xref: /openbmc/linux/kernel/locking/mutex.c (revision f5029f62)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/locking/mutex.c
4  *
5  * Mutexes: blocking mutual exclusion locks
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *
11  * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
12  * David Howells for suggestions and improvements.
13  *
14  *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
15  *    from the -rt tree, where it was originally implemented for rtmutexes
16  *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
17  *    and Sven Dietrich.
18  *
19  * Also see Documentation/locking/mutex-design.rst.
20  */
21 #include <linux/mutex.h>
22 #include <linux/ww_mutex.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/wake_q.h>
26 #include <linux/sched/debug.h>
27 #include <linux/export.h>
28 #include <linux/spinlock.h>
29 #include <linux/interrupt.h>
30 #include <linux/debug_locks.h>
31 #include <linux/osq_lock.h>
32 
33 #ifndef CONFIG_PREEMPT_RT
34 #include "mutex.h"
35 
36 #ifdef CONFIG_DEBUG_MUTEXES
37 # define MUTEX_WARN_ON(cond) DEBUG_LOCKS_WARN_ON(cond)
38 #else
39 # define MUTEX_WARN_ON(cond)
40 #endif
41 
42 void
43 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
44 {
45 	atomic_long_set(&lock->owner, 0);
46 	raw_spin_lock_init(&lock->wait_lock);
47 	INIT_LIST_HEAD(&lock->wait_list);
48 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
49 	osq_lock_init(&lock->osq);
50 #endif
51 
52 	debug_mutex_init(lock, name, key);
53 }
54 EXPORT_SYMBOL(__mutex_init);
55 
56 /*
57  * @owner: contains: 'struct task_struct *' to the current lock owner,
58  * NULL means not owned. Since task_struct pointers are aligned at
59  * at least L1_CACHE_BYTES, we have low bits to store extra state.
60  *
61  * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
62  * Bit1 indicates unlock needs to hand the lock to the top-waiter
63  * Bit2 indicates handoff has been done and we're waiting for pickup.
64  */
65 #define MUTEX_FLAG_WAITERS	0x01
66 #define MUTEX_FLAG_HANDOFF	0x02
67 #define MUTEX_FLAG_PICKUP	0x04
68 
69 #define MUTEX_FLAGS		0x07
70 
71 /*
72  * Internal helper function; C doesn't allow us to hide it :/
73  *
74  * DO NOT USE (outside of mutex code).
75  */
76 static inline struct task_struct *__mutex_owner(struct mutex *lock)
77 {
78 	return (struct task_struct *)(atomic_long_read(&lock->owner) & ~MUTEX_FLAGS);
79 }
80 
81 static inline struct task_struct *__owner_task(unsigned long owner)
82 {
83 	return (struct task_struct *)(owner & ~MUTEX_FLAGS);
84 }
85 
86 bool mutex_is_locked(struct mutex *lock)
87 {
88 	return __mutex_owner(lock) != NULL;
89 }
90 EXPORT_SYMBOL(mutex_is_locked);
91 
92 static inline unsigned long __owner_flags(unsigned long owner)
93 {
94 	return owner & MUTEX_FLAGS;
95 }
96 
97 /*
98  * Returns: __mutex_owner(lock) on failure or NULL on success.
99  */
100 static inline struct task_struct *__mutex_trylock_common(struct mutex *lock, bool handoff)
101 {
102 	unsigned long owner, curr = (unsigned long)current;
103 
104 	owner = atomic_long_read(&lock->owner);
105 	for (;;) { /* must loop, can race against a flag */
106 		unsigned long flags = __owner_flags(owner);
107 		unsigned long task = owner & ~MUTEX_FLAGS;
108 
109 		if (task) {
110 			if (flags & MUTEX_FLAG_PICKUP) {
111 				if (task != curr)
112 					break;
113 				flags &= ~MUTEX_FLAG_PICKUP;
114 			} else if (handoff) {
115 				if (flags & MUTEX_FLAG_HANDOFF)
116 					break;
117 				flags |= MUTEX_FLAG_HANDOFF;
118 			} else {
119 				break;
120 			}
121 		} else {
122 			MUTEX_WARN_ON(flags & (MUTEX_FLAG_HANDOFF | MUTEX_FLAG_PICKUP));
123 			task = curr;
124 		}
125 
126 		if (atomic_long_try_cmpxchg_acquire(&lock->owner, &owner, task | flags)) {
127 			if (task == curr)
128 				return NULL;
129 			break;
130 		}
131 	}
132 
133 	return __owner_task(owner);
134 }
135 
136 /*
137  * Trylock or set HANDOFF
138  */
139 static inline bool __mutex_trylock_or_handoff(struct mutex *lock, bool handoff)
140 {
141 	return !__mutex_trylock_common(lock, handoff);
142 }
143 
144 /*
145  * Actual trylock that will work on any unlocked state.
