xref: /openbmc/linux/kernel/locking/mutex.c (revision ebd09753)
1 /*
2  * kernel/locking/mutex.c
3  *
4  * Mutexes: blocking mutual exclusion locks
5  *
6  * Started by Ingo Molnar:
7  *
8  *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9  *
10  * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11  * David Howells for suggestions and improvements.
12  *
13  *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14  *    from the -rt tree, where it was originally implemented for rtmutexes
15  *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16  *    and Sven Dietrich.
17  *
18  * Also see Documentation/locking/mutex-design.txt.
19  */
20 #include <linux/mutex.h>
21 #include <linux/ww_mutex.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/rt.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/sched/debug.h>
26 #include <linux/export.h>
27 #include <linux/spinlock.h>
28 #include <linux/interrupt.h>
29 #include <linux/debug_locks.h>
30 #include <linux/osq_lock.h>
31 
32 #ifdef CONFIG_DEBUG_MUTEXES
33 # include "mutex-debug.h"
34 #else
35 # include "mutex.h"
36 #endif
37 
38 void
39 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
40 {
41 	atomic_long_set(&lock->owner, 0);
42 	spin_lock_init(&lock->wait_lock);
43 	INIT_LIST_HEAD(&lock->wait_list);
44 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
45 	osq_lock_init(&lock->osq);
46 #endif
47 
48 	debug_mutex_init(lock, name, key);
49 }
50 EXPORT_SYMBOL(__mutex_init);
51 
52 /*
53  * @owner: contains: 'struct task_struct *' to the current lock owner,
54  * NULL means not owned. Since task_struct pointers are aligned at
55  * at least L1_CACHE_BYTES, we have low bits to store extra state.
56  *
57  * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
58  * Bit1 indicates unlock needs to hand the lock to the top-waiter
59  * Bit2 indicates handoff has been done and we're waiting for pickup.
60  */
61 #define MUTEX_FLAG_WAITERS	0x01
62 #define MUTEX_FLAG_HANDOFF	0x02
63 #define MUTEX_FLAG_PICKUP	0x04
64 
65 #define MUTEX_FLAGS		0x07
66 
67 static inline struct task_struct *__owner_task(unsigned long owner)
68 {
69 	return (struct task_struct *)(owner & ~MUTEX_FLAGS);
70 }
71 
72 static inline unsigned long __owner_flags(unsigned long owner)
73 {
74 	return owner & MUTEX_FLAGS;
75 }
76 
77 /*
78  * Trylock variant that retuns the owning task on failure.
79  */
80 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
81 {
82 	unsigned long owner, curr = (unsigned long)current;
83 
84 	owner = atomic_long_read(&lock->owner);
85 	for (;;) { /* must loop, can race against a flag */
86 		unsigned long old, flags = __owner_flags(owner);
87 		unsigned long task = owner & ~MUTEX_FLAGS;
88 
89 		if (task) {
90 			if (likely(task != curr))
91 				break;
92 
93 			if (likely(!(flags & MUTEX_FLAG_PICKUP)))
94 				break;
95 
96 			flags &= ~MUTEX_FLAG_PICKUP;
97 		} else {
98 #ifdef CONFIG_DEBUG_MUTEXES
99 			DEBUG_LOCKS_WARN_ON(flags & MUTEX_FLAG_PICKUP);
100 #endif
101 		}
102 
103 		/*
104 		 * We set the HANDOFF bit, we must make sure it doesn't live
105 		 * past the point where we acquire it. This would be possible
106 		 * if we (accidentally) set the bit on an unlocked mutex.
107 		 */
108 		flags &= ~MUTEX_FLAG_HANDOFF;
109 
110 		old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags);
111 		if (old == owner)
112 			return NULL;
113 
114 		owner = old;
115 	}
116 
117 	return __owner_task(owner);
118 }
119 
120 /*
121  * Actual trylock that will work on any unlocked state.
122  */
123 static inline bool __mutex_trylock(struct mutex *lock)
124 {
125 	return !__mutex_trylock_or_owner(lock);
126 }
127 
128 #ifndef CONFIG_DEBUG_LOCK_ALLOC
129 /*
130  * Lockdep annotations are contained to the slow paths for simplicity.
131  * There is nothing that would stop spreading the lockdep annotations outwards
132  * except more code.
133  */
134 
135 /*
136  * Optimistic trylock that only works in the uncontended case. Make sure to
137  * follow with a __mutex_trylock() before failing.
