xref: /openbmc/linux/kernel/locking/qspinlock.c (revision 23c2b932)
1 /*
2  * Queued spinlock
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
15  * (C) Copyright 2013-2014 Red Hat, Inc.
16  * (C) Copyright 2015 Intel Corp.
17  * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP
18  *
19  * Authors: Waiman Long <waiman.long@hpe.com>
20  *          Peter Zijlstra <peterz@infradead.org>
21  */
22 
23 #ifndef _GEN_PV_LOCK_SLOWPATH
24 
25 #include <linux/smp.h>
26 #include <linux/bug.h>
27 #include <linux/cpumask.h>
28 #include <linux/percpu.h>
29 #include <linux/hardirq.h>
30 #include <linux/mutex.h>
31 #include <asm/byteorder.h>
32 #include <asm/qspinlock.h>
33 
34 /*
35  * The basic principle of a queue-based spinlock can best be understood
36  * by studying a classic queue-based spinlock implementation called the
37  * MCS lock. The paper below provides a good description for this kind
38  * of lock.
39  *
40  * http://www.cise.ufl.edu/tr/DOC/REP-1992-71.pdf
41  *
42  * This queued spinlock implementation is based on the MCS lock, however to make
43  * it fit the 4 bytes we assume spinlock_t to be, and preserve its existing
44  * API, we must modify it somehow.
45  *
46  * In particular; where the traditional MCS lock consists of a tail pointer
47  * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to
48  * unlock the next pending (next->locked), we compress both these: {tail,
49  * next->locked} into a single u32 value.
50  *
51  * Since a spinlock disables recursion of its own context and there is a limit
52  * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there
53  * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now
54  * we can encode the tail by combining the 2-bit nesting level with the cpu
55  * number. With one byte for the lock value and 3 bytes for the tail, only a
56  * 32-bit word is now needed. Even though we only need 1 bit for the lock,
57  * we extend it to a full byte to achieve better performance for architectures
58  * that support atomic byte write.
59  *
60  * We also change the first spinner to spin on the lock bit instead of its
61  * node; whereby avoiding the need to carry a node from lock to unlock, and
62  * preserving existing lock API. This also makes the unlock code simpler and
63  * faster.
64  *
65  * N.B. The current implementation only supports architectures that allow
66  *      atomic operations on smaller 8-bit and 16-bit data types.
67  *
68  */
69 
70 #include "mcs_spinlock.h"
71 
72 #ifdef CONFIG_PARAVIRT_SPINLOCKS
73 #define MAX_NODES	8
74 #else
75 #define MAX_NODES	4
76 #endif
77 
78 /*
79  * Per-CPU queue node structures; we can never have more than 4 nested
80  * contexts: task, softirq, hardirq, nmi.
81  *
82  * Exactly fits one 64-byte cacheline on a 64-bit architecture.
83  *
84  * PV doubles the storage and uses the second cacheline for PV state.
85  */
86 static DEFINE_PER_CPU_ALIGNED(struct mcs_spinlock, mcs_nodes[MAX_NODES]);
87 
88 /*
89  * We must be able to distinguish between no-tail and the tail at 0:0,
90  * therefore increment the cpu number by one.
91  */
92 
93 static inline u32 encode_tail(int cpu, int idx)
94 {
95 	u32 tail;
96 
97 #ifdef CONFIG_DEBUG_SPINLOCK
98 	BUG_ON(idx > 3);
99 #endif
100 	tail  = (cpu + 1) << _Q_TAIL_CPU_OFFSET;
101 	tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */
102 
103 	return tail;
104 }
105 
106 static inline struct mcs_spinlock *decode_tail(u32 tail)
107 {
108 	int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1;
109 	int idx = (tail &  _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET;
110 
111 	return per_cpu_ptr(&mcs_nodes[idx], cpu);
112 }
113 
114 #define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)
115 
116 /*
117  * By using the whole 2nd least significant byte for the pending bit, we
118  * can allow better optimization of the lock acquisition for the pending
119  * bit holder.