146  */
147 static inline bool __mutex_trylock(struct mutex *lock)
148 {
149 	return !__mutex_trylock_common(lock, false);
150 }
151 
152 #ifndef CONFIG_DEBUG_LOCK_ALLOC
153 /*
154  * Lockdep annotations are contained to the slow paths for simplicity.
155  * There is nothing that would stop spreading the lockdep annotations outwards
156  * except more code.
157  */
158 
159 /*
160  * Optimistic trylock that only works in the uncontended case. Make sure to
161  * follow with a __mutex_trylock() before failing.
162  */
163 static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
164 {
165 	unsigned long curr = (unsigned long)current;
166 	unsigned long zero = 0UL;
167 
168 	if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr))
169 		return true;
170 
171 	return false;
172 }
173 
174 static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
175 {
176 	unsigned long curr = (unsigned long)current;
177 
178 	return atomic_long_try_cmpxchg_release(&lock->owner, &curr, 0UL);
179 }
180 #endif
181 
182 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
183 {
184 	atomic_long_or(flag, &lock->owner);
185 }
186 
187 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
188 {
189 	atomic_long_andnot(flag, &lock->owner);
190 }
191 
192 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
193 {
194 	return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
195 }
196 
197 /*
198  * Add @waiter to a given location in the lock wait_list and set the
199  * FLAG_WAITERS flag if it's the first waiter.
200  */
201 static void
202 __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter,
203 		   struct list_head *list)
204 {
205 	debug_mutex_add_waiter(lock, waiter, current);
206 
207 	list_add_tail(&waiter->list, list);
208 	if (__mutex_waiter_is_first(lock, waiter))
209 		__mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
210 }
211 
212 static void
213 __mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter)
214 {
215 	list_del(&waiter->list);
216 	if (likely(list_empty(&lock->wait_list)))
217 		__mutex_clear_flag(lock, MUTEX_FLAGS);
218 
219 	debug_mutex_remove_waiter(lock, waiter, current);
220 }
221 
222 /*
223  * Give up ownership to a specific task, when @task = NULL, this is equivalent
224  * to a regular unlock. Sets PICKUP on a handoff, clears HANDOFF, preserves
225  * WAITERS. Provides RELEASE semantics like a regular unlock, the
226  * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
227  */
228 static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
229 {
230 	unsigned long owner = atomic_long_read(&lock->owner);
231 
232 	for (;;) {
233 		unsigned long new;
234 
235 		MUTEX_WARN_ON(__owner_task(owner) != current);
236 		MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP);
237 
238 		new = (owner & MUTEX_FLAG_WAITERS);
239 		new |= (unsigned long)task;
240 		if (task)
241 			new |= MUTEX_FLAG_PICKUP;
242 
243 		if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, new))
244 			break;
245 	}
246 }
247 
248 #ifndef CONFIG_DEBUG_LOCK_ALLOC
249 /*
250  * We split the mutex lock/unlock logic into separate fastpath and
251  * slowpath functions, to reduce the register pressure on the fastpath.
252  * We also put the fastpath first in the kernel image, to make sure the
253  * branch is predicted by the CPU as default-untaken.
254  */
255 static void __sched __mutex_lock_slowpath(struct mutex *lock);
256 
257 /**
258  * mutex_lock - acquire the mutex
259  * @lock: the mutex to be acquired
260  *
261  * Lock the mutex exclusively for this task. If the mutex is not
262  * available right now, it will sleep until it can get it.
263  *
264  * The mutex must later on be released by the same task that
265  * acquired it. Recursive locking is not allowed. The task
266  * may not exit without first unlocking the mutex. Also, kernel
267  * memory where the mutex resides must not be freed with
268  * the mutex still locked. The mutex must first be initialized
269  * (or statically defined) before it can be locked. memset()-ing
270  * the mutex to 0 is not allowed.
271  *
272  * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
273  * checks that will enforce the restrictions and will also do
274  * deadlock debugging)
275  *
276  * This function is similar to (but not equivalent to) down().
