slowpath().
574  */
575 #if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS)
576 #define _GEN_PV_LOCK_SLOWPATH
577 
578 #undef  pv_enabled
579 #define pv_enabled()	true
580 
581 #undef pv_init_node
582 #undef pv_wait_node
583 #undef pv_kick_node
584 #undef pv_wait_head_or_lock
585 
586 #undef  queued_spin_lock_slowpath
587 #define queued_spin_lock_slowpath	__pv_queued_spin_lock_slowpath
588 
589 #include "qspinlock_paravirt.h"
590 #include "qspinlock.c"
591 
592 #endif
593