120  *
121  * This internal structure is also used by the set_locked function which
122  * is not restricted to _Q_PENDING_BITS == 8.
123  */
124 struct __qspinlock {
125 	union {
126 		atomic_t val;
127 #ifdef __LITTLE_ENDIAN
128 		struct {
129 			u8	locked;
130 			u8	pending;
131 		};
132 		struct {
133 			u16	locked_pending;
134 			u16	tail;
135 		};
136 #else
137 		struct {
138 			u16	tail;
139 			u16	locked_pending;
140 		};
141 		struct {
142 			u8	reserved[2];
143 			u8	pending;
144 			u8	locked;
145 		};
146 #endif
147 	};
148 };
149 
150 #if _Q_PENDING_BITS == 8
151 /**
152  * clear_pending_set_locked - take ownership and clear the pending bit.
153  * @lock: Pointer to queued spinlock structure
154  *
155  * *,1,0 -> *,0,1
156  *
157  * Lock stealing is not allowed if this function is used.
158  */
159 static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
160 {
161 	struct __qspinlock *l = (void *)lock;
162 
163 	WRITE_ONCE(l->locked_pending, _Q_LOCKED_VAL);
164 }
165 
166 /*
167  * xchg_tail - Put in the new queue tail code word & retrieve previous one
168  * @lock : Pointer to queued spinlock structure
169  * @tail : The new queue tail code word
170  * Return: The previous queue tail code word
171  *
172  * xchg(lock, tail)
173  *
174  * p,*,* -> n,*,* ; prev = xchg(lock, node)
175  */
176 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
177 {
178 	struct __qspinlock *l = (void *)lock;
179 
180 	/*
181 	 * Use release semantics to make sure that the MCS node is properly
182 	 * initialized before changing the tail code.
183 	 */
184 	return (u32)xchg_release(&l->tail,
185 				 tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
186 }
187 
188 #else /* _Q_PENDING_BITS == 8 */
189 
190 /**
191  * clear_pending_set_locked - take ownership and clear the pending bit.
192  * @lock: Pointer to queued spinlock structure
193  *
194  * *,1,0 -> *,0,1
195  */
196 static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
197 {
198 	atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val);
199 }
200 
201 /**
202  * xchg_tail - Put in the new queue tail code word & retrieve previous one
203  * @lock : Pointer to queued spinlock structure
204  * @tail : The new queue tail code word
205  * Return: The previous queue tail code word
206  *
207  * xchg(lock, tail)
208  *
209  * p,*,* -> n,*,* ; prev = xchg(lock, node)
210  */
211 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
212 {
213 	u32 old, new, val = atomic_read(&lock->val);
214 
215 	for (;;) {
216 		new = (val & _Q_LOCKED_PENDING_MASK) | tail;
217 		/*
218 		 * Use release semantics to make sure that the MCS node is
219 		 * properly initialized before changing the tail code.
220 		 */
221 		old = atomic_cmpxchg_release(&lock->val, val, new);
222 		if (old == val)
223 			break;
224 
225 		val = old;
226 	}
227 	return old;
228 }
229 #endif /* _Q_PENDING_BITS == 8 */
230 
231 /**
232  * set_locked - Set the lock bit and own the lock
233  * @lock: Pointer to queued spinlock structure
234  *
235  * *,*,0 -> *,0,1
236  */
237 static __always_inline void set_locked(struct qspinlock *lock)
238 {
239 	struct __qspinlock *l = (void *)lock;
240 
241 	WRITE_ONCE(l->locked, _Q_LOCKED_VAL);
242 }
243 
244 
245 /*
246  * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for
247  * all the PV callbacks.
