xref: /openbmc/linux/kernel/locking/mutex.c (revision fa60c065)
1 /*
2  * kernel/locking/mutex.c
3  *
4  * Mutexes: blocking mutual exclusion locks
5  *
6  * Started by Ingo Molnar:
7  *
8  *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9  *
10  * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11  * David Howells for suggestions and improvements.
12  *
13  *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14  *    from the -rt tree, where it was originally implemented for rtmutexes
15  *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16  *    and Sven Dietrich.
17  *
18  * Also see Documentation/locking/mutex-design.txt.
19  */
20 #include <linux/mutex.h>
21 #include <linux/ww_mutex.h>
22 #include <linux/sched.h>
23 #include <linux/sched/rt.h>
24 #include <linux/export.h>
25 #include <linux/spinlock.h>
26 #include <linux/interrupt.h>
27 #include <linux/debug_locks.h>
28 #include "mcs_spinlock.h"
29 
30 /*
31  * In the DEBUG case we are using the "NULL fastpath" for mutexes,
32  * which forces all calls into the slowpath:
33  */
34 #ifdef CONFIG_DEBUG_MUTEXES
35 # include "mutex-debug.h"
36 # include <asm-generic/mutex-null.h>
37 /*
38  * Must be 0 for the debug case so we do not do the unlock outside of the
39  * wait_lock region. debug_mutex_unlock() will do the actual unlock in this
40  * case.
41  */
42 # undef __mutex_slowpath_needs_to_unlock
43 # define  __mutex_slowpath_needs_to_unlock()	0
44 #else
45 # include "mutex.h"
46 # include <asm/mutex.h>
47 #endif
48 
49 void
50 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
51 {
52 	atomic_set(&lock->count, 1);
53 	spin_lock_init(&lock->wait_lock);
54 	INIT_LIST_HEAD(&lock->wait_list);
55 	mutex_clear_owner(lock);
56 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
57 	osq_lock_init(&lock->osq);
58 #endif
59 
60 	debug_mutex_init(lock, name, key);
61 }
62 
63 EXPORT_SYMBOL(__mutex_init);
64 
65 #ifndef CONFIG_DEBUG_LOCK_ALLOC
66 /*
67  * We split the mutex lock/unlock logic into separate fastpath and
68  * slowpath functions, to reduce the register pressure on the fastpath.
69  * We also put the fastpath first in the kernel image, to make sure the
70  * branch is predicted by the CPU as default-untaken.
71  */
72 __visible void __sched __mutex_lock_slowpath(atomic_t *lock_count);
73 
74 /**
75  * mutex_lock - acquire the mutex
76  * @lock: the mutex to be acquired
77  *
78  * Lock the mutex exclusively for this task. If the mutex is not
79  * available right now, it will sleep until it can get it.
80  *
81  * The mutex must later on be released by the same task that
82  * acquired it. Recursive locking is not allowed. The task
83  * may not exit without first unlocking the mutex. Also, kernel
84  * memory where the mutex resides mutex must not be freed with
85  * the mutex still locked. The mutex must first be initialized
86  * (or statically defined) before it can be locked. memset()-ing
87  * the mutex to 0 is not allowed.
88  *
89  * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
90  *   checks that will enforce the restrictions and will also do
91  *   deadlock debugging. )
92  *
93  * This function is similar to (but not equivalent to) down().
94  */
95 void __sched mutex_lock(struct mutex *lock)
96 {
97 	might_sleep();
98 	/*
99 	 * The locking fastpath is the 1->0 transition from
100 	 * 'unlocked' into 'locked' state.
101 	 */
102 	__mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
103 	mutex_set_owner(lock);
104 }
105 
106 EXPORT_SYMBOL(mutex_lock);
107 #endif
108 
109 static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
110 						   struct ww_acquire_ctx *ww_ctx)
111 {
112 #ifdef CONFIG_DEBUG_MUTEXES
113 	/*
114 	 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
115 	 * but released with a normal mutex_unlock in this call.