277  */
278 void __sched mutex_lock(struct mutex *lock)
279 {
280 	might_sleep();
281 
282 	if (!__mutex_trylock_fast(lock))
283 		__mutex_lock_slowpath(lock);
284 }
285 EXPORT_SYMBOL(mutex_lock);
286 #endif
287 
288 #include "ww_mutex.h"
289 
290 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
291 
292 /*
293  * Trylock variant that returns the owning task on failure.
294  */
295 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
296 {
297 	return __mutex_trylock_common(lock, false);
298 }
299 
300 static inline
301 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
302 			    struct mutex_waiter *waiter)
303 {
304 	struct ww_mutex *ww;
305 
306 	ww = container_of(lock, struct ww_mutex, base);
307 
308 	/*
309 	 * If ww->ctx is set the contents are undefined, only
310 	 * by acquiring wait_lock there is a guarantee that
311 	 * they are not invalid when reading.
312 	 *
313 	 * As such, when deadlock detection needs to be
314 	 * performed the optimistic spinning cannot be done.
315 	 *
316 	 * Check this in every inner iteration because we may
317 	 * be racing against another thread's ww_mutex_lock.
318 	 */
319 	if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
320 		return false;
321 
322 	/*
323 	 * If we aren't on the wait list yet, cancel the spin
324 	 * if there are waiters. We want  to avoid stealing the
325 	 * lock from a waiter with an earlier stamp, since the
326 	 * other thread may already own a lock that we also
327 	 * need.
328 	 */
329 	if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
330 		return false;
331 
332 	/*
333 	 * Similarly, stop spinning if we are no longer the
334 	 * first waiter.
335 	 */
336 	if (waiter && !__mutex_waiter_is_first(lock, waiter))
337 		return false;
338 
339 	return true;
340 }
341 
342 /*
343  * Look out! "owner" is an entirely speculative pointer access and not
344  * reliable.
345  *
346  * "noinline" so that this function shows up on perf profiles.
347  */
348 static noinline
349 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
350 			 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
351 {
352 	bool ret = true;
353 
354 	lockdep_assert_preemption_disabled();
355 
356 	while (__mutex_owner(lock) == owner) {
357 		/*
358 		 * Ensure we emit the owner->on_cpu, dereference _after_
359 		 * checking lock->owner still matches owner. And we already
360 		 * disabled preemption which is equal to the RCU read-side
361 		 * crital section in optimistic spinning code. Thus the
362 		 * task_strcut structure won't go away during the spinning
363 		 * period
364 		 */
365 		barrier();
366 
367 		/*
368 		 * Use vcpu_is_preempted to detect lock holder preemption issue.
369 		 */
370 		if (!owner->on_cpu || need_resched() ||
371 				vcpu_is_preempted(task_cpu(owner))) {
372 			ret = false;
373 			break;
374 		}
375 
376 		if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
377 			ret = false;
378 			break;
379 		}
380 
381 		cpu_relax();
382 	}
383 
384 	return ret;
385 }
386 
387 /*
388  * Initial check for entering the mutex spinning loop
389  */
390 static inline int mutex_can_spin_on_owner(struct mutex *lock)
391 {
392 	struct task_struct *owner;
393 	int retval = 1;
394 
395 	lockdep_assert_preemption_disabled();
396 
397 	if (need_resched())
398 		return 0;
399 
400 	/*
401 	 * We already disabled preemption which is equal to the RCU read-side
402 	 * crital section in optimistic spinning code. Thus the task_strcut
403 	 * structure won't go away during the spinning period.
404 	 */
405 	owner = __mutex_owner(lock);
406 
407 	/*
408 	 * As lock holder preemption issue, we both skip spinning if task is not
409 	 * on cpu or its cpu is preempted
410 	 */
411 
412 	if (owner)
413 		retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
414 
415 	/*
416 	 * If lock->owner is not set, the mutex has been released. Return true
417 	 * such that we'll trylock in the spin path, which is a faster option
418 	 * than the blocking slow path.
419 	 */
420 	return retval;
421 }
422 
423 /*
424  * Optimistic spinning.
425  *
426  * We try to spin for acquisition when we find that the lock owner
427  * is currently running on a (different) CPU and while we don't
428  * need to reschedule. The rationale is that if the lock owner is
429  * running, it is likely to release the lock soon.
430  *
431  * The mutex spinners are queued up using MCS lock so that only one
432  * spinner can compete for the mutex. However, if mutex spinning isn't
433  * going to happen, there is no point in going through the lock/unlock
434  * overhead.