248  */
249 
250 static __always_inline void __pv_init_node(struct mcs_spinlock *node) { }
251 static __always_inline void __pv_wait_node(struct mcs_spinlock *node,
252 					   struct mcs_spinlock *prev) { }
253 static __always_inline void __pv_kick_node(struct qspinlock *lock,
254 					   struct mcs_spinlock *node) { }
255 static __always_inline u32  __pv_wait_head_or_lock(struct qspinlock *lock,
256 						   struct mcs_spinlock *node)
257 						   { return 0; }
258 
259 #define pv_enabled()		false
260 
261 #define pv_init_node		__pv_init_node
262 #define pv_wait_node		__pv_wait_node
263 #define pv_kick_node		__pv_kick_node
264 #define pv_wait_head_or_lock	__pv_wait_head_or_lock
265 
266 #ifdef CONFIG_PARAVIRT_SPINLOCKS
267 #define queued_spin_lock_slowpath	native_queued_spin_lock_slowpath
268 #endif
269 
270 /*
271  * queued_spin_lock_slowpath() can (load-)ACQUIRE the lock before
272  * issuing an _unordered_ store to set _Q_LOCKED_VAL.
273  *
274  * This means that the store can be delayed, but no later than the
275  * store-release from the unlock. This means that simply observing
276  * _Q_LOCKED_VAL is not sufficient to determine if the lock is acquired.
277  *
278  * There are two paths that can issue the unordered store:
279  *
280  *  (1) clear_pending_set_locked():	*,1,0 -> *,0,1
281  *
282  *  (2) set_locked():			t,0,0 -> t,0,1 ; t != 0
283  *      atomic_cmpxchg_relaxed():	t,0,0 -> 0,0,1
284  *
285  * However, in both cases we have other !0 state we've set before to queue
286  * ourseves:
287  *
288  * For (1) we have the atomic_cmpxchg_acquire() that set _Q_PENDING_VAL, our
289  * load is constrained by that ACQUIRE to not pass before that, and thus must
290  * observe the store.
291  *
292  * For (2) we have a more intersting scenario. We enqueue ourselves using
293  * xchg_tail(), which ends up being a RELEASE. This in itself is not
294  * sufficient, however that is followed by an smp_cond_acquire() on the same
295  * word, giving a RELEASE->ACQUIRE ordering. This again constrains our load and
296  * guarantees we must observe that store.
297  *
298  * Therefore both cases have other !0 state that is observable before the
299  * unordered locked byte store comes through. This means we can use that to
300  * wait for the lock store, and then wait for an unlock.
301  */
302 #ifndef queued_spin_unlock_wait
303 void queued_spin_unlock_wait(struct qspinlock *lock)
304 {
305 	u32 val;
306 
307 	for (;;) {
308 		val = atomic_read(&lock->val);
309 
310 		if (!val) /* not locked, we're done */
311 			goto done;
312 
313 		if (val & _Q_LOCKED_MASK) /* locked, go wait for unlock */
314 			break;
315 
316 		/* not locked, but pending, wait until we observe the lock */
317 		cpu_relax();
318 	}
319 
320 	/* any unlock is good */
321 	while (atomic_read(&lock->val) & _Q_LOCKED_MASK)
322 		cpu_relax();
323 
324 done:
325 	smp_rmb(); /* CTRL + RMB -> ACQUIRE */
326 }
327 EXPORT_SYMBOL(queued_spin_unlock_wait);
328 #endif
329 
330 #endif /* _GEN_PV_LOCK_SLOWPATH */
331 
332 /**
333  * queued_spin_lock_slowpath - acquire the queued spinlock
334  * @lock: Pointer to queued spinlock structure
335  * @val: Current value of the queued spinlock 32-bit word
336  *
337  * (queue tail, pending bit, lock value)
338  *
339  *              fast     :    slow                                  :    unlock
340  *                       :                                          :
341  * uncontended  (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0)