116 	 *
117 	 * This should never happen, always use ww_mutex_unlock.
118 	 */
119 	DEBUG_LOCKS_WARN_ON(ww->ctx);
120 
121 	/*
122 	 * Not quite done after calling ww_acquire_done() ?
123 	 */
124 	DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
125 
126 	if (ww_ctx->contending_lock) {
127 		/*
128 		 * After -EDEADLK you tried to
129 		 * acquire a different ww_mutex? Bad!
130 		 */
131 		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
132 
133 		/*
134 		 * You called ww_mutex_lock after receiving -EDEADLK,
135 		 * but 'forgot' to unlock everything else first?
136 		 */
137 		DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
138 		ww_ctx->contending_lock = NULL;
139 	}
140 
141 	/*
142 	 * Naughty, using a different class will lead to undefined behavior!
143 	 */
144 	DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
145 #endif
146 	ww_ctx->acquired++;
147 }
148 
149 /*
150  * after acquiring lock with fastpath or when we lost out in contested
151  * slowpath, set ctx and wake up any waiters so they can recheck.
152  *
153  * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
154  * as the fastpath and opportunistic spinning are disabled in that case.
155  */
156 static __always_inline void
157 ww_mutex_set_context_fastpath(struct ww_mutex *lock,
158 			       struct ww_acquire_ctx *ctx)
159 {
160 	unsigned long flags;
161 	struct mutex_waiter *cur;
162 
163 	ww_mutex_lock_acquired(lock, ctx);
164 
165 	lock->ctx = ctx;
166 
167 	/*
168 	 * The lock->ctx update should be visible on all cores before
169 	 * the atomic read is done, otherwise contended waiters might be
170 	 * missed. The contended waiters will either see ww_ctx == NULL
171 	 * and keep spinning, or it will acquire wait_lock, add itself
172 	 * to waiter list and sleep.
173 	 */
174 	smp_mb(); /* ^^^ */
175 
176 	/*
177 	 * Check if lock is contended, if not there is nobody to wake up
178 	 */
179 	if (likely(atomic_read(&lock->base.count) == 0))
180 		return;
181 
182 	/*
183 	 * Uh oh, we raced in fastpath, wake up everyone in this case,
184 	 * so they can see the new lock->ctx.
185 	 */
186 	spin_lock_mutex(&lock->base.wait_lock, flags);
187 	list_for_each_entry(cur, &lock->base.wait_list, list) {
188 		debug_mutex_wake_waiter(&lock->base, cur);
189 		wake_up_process(cur->task);
190 	}
191 	spin_unlock_mutex(&lock->base.wait_lock, flags);
192 }
193 
194 
195 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
196 /*
197  * In order to avoid a stampede of mutex spinners from acquiring the mutex
198  * more or less simultaneously, the spinners need to acquire a MCS lock
199  * first before spinning on the owner field.
200  *
201  */
202 
203 /*
204  * Mutex spinning code migrated from kernel/sched/core.c
205  */
206 
207 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
208 {
209 	if (lock->owner != owner)
210 		return false;
211 
212 	/*
213 	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
214 	 * lock->owner still matches owner, if that fails, owner might
215 	 * point to free()d memory, if it still matches, the rcu_read_lock()
216 	 * ensures the memory stays valid.
217 	 */
218 	barrier();
219 
220 	return owner->on_cpu;
221 }
222 
223 /*
224  * Look out! "owner" is an entirely speculative pointer
225  * access and not reliable.
226  */
227 static noinline
228 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
229 {
230 	rcu_read_lock();
231 	while (owner_running(lock, owner)) {
232 		if (need_resched())
233 			break;
234 
235 		cpu_relax_lowlatency();
236 	}
237 	rcu_read_unlock();
238 
239 	/*
240 	 * We break out the loop above on need_resched() and when the
241 	 * owner changed, which is a sign for heavy contention. Return
242 	 * success only when lock->owner is NULL.