435  *
436  * Returns true when the lock was taken, otherwise false, indicating
437  * that we need to jump to the slowpath and sleep.
438  *
439  * The waiter flag is set to true if the spinner is a waiter in the wait
440  * queue. The waiter-spinner will spin on the lock directly and concurrently
441  * with the spinner at the head of the OSQ, if present, until the owner is
442  * changed to itself.
443  */
444 static __always_inline bool
445 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
446 		      struct mutex_waiter *waiter)
447 {
448 	if (!waiter) {
449 		/*
450 		 * The purpose of the mutex_can_spin_on_owner() function is
451 		 * to eliminate the overhead of osq_lock() and osq_unlock()
452 		 * in case spinning isn't possible. As a waiter-spinner
453 		 * is not going to take OSQ lock anyway, there is no need
454 		 * to call mutex_can_spin_on_owner().
455 		 */
456 		if (!mutex_can_spin_on_owner(lock))
457 			goto fail;
458 
459 		/*
460 		 * In order to avoid a stampede of mutex spinners trying to
461 		 * acquire the mutex all at once, the spinners need to take a
462 		 * MCS (queued) lock first before spinning on the owner field.
463 		 */
464 		if (!osq_lock(&lock->osq))
465 			goto fail;
466 	}
467 
468 	for (;;) {
469 		struct task_struct *owner;
470 
471 		/* Try to acquire the mutex... */
472 		owner = __mutex_trylock_or_owner(lock);
473 		if (!owner)
474 			break;
475 
476 		/*
477 		 * There's an owner, wait for it to either
478 		 * release the lock or go to sleep.
479 		 */
480 		if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
481 			goto fail_unlock;
482 
483 		/*
484 		 * The cpu_relax() call is a compiler barrier which forces
485 		 * everything in this loop to be re-loaded. We don't need
486 		 * memory barriers as we'll eventually observe the right
487 		 * values at the cost of a few extra spins.
488 		 */
489 		cpu_relax();
490 	}
491 
492 	if (!waiter)
493 		osq_unlock(&lock->osq);
494 
495 	return true;
496 
497 
498 fail_unlock:
499 	if (!waiter)
500 		osq_unlock(&lock->osq);
501 
502 fail:
503 	/*
504 	 * If we fell out of the spin path because of need_resched(),
505 	 * reschedule now, before we try-lock the mutex. This avoids getting
506 	 * scheduled out right after we obtained the mutex.
507 	 */
508 	if (need_resched()) {
509 		/*
510 		 * We _should_ have TASK_RUNNING here, but just in case
511 		 * we do not, make it so, otherwise we might get stuck.
512 		 */
513 		__set_current_state(TASK_RUNNING);
514 		schedule_preempt_disabled();
515 	}
516 
517 	return false;
518 }
519 #else
520 static __always_inline bool
521 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
522 		      struct mutex_waiter *waiter)
523 {
524 	return false;
525 }
526 #endif
527 
528 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
529 
530 /**
531  * mutex_unlock - release the mutex
532  * @lock: the mutex to be released
533  *
534  * Unlock a mutex that has been locked by this task previously.
535  *
536  * This function must not be used in interrupt context. Unlocking
537  * of a not locked mutex is not allowed.
538  *
539  * This function is similar to (but not equivalent to) up().
540  */
541 void __sched mutex_unlock(struct mutex *lock)
542 {
543 #ifndef CONFIG_DEBUG_LOCK_ALLOC
544 	if (__mutex_unlock_fast(lock))
545 		return;
546 #endif
547 	__mutex_unlock_slowpath(lock, _RET_IP_);
548 }
549 EXPORT_SYMBOL(mutex_unlock);
550 
551 /**
552  * ww_mutex_unlock - release the w/w mutex
553  * @lock: the mutex to be released
554  *
555  * Unlock a mutex that has been locked by this task previously with any of the
556  * ww_mutex_lock* functions (with or without an acquire context). It is
557  * forbidden to release the locks after releasing the acquire context.
558  *
559  * This function must not be used in interrupt context. Unlocking
560  * of a unlocked mutex is not allowed.