138  */
139 static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
140 {
141 	unsigned long curr = (unsigned long)current;
142 	unsigned long zero = 0UL;
143 
144 	if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr))
145 		return true;
146 
147 	return false;
148 }
149 
150 static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
151 {
152 	unsigned long curr = (unsigned long)current;
153 
154 	if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr)
155 		return true;
156 
157 	return false;
158 }
159 #endif
160 
161 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
162 {
163 	atomic_long_or(flag, &lock->owner);
164 }
165 
166 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
167 {
168 	atomic_long_andnot(flag, &lock->owner);
169 }
170 
171 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
172 {
173 	return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
174 }
175 
176 /*
177  * Add @waiter to a given location in the lock wait_list and set the
178  * FLAG_WAITERS flag if it's the first waiter.
179  */
180 static void __sched
181 __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter,
182 		   struct list_head *list)
183 {
184 	debug_mutex_add_waiter(lock, waiter, current);
185 
186 	list_add_tail(&waiter->list, list);
187 	if (__mutex_waiter_is_first(lock, waiter))
188 		__mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
189 }
190 
191 /*
192  * Give up ownership to a specific task, when @task = NULL, this is equivalent
193  * to a regular unlock. Sets PICKUP on a handoff, clears HANDOF, preserves
194  * WAITERS. Provides RELEASE semantics like a regular unlock, the
195  * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
196  */
197 static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
198 {
199 	unsigned long owner = atomic_long_read(&lock->owner);
200 
201 	for (;;) {
202 		unsigned long old, new;
203 
204 #ifdef CONFIG_DEBUG_MUTEXES
205 		DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
206 		DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
207 #endif
208 
209 		new = (owner & MUTEX_FLAG_WAITERS);
210 		new |= (unsigned long)task;
211 		if (task)
212 			new |= MUTEX_FLAG_PICKUP;
213 
214 		old = atomic_long_cmpxchg_release(&lock->owner, owner, new);
215 		if (old == owner)
216 			break;
217 
218 		owner = old;
219 	}
220 }
221 
222 #ifndef CONFIG_DEBUG_LOCK_ALLOC
223 /*
224  * We split the mutex lock/unlock logic into separate fastpath and
225  * slowpath functions, to reduce the register pressure on the fastpath.
226  * We also put the fastpath first in the kernel image, to make sure the
227  * branch is predicted by the CPU as default-untaken.
228  */
229 static void __sched __mutex_lock_slowpath(struct mutex *lock);
230 
231 /**
232  * mutex_lock - acquire the mutex
233  * @lock: the mutex to be acquired
234  *
235  * Lock the mutex exclusively for this task. If the mutex is not
236  * available right now, it will sleep until it can get it.
237  *
238  * The mutex must later on be released by the same task that
239  * acquired it. Recursive locking is not allowed. The task
240  * may not exit without first unlocking the mutex. Also, kernel
241  * memory where the mutex resides must not be freed with
242  * the mutex still locked. The mutex must first be initialized
243  * (or statically defined) before it can be locked. memset()-ing
244  * the mutex to 0 is not allowed.
245  *
246  * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
247  * checks that will enforce the restrictions and will also do
248  * deadlock debugging)
249  *
250  * This function is similar to (but not equivalent to) down().
251  */
252 void __sched mutex_lock(struct mutex *lock)
253 {
254 	might_sleep();
255 
256 	if (!__mutex_trylock_fast(lock))
257 		__mutex_lock_slowpath(lock);
258 }
259 EXPORT_SYMBOL(mutex_lock);
260 #endif
261 
262 /*
263  * Wait-Die:
264  *   The newer transactions are killed when:
265  *     It (the new transaction) makes a request for a lock being held
266  *     by an older transaction.
267  *
268  * Wound-Wait:
269  *   The newer transactions are wounded when:
270  *     An older transaction makes a request for a lock being held by
271  *     the newer transaction.
272  */
273 
274 /*
275  * Associate the ww_mutex @ww with the context @ww_ctx under which we acquired
276  * it.
277  */
278 static __always_inline void
279 ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
280 {
281 #ifdef CONFIG_DEBUG_MUTEXES
282 	/*
283 	 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
284 	 * but released with a normal mutex_unlock in this call.
285 	 *
286 	 * This should never happen, always use ww_mutex_unlock.
287 	 */
288 	DEBUG_LOCKS_WARN_ON(ww->ctx);
289 
290 	/*
291 	 * Not quite done after calling ww_acquire_done() ?
292 	 */
293 	DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
294 
295 	if (ww_ctx->contending_lock) {
296 		/*
297 		 * After -EDEADLK you tried to
298 		 * acquire a different ww_mutex? Bad!
299 		 */
300 		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
301 
302 		/*
303 		 * You called ww_mutex_lock after receiving -EDEADLK,
304 		 * but 'forgot' to unlock everything else first?
305 		 */
306 		DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
307 		ww_ctx->contending_lock = NULL;
308 	}
309 
310 	/*
311 	 * Naughty, using a different class will lead to undefined behavior!