243 	 */
244 	return lock->owner == NULL;
245 }
246 
247 /*
248  * Initial check for entering the mutex spinning loop
249  */
250 static inline int mutex_can_spin_on_owner(struct mutex *lock)
251 {
252 	struct task_struct *owner;
253 	int retval = 1;
254 
255 	if (need_resched())
256 		return 0;
257 
258 	rcu_read_lock();
259 	owner = ACCESS_ONCE(lock->owner);
260 	if (owner)
261 		retval = owner->on_cpu;
262 	rcu_read_unlock();
263 	/*
264 	 * if lock->owner is not set, the mutex owner may have just acquired
265 	 * it and not set the owner yet or the mutex has been released.
266 	 */
267 	return retval;
268 }
269 
270 /*
271  * Atomically try to take the lock when it is available
272  */
273 static inline bool mutex_try_to_acquire(struct mutex *lock)
274 {
275 	return !mutex_is_locked(lock) &&
276 		(atomic_cmpxchg(&lock->count, 1, 0) == 1);
277 }
278 
279 /*
280  * Optimistic spinning.
281  *
282  * We try to spin for acquisition when we find that the lock owner
283  * is currently running on a (different) CPU and while we don't
284  * need to reschedule. The rationale is that if the lock owner is
285  * running, it is likely to release the lock soon.
286  *
287  * Since this needs the lock owner, and this mutex implementation
288  * doesn't track the owner atomically in the lock field, we need to
289  * track it non-atomically.
290  *
291  * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
292  * to serialize everything.
293  *
294  * The mutex spinners are queued up using MCS lock so that only one
295  * spinner can compete for the mutex. However, if mutex spinning isn't
296  * going to happen, there is no point in going through the lock/unlock
297  * overhead.
298  *
299  * Returns true when the lock was taken, otherwise false, indicating
300  * that we need to jump to the slowpath and sleep.
301  */
302 static bool mutex_optimistic_spin(struct mutex *lock,
303 				  struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
304 {
305 	struct task_struct *task = current;
306 
307 	if (!mutex_can_spin_on_owner(lock))
308 		goto done;
309 
310 	if (!osq_lock(&lock->osq))
311 		goto done;
312 
313 	while (true) {
314 		struct task_struct *owner;
315 
316 		if (use_ww_ctx && ww_ctx->acquired > 0) {
317 			struct ww_mutex *ww;
318 
319 			ww = container_of(lock, struct ww_mutex, base);
320 			/*
321 			 * If ww->ctx is set the contents are undefined, only
322 			 * by acquiring wait_lock there is a guarantee that
323 			 * they are not invalid when reading.
324 			 *
325 			 * As such, when deadlock detection needs to be
326 			 * performed the optimistic spinning cannot be done.
327 			 */
328 			if (ACCESS_ONCE(ww->ctx))
329 				break;
330 		}
331 
332 		/*
333 		 * If there's an owner, wait for it to either
334 		 * release the lock or go to sleep.
335 		 */
336 		owner = ACCESS_ONCE(lock->owner);
337 		if (owner && !mutex_spin_on_owner(lock, owner))
338 			break;
339 
340 		/* Try to acquire the mutex if it is unlocked. */
341 		if (mutex_try_to_acquire(lock)) {
342 			lock_acquired(&lock->dep_map, ip);
343 
344 			if (use_ww_ctx) {
345 				struct ww_mutex *ww;
346 				ww = container_of(lock, struct ww_mutex, base);
347 
348 				ww_mutex_set_context_fastpath(ww, ww_ctx);
349 			}
350 
351 			mutex_set_owner(lock);
352 			osq_unlock(&lock->osq);
353 			return true;
354 		}
355 
356 		/*
357 		 * When there's no owner, we might have preempted between the
358 		 * owner acquiring the lock and setting the owner field. If
359 		 * we're an RT task that will live-lock because we won't let
360 		 * the owner complete.