561  */
562 void __sched ww_mutex_unlock(struct ww_mutex *lock)
563 {
564 	__ww_mutex_unlock(lock);
565 	mutex_unlock(&lock->base);
566 }
567 EXPORT_SYMBOL(ww_mutex_unlock);
568 
569 /*
570  * Lock a mutex (possibly interruptible), slowpath:
571  */
572 static __always_inline int __sched
573 __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclass,
574 		    struct lockdep_map *nest_lock, unsigned long ip,
575 		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
576 {
577 	struct mutex_waiter waiter;
578 	struct ww_mutex *ww;
579 	int ret;
580 
581 	if (!use_ww_ctx)
582 		ww_ctx = NULL;
583 
584 	might_sleep();
585 
586 	MUTEX_WARN_ON(lock->magic != lock);
587 
588 	ww = container_of(lock, struct ww_mutex, base);
589 	if (ww_ctx) {
590 		if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
591 			return -EALREADY;
592 
593 		/*
594 		 * Reset the wounded flag after a kill. No other process can
595 		 * race and wound us here since they can't have a valid owner
596 		 * pointer if we don't have any locks held.
597 		 */
598 		if (ww_ctx->acquired == 0)
599 			ww_ctx->wounded = 0;
600 
601 #ifdef CONFIG_DEBUG_LOCK_ALLOC
602 		nest_lock = &ww_ctx->dep_map;
603 #endif
604 	}
605 
606 	preempt_disable();
607 	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
608 
609 	if (__mutex_trylock(lock) ||
610 	    mutex_optimistic_spin(lock, ww_ctx, NULL)) {
611 		/* got the lock, yay! */
612 		lock_acquired(&lock->dep_map, ip);
613 		if (ww_ctx)
614 			ww_mutex_set_context_fastpath(ww, ww_ctx);
615 		preempt_enable();
616 		return 0;
617 	}
618 
619 	raw_spin_lock(&lock->wait_lock);
620 	/*
621 	 * After waiting to acquire the wait_lock, try again.
622 	 */
623 	if (__mutex_trylock(lock)) {
624 		if (ww_ctx)
625 			__ww_mutex_check_waiters(lock, ww_ctx);
626 
627 		goto skip_wait;
628 	}
629 
630 	debug_mutex_lock_common(lock, &waiter);
631 	waiter.task = current;
632 	if (use_ww_ctx)
633 		waiter.ww_ctx = ww_ctx;
634 
635 	lock_contended(&lock->dep_map, ip);
636 
637 	if (!use_ww_ctx) {
638 		/* add waiting tasks to the end of the waitqueue (FIFO): */
639 		__mutex_add_waiter(lock, &waiter, &lock->wait_list);
640 	} else {
641 		/*
642 		 * Add in stamp order, waking up waiters that must kill
643 		 * themselves.
644 		 */
645 		ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx);
646 		if (ret)
647 			goto err_early_kill;
648 	}
649 
650 	set_current_state(state);
651 	for (;;) {
652 		bool first;
653 
654 		/*
655 		 * Once we hold wait_lock, we're serialized against
656 		 * mutex_unlock() handing the lock off to us, do a trylock
657 		 * before testing the error conditions to make sure we pick up
658 		 * the handoff.
659 		 */
660 		if (__mutex_trylock(lock))
661 			goto acquired;
662 
663 		/*
664 		 * Check for signals and kill conditions while holding
665 		 * wait_lock. This ensures the lock cancellation is ordered
666 		 * against mutex_unlock() and wake-ups do not go missing.
667 		 */
668 		if (signal_pending_state(state, current)) {
669 			ret = -EINTR;
670 			goto err;
671 		}
672 
673 		if (ww_ctx) {
674 			ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx);
675 			if (ret)
676 				goto err;
677 		}
678 
679 		raw_spin_unlock(&lock->wait_lock);
680 		schedule_preempt_disabled();
681 
682 		first = __mutex_waiter_is_first(lock, &waiter);
683 
684 		set_current_state(state);
685 		/*
686 		 * Here we order against unlock; we must either see it change
687 		 * state back to RUNNING and fall through the next schedule(),
688 		 * or we must see its unlock and acquire.
689 		 */
690 		if (__mutex_trylock_or_handoff(lock, first) ||
691 		    (first && mutex_optimistic_spin(lock, ww_ctx, &waiter)))
692 			break;
693 
694 		raw_spin_lock(&lock->wait_lock);
695 	}
696 	raw_spin_lock(&lock->wait_lock);
697 acquired:
698 	__set_current_state(TASK_RUNNING);
699 
700 	if (ww_ctx) {
701 		/*
702 		 * Wound-Wait; we stole the lock (!first_waiter), check the
703 		 * waiters as anyone might want to wound us.