312 	 */
313 	DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
314 #endif
315 	ww_ctx->acquired++;
316 	ww->ctx = ww_ctx;
317 }
318 
319 /*
320  * Determine if context @a is 'after' context @b. IOW, @a is a younger
321  * transaction than @b and depending on algorithm either needs to wait for
322  * @b or die.
323  */
324 static inline bool __sched
325 __ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b)
326 {
327 
328 	return (signed long)(a->stamp - b->stamp) > 0;
329 }
330 
331 /*
332  * Wait-Die; wake a younger waiter context (when locks held) such that it can
333  * die.
334  *
335  * Among waiters with context, only the first one can have other locks acquired
336  * already (ctx->acquired > 0), because __ww_mutex_add_waiter() and
337  * __ww_mutex_check_kill() wake any but the earliest context.
338  */
339 static bool __sched
340 __ww_mutex_die(struct mutex *lock, struct mutex_waiter *waiter,
341 	       struct ww_acquire_ctx *ww_ctx)
342 {
343 	if (!ww_ctx->is_wait_die)
344 		return false;
345 
346 	if (waiter->ww_ctx->acquired > 0 &&
347 			__ww_ctx_stamp_after(waiter->ww_ctx, ww_ctx)) {
348 		debug_mutex_wake_waiter(lock, waiter);
349 		wake_up_process(waiter->task);
350 	}
351 
352 	return true;
353 }
354 
355 /*
356  * Wound-Wait; wound a younger @hold_ctx if it holds the lock.
357  *
358  * Wound the lock holder if there are waiters with older transactions than
359  * the lock holders. Even if multiple waiters may wound the lock holder,
360  * it's sufficient that only one does.
361  */
362 static bool __ww_mutex_wound(struct mutex *lock,
363 			     struct ww_acquire_ctx *ww_ctx,
364 			     struct ww_acquire_ctx *hold_ctx)
365 {
366 	struct task_struct *owner = __mutex_owner(lock);
367 
368 	lockdep_assert_held(&lock->wait_lock);
369 
370 	/*
371 	 * Possible through __ww_mutex_add_waiter() when we race with
372 	 * ww_mutex_set_context_fastpath(). In that case we'll get here again
373 	 * through __ww_mutex_check_waiters().
374 	 */
375 	if (!hold_ctx)
376 		return false;
377 
378 	/*
379 	 * Can have !owner because of __mutex_unlock_slowpath(), but if owner,
380 	 * it cannot go away because we'll have FLAG_WAITERS set and hold
381 	 * wait_lock.
382 	 */
383 	if (!owner)
384 		return false;
385 
386 	if (ww_ctx->acquired > 0 && __ww_ctx_stamp_after(hold_ctx, ww_ctx)) {
387 		hold_ctx->wounded = 1;
388 
389 		/*
390 		 * wake_up_process() paired with set_current_state()
391 		 * inserts sufficient barriers to make sure @owner either sees
392 		 * it's wounded in __ww_mutex_check_kill() or has a
393 		 * wakeup pending to re-read the wounded state.
394 		 */
395 		if (owner != current)
396 			wake_up_process(owner);
397 
398 		return true;
399 	}
400 
401 	return false;
402 }
403 
404 /*
405  * We just acquired @lock under @ww_ctx, if there are later contexts waiting
406  * behind us on the wait-list, check if they need to die, or wound us.
407  *
408  * See __ww_mutex_add_waiter() for the list-order construction; basically the
409  * list is ordered by stamp, smallest (oldest) first.
410  *
411  * This relies on never mixing wait-die/wound-wait on the same wait-list;
412  * which is currently ensured by that being a ww_class property.
413  *
414  * The current task must not be on the wait list.
415  */
416 static void __sched
417 __ww_mutex_check_waiters(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
418 {
419 	struct mutex_waiter *cur;
420 
421 	lockdep_assert_held(&lock->wait_lock);
422 
423 	list_for_each_entry(cur, &lock->wait_list, list) {
424 		if (!cur->ww_ctx)
425 			continue;
426 
427 		if (__ww_mutex_die(lock, cur, ww_ctx) ||
428 		    __ww_mutex_wound(lock, cur->ww_ctx, ww_ctx))
429 			break;
430 	}
431 }
432 
433 /*
434  * After acquiring lock with fastpath, where we do not hold wait_lock, set ctx
435  * and wake up any waiters so they can recheck.
436  */
437 static __always_inline void
438 ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
439 {
440 	ww_mutex_lock_acquired(lock, ctx);
441 
442 	/*
443 	 * The lock->ctx update should be visible on all cores before
444 	 * the WAITERS check is done, otherwise contended waiters might be
445 	 * missed. The contended waiters will either see ww_ctx == NULL
446 	 * and keep spinning, or it will acquire wait_lock, add itself
447 	 * to waiter list and sleep.