361 		 */
362 		if (!owner && (need_resched() || rt_task(task)))
363 			break;
364 
365 		/*
366 		 * The cpu_relax() call is a compiler barrier which forces
367 		 * everything in this loop to be re-loaded. We don't need
368 		 * memory barriers as we'll eventually observe the right
369 		 * values at the cost of a few extra spins.
370 		 */
371 		cpu_relax_lowlatency();
372 	}
373 
374 	osq_unlock(&lock->osq);
375 done:
376 	/*
377 	 * If we fell out of the spin path because of need_resched(),
378 	 * reschedule now, before we try-lock the mutex. This avoids getting
379 	 * scheduled out right after we obtained the mutex.
380 	 */
381 	if (need_resched()) {
382 		/*
383 		 * We _should_ have TASK_RUNNING here, but just in case
384 		 * we do not, make it so, otherwise we might get stuck.
385 		 */
386 		__set_current_state(TASK_RUNNING);
387 		schedule_preempt_disabled();
388 	}
389 
390 	return false;
391 }
392 #else
393 static bool mutex_optimistic_spin(struct mutex *lock,
394 				  struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
395 {
396 	return false;
397 }
398 #endif
399 
400 __visible __used noinline
401 void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
402 
403 /**
404  * mutex_unlock - release the mutex
405  * @lock: the mutex to be released
406  *
407  * Unlock a mutex that has been locked by this task previously.
408  *
409  * This function must not be used in interrupt context. Unlocking
410  * of a not locked mutex is not allowed.
411  *
412  * This function is similar to (but not equivalent to) up().
413  */
414 void __sched mutex_unlock(struct mutex *lock)
415 {
416 	/*
417 	 * The unlocking fastpath is the 0->1 transition from 'locked'
418 	 * into 'unlocked' state:
419 	 */
420 #ifndef CONFIG_DEBUG_MUTEXES
421 	/*
422 	 * When debugging is enabled we must not clear the owner before time,
423 	 * the slow path will always be taken, and that clears the owner field
424 	 * after verifying that it was indeed current.
425 	 */
426 	mutex_clear_owner(lock);
427 #endif
428 	__mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
429 }
430 
431 EXPORT_SYMBOL(mutex_unlock);
432 
433 /**
434  * ww_mutex_unlock - release the w/w mutex
435  * @lock: the mutex to be released
436  *
437  * Unlock a mutex that has been locked by this task previously with any of the
438  * ww_mutex_lock* functions (with or without an acquire context). It is
439  * forbidden to release the locks after releasing the acquire context.
440  *
441  * This function must not be used in interrupt context. Unlocking
442  * of a unlocked mutex is not allowed.
443  */
444 void __sched ww_mutex_unlock(struct ww_mutex *lock)
445 {
446 	/*
447 	 * The unlocking fastpath is the 0->1 transition from 'locked'
448 	 * into 'unlocked' state:
449 	 */
450 	if (lock->ctx) {
451 #ifdef CONFIG_DEBUG_MUTEXES
452 		DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
453 #endif
454 		if (lock->ctx->acquired > 0)
455 			lock->ctx->acquired--;
456 		lock->ctx = NULL;
457 	}
458 
459 #ifndef CONFIG_DEBUG_MUTEXES
460 	/*
461 	 * When debugging is enabled we must not clear the owner before time,
462 	 * the slow path will always be taken, and that clears the owner field
463 	 * after verifying that it was indeed current.