342  *                       :       | ^--------.------.             /  :
343  *                       :       v           \      \            |  :
344  * pending               :    (0,1,1) +--> (0,1,0)   \           |  :
345  *                       :       | ^--'              |           |  :
346  *                       :       v                   |           |  :
347  * uncontended           :    (n,x,y) +--> (n,0,0) --'           |  :
348  *   queue               :       | ^--'                          |  :
349  *                       :       v                               |  :
350  * contended             :    (*,x,y) +--> (*,0,0) ---> (*,0,1) -'  :
351  *   queue               :         ^--'                             :
352  */
353 void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
354 {
355 	struct mcs_spinlock *prev, *next, *node;
356 	u32 new, old, tail;
357 	int idx;
358 
359 	BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
360 
361 	if (pv_enabled())
362 		goto queue;
363 
364 	if (virt_spin_lock(lock))
365 		return;
366 
367 	/*
368 	 * wait for in-progress pending->locked hand-overs
369 	 *
370 	 * 0,1,0 -> 0,0,1
371 	 */
372 	if (val == _Q_PENDING_VAL) {
373 		while ((val = atomic_read(&lock->val)) == _Q_PENDING_VAL)
374 			cpu_relax();
375 	}
376 
377 	/*
378 	 * trylock || pending
379 	 *
380 	 * 0,0,0 -> 0,0,1 ; trylock
381 	 * 0,0,1 -> 0,1,1 ; pending
382 	 */
383 	for (;;) {
384 		/*
385 		 * If we observe any contention; queue.
386 		 */
387 		if (val & ~_Q_LOCKED_MASK)
388 			goto queue;
389 
390 		new = _Q_LOCKED_VAL;
391 		if (val == new)
392 			new |= _Q_PENDING_VAL;
393 
394 		/*
395 		 * Acquire semantic is required here as the function may
396 		 * return immediately if the lock was free.
397 		 */
398 		old = atomic_cmpxchg_acquire(&lock->val, val, new);
399 		if (old == val)
400 			break;
401 
402 		val = old;
403 	}
404 
405 	/*
406 	 * we won the trylock
407 	 */
408 	if (new == _Q_LOCKED_VAL)
409 		return;
410 
411 	/*
412 	 * we're pending, wait for the owner to go away.
413 	 *
414 	 * *,1,1 -> *,1,0
415 	 *
416 	 * this wait loop must be a load-acquire such that we match the
417 	 * store-release that clears the locked bit and create lock
418 	 * sequentiality; this is because not all clear_pending_set_locked()
419 	 * implementations imply full barriers.
420 	 */
421 	smp_cond_acquire(!(atomic_read(&lock->val) & _Q_LOCKED_MASK));
422 
423 	/*
424 	 * take ownership and clear the pending bit.
425 	 *
426 	 * *,1,0 -> *,0,1
427 	 */
428 	clear_pending_set_locked(lock);
429 	return;
430 
431 	/*
432 	 * End of pending bit optimistic spinning and beginning of MCS
433 	 * queuing.
434 	 */
435 queue:
436 	node = this_cpu_ptr(&mcs_nodes[0]);
437 	idx = node->count++;
438 	tail = encode_tail(smp_processor_id(), idx);
439 
440 	node += idx;
441 	node->locked = 0;
442 	node->next = NULL;
443 	pv_init_node(node);
444 
445 	/*
446 	 * We touched a (possibly) cold cacheline in the per-cpu queue node;
447 	 * attempt the trylock once more in the hope someone let go while we
448 	 * weren't watching.
449 	 */
450 	if (queued_spin_trylock(lock))
451 		goto release;
452 
453 	/*
454 	 * We have already touched the queueing cacheline; don't bother with
455 	 * pending stuff.
456 	 *
457 	 * p,*,* -> n,*,*
458 	 */
459 	old = xchg_tail(lock, tail);
460 	next = NULL;
461 
462 	/*
463 	 * if there was a previous node; link it and wait until reaching the
464 	 * head of the waitqueue.
