xref: /openbmc/linux/kernel/locking/percpu-rwsem.c (revision 8730046c)
1 #include <linux/atomic.h>
2 #include <linux/rwsem.h>
3 #include <linux/percpu.h>
4 #include <linux/wait.h>
5 #include <linux/lockdep.h>
6 #include <linux/percpu-rwsem.h>
7 #include <linux/rcupdate.h>
8 #include <linux/sched.h>
9 #include <linux/errno.h>
10 
11 int __percpu_init_rwsem(struct percpu_rw_semaphore *sem,
12 			const char *name, struct lock_class_key *rwsem_key)
13 {
14 	sem->read_count = alloc_percpu(int);
15 	if (unlikely(!sem->read_count))
16 		return -ENOMEM;
17 
18 	/* ->rw_sem represents the whole percpu_rw_semaphore for lockdep */
19 	rcu_sync_init(&sem->rss, RCU_SCHED_SYNC);
20 	__init_rwsem(&sem->rw_sem, name, rwsem_key);
21 	init_waitqueue_head(&sem->writer);
22 	sem->readers_block = 0;
23 	return 0;
24 }
25 EXPORT_SYMBOL_GPL(__percpu_init_rwsem);
26 
27 void percpu_free_rwsem(struct percpu_rw_semaphore *sem)
28 {
29 	/*
30 	 * XXX: temporary kludge. The error path in alloc_super()
31 	 * assumes that percpu_free_rwsem() is safe after kzalloc().
32 	 */
33 	if (!sem->read_count)
34 		return;
35 
36 	rcu_sync_dtor(&sem->rss);
37 	free_percpu(sem->read_count);
38 	sem->read_count = NULL; /* catch use after free bugs */
39 }
40 EXPORT_SYMBOL_GPL(percpu_free_rwsem);
41 
42 int __percpu_down_read(struct percpu_rw_semaphore *sem, int try)
43 {
44 	/*
45 	 * Due to having preemption disabled the decrement happens on
46 	 * the same CPU as the increment, avoiding the
47 	 * increment-on-one-CPU-and-decrement-on-another problem.
48 	 *
49 	 * If the reader misses the writer's assignment of readers_block, then
50 	 * the writer is guaranteed to see the reader's increment.
51 	 *
52 	 * Conversely, any readers that increment their sem->read_count after
53 	 * the writer looks are guaranteed to see the readers_block value,
54 	 * which in turn means that they are guaranteed to immediately
55 	 * decrement their sem->read_count, so that it doesn't matter that the
56 	 * writer missed them.
57 	 */
58 
59 	smp_mb(); /* A matches D */
60 
61 	/*
62 	 * If !readers_block the critical section starts here, matched by the
63 	 * release in percpu_up_write().
64 	 */
65 	if (likely(!smp_load_acquire(&sem->readers_block)))
66 		return 1;
67 
68 	/*
69 	 * Per the above comment; we still have preemption disabled and
70 	 * will thus decrement on the same CPU as we incremented.
71 	 */
72 	__percpu_up_read(sem);
73 
74 	if (try)
75 		return 0;
76 
77 	/*
78 	 * We either call schedule() in the wait, or we'll fall through
79 	 * and reschedule on the preempt_enable() in percpu_down_read().
80 	 */
81 	preempt_enable_no_resched();
82 
83 	/*
84 	 * Avoid lockdep for the down/up_read() we already have them.
85 	 */
86 	__down_read(&sem->rw_sem);
87 	this_cpu_inc(*sem->read_count);
88 	__up_read(&sem->rw_sem);
89 
90 	preempt_disable();
91 	return 1;
92 }
93 EXPORT_SYMBOL_GPL(__percpu_down_read);
94 
95 void __percpu_up_read(struct percpu_rw_semaphore *sem)
96 {
97 	smp_mb(); /* B matches C */
98 	/*
99 	 * In other words, if they see our decrement (presumably to aggregate
100 	 * zero, as that is the only time it matters) they will also see our
101 	 * critical section.
102 	 */
103 	__this_cpu_dec(*sem->read_count);
104 
105 	/* Prod writer to recheck readers_active */
106 	wake_up(&sem->writer);
107 }
108 EXPORT_SYMBOL_GPL(__percpu_up_read);
109 
110 #define per_cpu_sum(var)						\
111 ({									\
112 	typeof(var) __sum = 0;						\
113 	int cpu;							\
114 	compiletime_assert_atomic_type(__sum);				\
115 	for_each_possible_cpu(cpu)					\
116 		__sum += per_cpu(var, cpu);				\
117 	__sum;								\
118 })
119 
120 /*
121  * Return true if the modular sum of the sem->read_count per-CPU variable is
122  * zero.  If this sum is zero, then it is stable due to the fact that if any
123  * newly arriving readers increment a given counter, they will immediately
124  * decrement that same counter.
125  */
126 static bool readers_active_check(struct percpu_rw_semaphore *sem)
127 {
128 	if (per_cpu_sum(*sem->read_count) != 0)
129 		return false;
130 
131 	/*
132 	 * If we observed the decrement; ensure we see the entire critical
133 	 * section.
134 	 */
135 
136 	smp_mb(); /* C matches B */
137 
138 	return true;
139 }
140 
141 void percpu_down_write(struct percpu_rw_semaphore *sem)
142 {
143 	/* Notify readers to take the slow path. */
144 	rcu_sync_enter(&sem->rss);
145 
146 	down_write(&sem->rw_sem);
147 
148 	/*
149 	 * Notify new readers to block; up until now, and thus throughout the
150 	 * longish rcu_sync_enter() above, new readers could still come in.
151 	 */
152 	WRITE_ONCE(sem->readers_block, 1);
153 
154 	smp_mb(); /* D matches A */
155 
156 	/*
157 	 * If they don't see our writer of readers_block, then we are
158 	 * guaranteed to see their sem->read_count increment, and therefore
159 	 * will wait for them.
160 	 */
161 
162 	/* Wait for all now active readers to complete. */
163 	wait_event(sem->writer, readers_active_check(sem));
164 }
165 EXPORT_SYMBOL_GPL(percpu_down_write);
166 
167 void percpu_up_write(struct percpu_rw_semaphore *sem)
168 {
169 	/*
170 	 * Signal the writer is done, no fast path yet.
171 	 *
172 	 * One reason that we cannot just immediately flip to readers_fast is
173 	 * that new readers might fail to see the results of this writer's
174 	 * critical section.
175 	 *
176 	 * Therefore we force it through the slow path which guarantees an
177 	 * acquire and thereby guarantees the critical section's consistency.
178 	 */
179 	smp_store_release(&sem->readers_block, 0);
180 
181 	/*
182 	 * Release the write lock, this will allow readers back in the game.
183 	 */
184 	up_write(&sem->rw_sem);
185 
186 	/*
187 	 * Once this completes (at least one RCU-sched grace period hence) the
188 	 * reader fast path will be available again. Safe to use outside the
189 	 * exclusive write lock because its counting.
190 	 */
191 	rcu_sync_exit(&sem->rss);
192 }
193 EXPORT_SYMBOL_GPL(percpu_up_write);
194