464 	 */
465 	mutex_clear_owner(&lock->base);
466 #endif
467 	__mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
468 }
469 EXPORT_SYMBOL(ww_mutex_unlock);
470 
471 static inline int __sched
472 __mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
473 {
474 	struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
475 	struct ww_acquire_ctx *hold_ctx = ACCESS_ONCE(ww->ctx);
476 
477 	if (!hold_ctx)
478 		return 0;
479 
480 	if (unlikely(ctx == hold_ctx))
481 		return -EALREADY;
482 
483 	if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
484 	    (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
485 #ifdef CONFIG_DEBUG_MUTEXES
486 		DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
487 		ctx->contending_lock = ww;
488 #endif
489 		return -EDEADLK;
490 	}
491 
492 	return 0;
493 }
494 
495 /*
496  * Lock a mutex (possibly interruptible), slowpath:
497  */
498 static __always_inline int __sched
499 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
500 		    struct lockdep_map *nest_lock, unsigned long ip,
501 		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
502 {
503 	struct task_struct *task = current;
504 	struct mutex_waiter waiter;
505 	unsigned long flags;
506 	int ret;
507 
508 	preempt_disable();
509 	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
510 
511 	if (mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx)) {
512 		/* got the lock, yay! */
513 		preempt_enable();
514 		return 0;
515 	}
516 
517 	spin_lock_mutex(&lock->wait_lock, flags);
518 
519 	/*
520 	 * Once more, try to acquire the lock. Only try-lock the mutex if
521 	 * it is unlocked to reduce unnecessary xchg() operations.
522 	 */
523 	if (!mutex_is_locked(lock) && (atomic_xchg(&lock->count, 0) == 1))
524 		goto skip_wait;
525 
526 	debug_mutex_lock_common(lock, &waiter);
527 	debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
528 
529 	/* add waiting tasks to the end of the waitqueue (FIFO): */
530 	list_add_tail(&waiter.list, &lock->wait_list);
531 	waiter.task = task;
532 
533 	lock_contended(&lock->dep_map, ip);
534 
535 	for (;;) {
536 		/*
537 		 * Lets try to take the lock again - this is needed even if
538 		 * we get here for the first time (shortly after failing to
539 		 * acquire the lock), to make sure that we get a wakeup once
540 		 * it's unlocked. Later on, if we sleep, this is the
541 		 * operation that gives us the lock. We xchg it to -1, so
542 		 * that when we release the lock, we properly wake up the
543 		 * other waiters. We only attempt the xchg if the count is
544 		 * non-negative in order to avoid unnecessary xchg operations:
545 		 */
546 		if (atomic_read(&lock->count) >= 0 &&
547 		    (atomic_xchg(&lock->count, -1) == 1))
548 			break;
549 
550 		/*
551 		 * got a signal? (This code gets eliminated in the
552 		 * TASK_UNINTERRUPTIBLE case.)
553 		 */
554 		if (unlikely(signal_pending_state(state, task))) {
555 			ret = -EINTR;
556 			goto err;
557 		}
558 
559 		if (use_ww_ctx && ww_ctx->acquired > 0) {
560 			ret = __mutex_lock_check_stamp(lock, ww_ctx);
561 			if (ret)
562 				goto err;
563 		}
564 
565 		__set_task_state(task, state);
566 
567 		/* didn't get the lock, go to sleep: */
568 		spin_unlock_mutex(&lock->wait_lock, flags);
569 		schedule_preempt_disabled();
570 		spin_lock_mutex(&lock->wait_lock, flags);
571 	}
572 	mutex_remove_waiter(lock, &waiter, current_thread_info());
573 	/* set it to 0 if there are no waiters left: */
574 	if (likely(list_empty(&lock->wait_list)))
575 		atomic_set(&lock->count, 0);
576 	debug_mutex_free_waiter(&waiter);
577 
578 skip_wait:
579 	/* got the lock - cleanup and rejoice! */
580 	lock_acquired(&lock->dep_map, ip);
581 	mutex_set_owner(lock);
582 
583 	if (use_ww_ctx) {
584 		struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
585 		struct mutex_waiter *cur;
586 
587 		/*
588 		 * This branch gets optimized out for the common case,
589 		 * and is only important for ww_mutex_lock.