465 	 */
466 	if (old & _Q_TAIL_MASK) {
467 		prev = decode_tail(old);
468 		WRITE_ONCE(prev->next, node);
469 
470 		pv_wait_node(node, prev);
471 		arch_mcs_spin_lock_contended(&node->locked);
472 
473 		/*
474 		 * While waiting for the MCS lock, the next pointer may have
475 		 * been set by another lock waiter. We optimistically load
476 		 * the next pointer & prefetch the cacheline for writing
477 		 * to reduce latency in the upcoming MCS unlock operation.
478 		 */
479 		next = READ_ONCE(node->next);
480 		if (next)
481 			prefetchw(next);
482 	}
483 
484 	/*
485 	 * we're at the head of the waitqueue, wait for the owner & pending to
486 	 * go away.
487 	 *
488 	 * *,x,y -> *,0,0
489 	 *
490 	 * this wait loop must use a load-acquire such that we match the
491 	 * store-release that clears the locked bit and create lock
492 	 * sequentiality; this is because the set_locked() function below
493 	 * does not imply a full barrier.
494 	 *
495 	 * The PV pv_wait_head_or_lock function, if active, will acquire
496 	 * the lock and return a non-zero value. So we have to skip the
497 	 * smp_cond_acquire() call. As the next PV queue head hasn't been
498 	 * designated yet, there is no way for the locked value to become
499 	 * _Q_SLOW_VAL. So both the set_locked() and the
500 	 * atomic_cmpxchg_relaxed() calls will be safe.
501 	 *
502 	 * If PV isn't active, 0 will be returned instead.
503 	 *
504 	 */
505 	if ((val = pv_wait_head_or_lock(lock, node)))
506 		goto locked;
507 
508 	smp_cond_acquire(!((val = atomic_read(&lock->val)) & _Q_LOCKED_PENDING_MASK));
509 
510 locked:
511 	/*
512 	 * claim the lock:
513 	 *
514 	 * n,0,0 -> 0,0,1 : lock, uncontended
515 	 * *,0,0 -> *,0,1 : lock, contended
516 	 *
517 	 * If the queue head is the only one in the queue (lock value == tail),
518 	 * clear the tail code and grab the lock. Otherwise, we only need
519 	 * to grab the lock.
520 	 */
521 	for (;;) {
522 		/* In the PV case we might already have _Q_LOCKED_VAL set */
523 		if ((val & _Q_TAIL_MASK) != tail) {
524 			set_locked(lock);
525 			break;
526 		}
527 		/*
528 		 * The smp_cond_acquire() call above has provided the necessary
529 		 * acquire semantics required for locking. At most two
530 		 * iterations of this loop may be ran.
531 		 */
532 		old = atomic_cmpxchg_relaxed(&lock->val, val, _Q_LOCKED_VAL);
533 		if (old == val)
534 			goto release;	/* No contention */
535 
536 		val = old;
537 	}
538 
539 	/*
540 	 * contended path; wait for next if not observed yet, release.
541 	 */
542 	if (!next) {
543 		while (!(next = READ_ONCE(node->next)))
544 			cpu_relax();
545 	}
546 
547 	arch_mcs_spin_unlock_contended(&next->locked);
548 	pv_kick_node(lock, next);
549 
550 release:
551 	/*
552 	 * release the node
553 	 */
554 	this_cpu_dec(mcs_nodes[0].count);
555 }
556 EXPORT_SYMBOL(queued_spin_lock_slowpath);
557 
558 /*
559  * Generate the paravirt code for queued_spin_unlock_slowpath().
560  */
561 #if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS)
562 #define _GEN_PV_LOCK_SLOWPATH
563 
564 #undef  pv_enabled
565 #define pv_enabled()	true
566 
567 #undef pv_init_node
568 #undef pv_wait_node
569 #undef pv_kick_node
570 #undef pv_wait_head_or_lock
571 
572 #undef  queued_spin_lock_slowpath
573 #define queued_spin_lock_slowpath	__pv_queued_spin_lock_slowpath
574 
575 #include "qspinlock_paravirt.h"
576 #include "qspinlock.c"
577 
578 #endif
579