704 		 */
705 		if (!ww_ctx->is_wait_die &&
706 		    !__mutex_waiter_is_first(lock, &waiter))
707 			__ww_mutex_check_waiters(lock, ww_ctx);
708 	}
709 
710 	__mutex_remove_waiter(lock, &waiter);
711 
712 	debug_mutex_free_waiter(&waiter);
713 
714 skip_wait:
715 	/* got the lock - cleanup and rejoice! */
716 	lock_acquired(&lock->dep_map, ip);
717 
718 	if (ww_ctx)
719 		ww_mutex_lock_acquired(ww, ww_ctx);
720 
721 	raw_spin_unlock(&lock->wait_lock);
722 	preempt_enable();
723 	return 0;
724 
725 err:
726 	__set_current_state(TASK_RUNNING);
727 	__mutex_remove_waiter(lock, &waiter);
728 err_early_kill:
729 	raw_spin_unlock(&lock->wait_lock);
730 	debug_mutex_free_waiter(&waiter);
731 	mutex_release(&lock->dep_map, ip);
732 	preempt_enable();
733 	return ret;
734 }
735 
736 static int __sched
737 __mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass,
738 	     struct lockdep_map *nest_lock, unsigned long ip)
739 {
740 	return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
741 }
742 
743 static int __sched
744 __ww_mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass,
745 		unsigned long ip, struct ww_acquire_ctx *ww_ctx)
746 {
747 	return __mutex_lock_common(lock, state, subclass, NULL, ip, ww_ctx, true);
748 }
749 
750 /**
751  * ww_mutex_trylock - tries to acquire the w/w mutex with optional acquire context
752  * @ww: mutex to lock
753  * @ww_ctx: optional w/w acquire context
754  *
755  * Trylocks a mutex with the optional acquire context; no deadlock detection is
756  * possible. Returns 1 if the mutex has been acquired successfully, 0 otherwise.
757  *
758  * Unlike ww_mutex_lock, no deadlock handling is performed. However, if a @ctx is
759  * specified, -EALREADY handling may happen in calls to ww_mutex_trylock.
760  *
761  * A mutex acquired with this function must be released with ww_mutex_unlock.
762  */
763 int ww_mutex_trylock(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
764 {
765 	if (!ww_ctx)
766 		return mutex_trylock(&ww->base);
767 
768 	MUTEX_WARN_ON(ww->base.magic != &ww->base);
769 
770 	/*
771 	 * Reset the wounded flag after a kill. No other process can
772 	 * race and wound us here, since they can't have a valid owner
773 	 * pointer if we don't have any locks held.
774 	 */
775 	if (ww_ctx->acquired == 0)
776 		ww_ctx->wounded = 0;
777 
778 	if (__mutex_trylock(&ww->base)) {
779 		ww_mutex_set_context_fastpath(ww, ww_ctx);
780 		mutex_acquire_nest(&ww->base.dep_map, 0, 1, &ww_ctx->dep_map, _RET_IP_);
781 		return 1;
782 	}
783 
784 	return 0;
785 }
786 EXPORT_SYMBOL(ww_mutex_trylock);
787 
788 #ifdef CONFIG_DEBUG_LOCK_ALLOC
789 void __sched
790 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
791 {
792 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
793 }
794 
795 EXPORT_SYMBOL_GPL(mutex_lock_nested);
796 
797 void __sched
798 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
799 {
800 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
801 }
802 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
803 
804 int __sched
805 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
806 {
807 	return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
808 }
809 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
810 
811 int __sched
812 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
813 {
814 	return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
815 }
816 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
817 
818 void __sched
819 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
820 {
821 	int token;
822 
823 	might_sleep();
824 
825 	token = io_schedule_prepare();
826 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
827 			    subclass, NULL, _RET_IP_, NULL, 0);
828 	io_schedule_finish(token);
829 }
830 EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
831 
832 static inline int
833 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
834 {
835 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
836 	unsigned tmp;
837 
838 	if (ctx->deadlock_inject_countdown-- == 0) {
839 		tmp = ctx->deadlock_inject_interval;
840 		if (tmp > UINT_MAX/4)
841 			tmp = UINT_MAX;