590 		 */
591 		ww_mutex_lock_acquired(ww, ww_ctx);
592 		ww->ctx = ww_ctx;
593 
594 		/*
595 		 * Give any possible sleeping processes the chance to wake up,
596 		 * so they can recheck if they have to back off.
597 		 */
598 		list_for_each_entry(cur, &lock->wait_list, list) {
599 			debug_mutex_wake_waiter(lock, cur);
600 			wake_up_process(cur->task);
601 		}
602 	}
603 
604 	spin_unlock_mutex(&lock->wait_lock, flags);
605 	preempt_enable();
606 	return 0;
607 
608 err:
609 	mutex_remove_waiter(lock, &waiter, task_thread_info(task));
610 	spin_unlock_mutex(&lock->wait_lock, flags);
611 	debug_mutex_free_waiter(&waiter);
612 	mutex_release(&lock->dep_map, 1, ip);
613 	preempt_enable();
614 	return ret;
615 }
616 
617 #ifdef CONFIG_DEBUG_LOCK_ALLOC
618 void __sched
619 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
620 {
621 	might_sleep();
622 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
623 			    subclass, NULL, _RET_IP_, NULL, 0);
624 }
625 
626 EXPORT_SYMBOL_GPL(mutex_lock_nested);
627 
628 void __sched
629 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
630 {
631 	might_sleep();
632 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
633 			    0, nest, _RET_IP_, NULL, 0);
634 }
635 
636 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
637 
638 int __sched
639 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
640 {
641 	might_sleep();
642 	return __mutex_lock_common(lock, TASK_KILLABLE,
643 				   subclass, NULL, _RET_IP_, NULL, 0);
644 }
645 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
646 
647 int __sched
648 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
649 {
650 	might_sleep();
651 	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
652 				   subclass, NULL, _RET_IP_, NULL, 0);
653 }
654 
655 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
656 
657 static inline int
658 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
659 {
660 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
661 	unsigned tmp;
662 
663 	if (ctx->deadlock_inject_countdown-- == 0) {
664 		tmp = ctx->deadlock_inject_interval;
665 		if (tmp > UINT_MAX/4)
666 			tmp = UINT_MAX;
667 		else
668 			tmp = tmp*2 + tmp + tmp/2;
669 
670 		ctx->deadlock_inject_interval = tmp;
671 		ctx->deadlock_inject_countdown = tmp;
672 		ctx->contending_lock = lock;
673 
674 		ww_mutex_unlock(lock);
675 
676 		return -EDEADLK;
677 	}
678 #endif
679 
680 	return 0;
681 }
682 
683 int __sched
684 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
685 {
686 	int ret;
687 
688 	might_sleep();
689 	ret =  __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
690 				   0, &ctx->dep_map, _RET_IP_, ctx, 1);
691 	if (!ret && ctx->acquired > 1)
692 		return ww_mutex_deadlock_injection(lock, ctx);
693 
694 	return ret;
695 }
696 EXPORT_SYMBOL_GPL(__ww_mutex_lock);
697 
698 int __sched
699 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
700 {
701 	int ret;
702 
703 	might_sleep();
704 	ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
705 				  0, &ctx->dep_map, _RET_IP_, ctx, 1);
706 
707 	if (!ret && ctx->acquired > 1)
708 		return ww_mutex_deadlock_injection(lock, ctx);
709 
710 	return ret;
711 }
712 EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
713 
714 #endif
715 
716 /*
717  * Release the lock, slowpath:
718  */
719 static inline void
720 __mutex_unlock_common_slowpath(struct mutex *lock, int nested)
721 {
722 	unsigned long flags;
723 
724 	/*
725 	 * As a performance measurement, release the lock before doing other
726 	 * wakeup related duties to follow. This allows other tasks to acquire
727 	 * the lock sooner, while still handling cleanups in past unlock calls.
728 	 * This can be done as we do not enforce strict equivalence between the
729 	 * mutex counter and wait_list.
730 	 *
731 	 *
732 	 * Some architectures leave the lock unlocked in the fastpath failure
733 	 * case, others need to leave it locked. In the later case we have to
734 	 * unlock it here - as the lock counter is currently 0 or negative.
735 	 */
736 	if (__mutex_slowpath_needs_to_unlock())
737 		atomic_set(&lock->count, 1);
738 
739 	spin_lock_mutex(&lock->wait_lock, flags);
740 	mutex_release(&lock->dep_map, nested, _RET_IP_);
741 	debug_mutex_unlock(lock);
742 
743 	if (!list_empty(&lock->wait_list)) {
744 		/* get the first entry from the wait-list: */
745 		struct mutex_waiter *waiter =
746 				list_entry(lock->wait_list.next,
747 					   struct mutex_waiter, list);
748 
749 		debug_mutex_wake_waiter(lock, waiter);
750 
751 		wake_up_process(waiter->task);
752 	}
753 
754 	spin_unlock_mutex(&lock->wait_lock, flags);
755 }
756 
757 /*
758  * Release the lock, slowpath:
759  */
760 __visible void
761 __mutex_unlock_slowpath(atomic_t *lock_count)
762 {
763 	struct mutex *lock = container_of(lock_count, struct mutex, count);
764 
765 	__mutex_unlock_common_slowpath(lock, 1);
766 }
767 
768 #ifndef CONFIG_DEBUG_LOCK_ALLOC
769 /*
770  * Here come the less common (and hence less performance-critical) APIs:
771  * mutex_lock_interruptible() and mutex_trylock().
772  */
773 static noinline int __sched
774 __mutex_lock_killable_slowpath(struct mutex *lock);
775 
776 static noinline int __sched
777 __mutex_lock_interruptible_slowpath(struct mutex *lock);
778 
779 /**
780  * mutex_lock_interruptible - acquire the mutex, interruptible
781  * @lock: the mutex to be acquired
782  *
783  * Lock the mutex like mutex_lock(), and return 0 if the mutex has
784  * been acquired or sleep until the mutex becomes available. If a
785  * signal arrives while waiting for the lock then this function
786  * returns -EINTR.
787  *
788  * This function is similar to (but not equivalent to) down_interruptible().
789  */
790 int __sched mutex_lock_interruptible(struct mutex *lock)
791 {
792 	int ret;
793 
794 	might_sleep();
795 	ret =  __mutex_fastpath_lock_retval(&lock->count);
796 	if (likely(!ret)) {
797 		mutex_set_owner(lock);
798 		return 0;
799 	} else
800 		return __mutex_lock_interruptible_slowpath(lock);
801 }
802 
803 EXPORT_SYMBOL(mutex_lock_interruptible);
804 
805 int __sched mutex_lock_killable(struct mutex *lock)
806 {
807 	int ret;
808 
809 	might_sleep();
810 	ret = __mutex_fastpath_lock_retval(&lock->count);
811 	if (likely(!ret)) {
812 		mutex_set_owner(lock);
813 		return 0;
814 	} else
815 		return __mutex_lock_killable_slowpath(lock);
816 }
817 EXPORT_SYMBOL(mutex_lock_killable);
818 
819 __visible void __sched
820 __mutex_lock_slowpath(atomic_t *lock_count)
821 {
822 	struct mutex *lock = container_of(lock_count, struct mutex, count);
823 
824 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
825 			    NULL, _RET_IP_, NULL, 0);
826 }
827 
828 static noinline int __sched
829 __mutex_lock_killable_slowpath(struct mutex *lock)
830 {
831 	return __mutex_lock_common(lock, TASK_KILLABLE, 0,
832 				   NULL, _RET_IP_, NULL, 0);
833 }
834 
835 static noinline int __sched
836 __mutex_lock_interruptible_slowpath(struct mutex *lock)
837 {
838 	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
839 				   NULL, _RET_IP_, NULL, 0);
840 }
841 
842 static noinline int __sched
843 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
844 {
845 	return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
846 				   NULL, _RET_IP_, ctx, 1);
847 }
848 
849 static noinline int __sched
850 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