842 		else
843 			tmp = tmp*2 + tmp + tmp/2;
844 
845 		ctx->deadlock_inject_interval = tmp;
846 		ctx->deadlock_inject_countdown = tmp;
847 		ctx->contending_lock = lock;
848 
849 		ww_mutex_unlock(lock);
850 
851 		return -EDEADLK;
852 	}
853 #endif
854 
855 	return 0;
856 }
857 
858 int __sched
859 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
860 {
861 	int ret;
862 
863 	might_sleep();
864 	ret =  __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
865 			       0, _RET_IP_, ctx);
866 	if (!ret && ctx && ctx->acquired > 1)
867 		return ww_mutex_deadlock_injection(lock, ctx);
868 
869 	return ret;
870 }
871 EXPORT_SYMBOL_GPL(ww_mutex_lock);
872 
873 int __sched
874 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
875 {
876 	int ret;
877 
878 	might_sleep();
879 	ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
880 			      0, _RET_IP_, ctx);
881 
882 	if (!ret && ctx && ctx->acquired > 1)
883 		return ww_mutex_deadlock_injection(lock, ctx);
884 
885 	return ret;
886 }
887 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
888 
889 #endif
890 
891 /*
892  * Release the lock, slowpath:
893  */
894 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
895 {
896 	struct task_struct *next = NULL;
897 	DEFINE_WAKE_Q(wake_q);
898 	unsigned long owner;
899 
900 	mutex_release(&lock->dep_map, ip);
901 
902 	/*
903 	 * Release the lock before (potentially) taking the spinlock such that
904 	 * other contenders can get on with things ASAP.
905 	 *
906 	 * Except when HANDOFF, in that case we must not clear the owner field,
907 	 * but instead set it to the top waiter.
908 	 */
909 	owner = atomic_long_read(&lock->owner);
910 	for (;;) {
911 		MUTEX_WARN_ON(__owner_task(owner) != current);
912 		MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP);
913 
914 		if (owner & MUTEX_FLAG_HANDOFF)
915 			break;
916 
917 		if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, __owner_flags(owner))) {
918 			if (owner & MUTEX_FLAG_WAITERS)
919 				break;
920 
921 			return;
922 		}
923 	}
924 
925 	raw_spin_lock(&lock->wait_lock);
926 	debug_mutex_unlock(lock);
927 	if (!list_empty(&lock->wait_list)) {
928 		/* get the first entry from the wait-list: */
929 		struct mutex_waiter *waiter =
930 			list_first_entry(&lock->wait_list,
931 					 struct mutex_waiter, list);
932 
933 		next = waiter->task;
934 
935 		debug_mutex_wake_waiter(lock, waiter);
936 		wake_q_add(&wake_q, next);
937 	}
938 
939 	if (owner & MUTEX_FLAG_HANDOFF)
940 		__mutex_handoff(lock, next);
941 
942 	raw_spin_unlock(&lock->wait_lock);
943 
944 	wake_up_q(&wake_q);
945 }
946 
947 #ifndef CONFIG_DEBUG_LOCK_ALLOC
948 /*
949  * Here come the less common (and hence less performance-critical) APIs:
950  * mutex_lock_interruptible() and mutex_trylock().
951  */
952 static noinline int __sched
953 __mutex_lock_killable_slowpath(struct mutex *lock);
954 
955 static noinline int __sched
956 __mutex_lock_interruptible_slowpath(struct mutex *lock);
957 
958 /**
959  * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals.
960  * @lock: The mutex to be acquired.
961  *
962  * Lock the mutex like mutex_lock().  If a signal is delivered while the
963  * process is sleeping, this function will return without acquiring the
964  * mutex.
965  *
966  * Context: Process context.
967  * Return: 0 if the lock was successfully acquired or %-EINTR if a
968  * signal arrived.
969  */
970 int __sched mutex_lock_interruptible(struct mutex *lock)
971 {
972 	might_sleep();
973 
974 	if (__mutex_trylock_fast(lock))
975 		return 0;
976 
977 	return __mutex_lock_interruptible_slowpath(lock);
978 }
979 
980 EXPORT_SYMBOL(mutex_lock_interruptible);
981 
982 /**
983  * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals.
984  * @lock: The mutex to be acquired.
985  *
986  * Lock the mutex like mutex_lock().  If a signal which will be fatal to
987  * the current process is delivered while the process is sleeping, this
988  * function will return without acquiring the mutex.
989  *
990  * Context: Process context.
991  * Return: 0 if the lock was successfully acquired or %-EINTR if a
992  * fatal signal arrived.