851 					    struct ww_acquire_ctx *ctx)
852 {
853 	return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
854 				   NULL, _RET_IP_, ctx, 1);
855 }
856 
857 #endif
858 
859 /*
860  * Spinlock based trylock, we take the spinlock and check whether we
861  * can get the lock:
862  */
863 static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
864 {
865 	struct mutex *lock = container_of(lock_count, struct mutex, count);
866 	unsigned long flags;
867 	int prev;
868 
869 	/* No need to trylock if the mutex is locked. */
870 	if (mutex_is_locked(lock))
871 		return 0;
872 
873 	spin_lock_mutex(&lock->wait_lock, flags);
874 
875 	prev = atomic_xchg(&lock->count, -1);
876 	if (likely(prev == 1)) {
877 		mutex_set_owner(lock);
878 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
879 	}
880 
881 	/* Set it back to 0 if there are no waiters: */
882 	if (likely(list_empty(&lock->wait_list)))
883 		atomic_set(&lock->count, 0);
884 
885 	spin_unlock_mutex(&lock->wait_lock, flags);
886 
887 	return prev == 1;
888 }
889 
890 /**
891  * mutex_trylock - try to acquire the mutex, without waiting
892  * @lock: the mutex to be acquired
893  *
894  * Try to acquire the mutex atomically. Returns 1 if the mutex
895  * has been acquired successfully, and 0 on contention.
896  *
897  * NOTE: this function follows the spin_trylock() convention, so
898  * it is negated from the down_trylock() return values! Be careful
899  * about this when converting semaphore users to mutexes.
900  *
901  * This function must not be used in interrupt context. The
902  * mutex must be released by the same task that acquired it.
903  */
904 int __sched mutex_trylock(struct mutex *lock)
905 {
906 	int ret;
907 
908 	ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
909 	if (ret)
910 		mutex_set_owner(lock);
911 
912 	return ret;
913 }
914 EXPORT_SYMBOL(mutex_trylock);
915 
916 #ifndef CONFIG_DEBUG_LOCK_ALLOC
917 int __sched
918 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
919 {
920 	int ret;
921 
922 	might_sleep();
923 
924 	ret = __mutex_fastpath_lock_retval(&lock->base.count);
925 
926 	if (likely(!ret)) {
927 		ww_mutex_set_context_fastpath(lock, ctx);
928 		mutex_set_owner(&lock->base);
929 	} else
930 		ret = __ww_mutex_lock_slowpath(lock, ctx);
931 	return ret;
932 }
933 EXPORT_SYMBOL(__ww_mutex_lock);
934 
935 int __sched
936 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
937 {
938 	int ret;
939 
940 	might_sleep();
941 
942 	ret = __mutex_fastpath_lock_retval(&lock->base.count);
943 
944 	if (likely(!ret)) {
945 		ww_mutex_set_context_fastpath(lock, ctx);
946 		mutex_set_owner(&lock->base);
947 	} else
948 		ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
949 	return ret;
950 }
951 EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
952 
953 #endif
954 
955 /**
956  * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
957  * @cnt: the atomic which we are to dec
958  * @lock: the mutex to return holding if we dec to 0
959  *
960  * return true and hold lock if we dec to 0, return false otherwise
961  */
962 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
963 {
964 	/* dec if we can't possibly hit 0 */
965 	if (atomic_add_unless(cnt, -1, 1))
966 		return 0;
967 	/* we might hit 0, so take the lock */
968 	mutex_lock(lock);
969 	if (!atomic_dec_and_test(cnt)) {
970 		/* when we actually did the dec, we didn't hit 0 */
971 		mutex_unlock(lock);
972 		return 0;
973 	}
974 	/* we hit 0, and we hold the lock */
975 	return 1;
976 }
977 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
978