993  */
994 int __sched mutex_lock_killable(struct mutex *lock)
995 {
996 	might_sleep();
997 
998 	if (__mutex_trylock_fast(lock))
999 		return 0;
1000 
1001 	return __mutex_lock_killable_slowpath(lock);
1002 }
1003 EXPORT_SYMBOL(mutex_lock_killable);
1004 
1005 /**
1006  * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O
1007  * @lock: The mutex to be acquired.
1008  *
1009  * Lock the mutex like mutex_lock().  While the task is waiting for this
1010  * mutex, it will be accounted as being in the IO wait state by the
1011  * scheduler.
1012  *
1013  * Context: Process context.
1014  */
1015 void __sched mutex_lock_io(struct mutex *lock)
1016 {
1017 	int token;
1018 
1019 	token = io_schedule_prepare();
1020 	mutex_lock(lock);
1021 	io_schedule_finish(token);
1022 }
1023 EXPORT_SYMBOL_GPL(mutex_lock_io);
1024 
1025 static noinline void __sched
1026 __mutex_lock_slowpath(struct mutex *lock)
1027 {
1028 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
1029 }
1030 
1031 static noinline int __sched
1032 __mutex_lock_killable_slowpath(struct mutex *lock)
1033 {
1034 	return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
1035 }
1036 
1037 static noinline int __sched
1038 __mutex_lock_interruptible_slowpath(struct mutex *lock)
1039 {
1040 	return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
1041 }
1042 
1043 static noinline int __sched
1044 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1045 {
1046 	return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0,
1047 			       _RET_IP_, ctx);
1048 }
1049 
1050 static noinline int __sched
1051 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1052 					    struct ww_acquire_ctx *ctx)
1053 {
1054 	return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0,
1055 			       _RET_IP_, ctx);
1056 }
1057 
1058 #endif
1059 
1060 /**
1061  * mutex_trylock - try to acquire the mutex, without waiting
1062  * @lock: the mutex to be acquired
1063  *
1064  * Try to acquire the mutex atomically. Returns 1 if the mutex
1065  * has been acquired successfully, and 0 on contention.
1066  *
1067  * NOTE: this function follows the spin_trylock() convention, so
1068  * it is negated from the down_trylock() return values! Be careful
1069  * about this when converting semaphore users to mutexes.
1070  *
1071  * This function must not be used in interrupt context. The
1072  * mutex must be released by the same task that acquired it.
1073  */
1074 int __sched mutex_trylock(struct mutex *lock)
1075 {
1076 	bool locked;
1077 
1078 	MUTEX_WARN_ON(lock->magic != lock);
1079 
1080 	locked = __mutex_trylock(lock);
1081 	if (locked)
1082 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1083 
1084 	return locked;
1085 }
1086 EXPORT_SYMBOL(mutex_trylock);
1087 
1088 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1089 int __sched
1090 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1091 {
1092 	might_sleep();
1093 
1094 	if (__mutex_trylock_fast(&lock->base)) {
1095 		if (ctx)
1096 			ww_mutex_set_context_fastpath(lock, ctx);
1097 		return 0;
1098 	}
1099 
1100 	return __ww_mutex_lock_slowpath(lock, ctx);
1101 }
1102 EXPORT_SYMBOL(ww_mutex_lock);
1103 
1104 int __sched
1105 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1106 {
1107 	might_sleep();
1108 
1109 	if (__mutex_trylock_fast(&lock->base)) {
1110 		if (ctx)
1111 			ww_mutex_set_context_fastpath(lock, ctx);
1112 		return 0;
1113 	}
1114 
1115 	return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1116 }
1117 EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1118 
1119 #endif /* !CONFIG_DEBUG_LOCK_ALLOC */
1120 #endif /* !CONFIG_PREEMPT_RT */
1121 
1122 /**
1123  * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1124  * @cnt: the atomic which we are to dec
1125  * @lock: the mutex to return holding if we dec to 0
1126  *
1127  * return true and hold lock if we dec to 0, return false otherwise
1128  */
1129 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1130 {
1131 	/* dec if we can't possibly hit 0 */
1132 	if (atomic_add_unless(cnt, -1, 1))
1133 		return 0;
1134 	/* we might hit 0, so take the lock */
1135 	mutex_lock(lock);
1136 	if (!atomic_dec_and_test(cnt)) {
1137 		/* when we actually did the dec, we didn't hit 0 */
1138 		mutex_unlock(lock);
1139 		return 0;
1140 	}
1141 	/* we hit 0, and we hold the lock */
1142 	return 1;
1143 }
1144 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
1145