448 	 */
449 	smp_mb(); /* See comments above and below. */
450 
451 	/*
452 	 * [W] ww->ctx = ctx	    [W] MUTEX_FLAG_WAITERS
453 	 *     MB		        MB
454 	 * [R] MUTEX_FLAG_WAITERS   [R] ww->ctx
455 	 *
456 	 * The memory barrier above pairs with the memory barrier in
457 	 * __ww_mutex_add_waiter() and makes sure we either observe ww->ctx
458 	 * and/or !empty list.
459 	 */
460 	if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
461 		return;
462 
463 	/*
464 	 * Uh oh, we raced in fastpath, check if any of the waiters need to
465 	 * die or wound us.
466 	 */
467 	spin_lock(&lock->base.wait_lock);
468 	__ww_mutex_check_waiters(&lock->base, ctx);
469 	spin_unlock(&lock->base.wait_lock);
470 }
471 
472 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
473 
474 static inline
475 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
476 			    struct mutex_waiter *waiter)
477 {
478 	struct ww_mutex *ww;
479 
480 	ww = container_of(lock, struct ww_mutex, base);
481 
482 	/*
483 	 * If ww->ctx is set the contents are undefined, only
484 	 * by acquiring wait_lock there is a guarantee that
485 	 * they are not invalid when reading.
486 	 *
487 	 * As such, when deadlock detection needs to be
488 	 * performed the optimistic spinning cannot be done.
489 	 *
490 	 * Check this in every inner iteration because we may
491 	 * be racing against another thread's ww_mutex_lock.
492 	 */
493 	if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
494 		return false;
495 
496 	/*
497 	 * If we aren't on the wait list yet, cancel the spin
498 	 * if there are waiters. We want  to avoid stealing the
499 	 * lock from a waiter with an earlier stamp, since the
500 	 * other thread may already own a lock that we also
501 	 * need.
502 	 */
503 	if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
504 		return false;
505 
506 	/*
507 	 * Similarly, stop spinning if we are no longer the
508 	 * first waiter.
509 	 */
510 	if (waiter && !__mutex_waiter_is_first(lock, waiter))
511 		return false;
512 
513 	return true;
514 }
515 
516 /*
517  * Look out! "owner" is an entirely speculative pointer access and not
518  * reliable.
519  *
520  * "noinline" so that this function shows up on perf profiles.
521  */
522 static noinline
523 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
524 			 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
525 {
526 	bool ret = true;
527 
528 	rcu_read_lock();
529 	while (__mutex_owner(lock) == owner) {
530 		/*
531 		 * Ensure we emit the owner->on_cpu, dereference _after_
532 		 * checking lock->owner still matches owner. If that fails,
533 		 * owner might point to freed memory. If it still matches,
534 		 * the rcu_read_lock() ensures the memory stays valid.
535 		 */
536 		barrier();
537 
538 		/*
539 		 * Use vcpu_is_preempted to detect lock holder preemption issue.
540 		 */
541 		if (!owner->on_cpu || need_resched() ||
542 				vcpu_is_preempted(task_cpu(owner))) {
543 			ret = false;
544 			break;
545 		}
546 
547 		if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
548 			ret = false;
549 			break;
550 		}
551 
552 		cpu_relax();
553 	}
554 	rcu_read_unlock();
555 
556 	return ret;
557 }
558 
559 /*
560  * Initial check for entering the mutex spinning loop
561  */
562 static inline int mutex_can_spin_on_owner(struct mutex *lock)
563 {
564 	struct task_struct *owner;
565 	int retval = 1;
566 
567 	if (need_resched())
568 		return 0;
569 
570 	rcu_read_lock();
571 	owner = __mutex_owner(lock);
572 
573 	/*
574 	 * As lock holder preemption issue, we both skip spinning if task is not
575 	 * on cpu or its cpu is preempted
576 	 */
577 	if (owner)
578 		retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
579 	rcu_read_unlock();
580 
581 	/*
582 	 * If lock->owner is not set, the mutex has been released. Return true
583 	 * such that we'll trylock in the spin path, which is a faster option
584 	 * than the blocking slow path.
585 	 */
586 	return retval;
587 }
588 
589 /*
590  * Optimistic spinning.
591  *
592  * We try to spin for acquisition when we find that the lock owner
593  * is currently running on a (different) CPU and while we don't
594  * need to reschedule. The rationale is that if the lock owner is
595  * running, it is likely to release the lock soon.
596  *
597  * The mutex spinners are queued up using MCS lock so that only one
598  * spinner can compete for the mutex. However, if mutex spinning isn't
599  * going to happen, there is no point in going through the lock/unlock
600  * overhead.
601  *
602  * Returns true when the lock was taken, otherwise false, indicating
603  * that we need to jump to the slowpath and sleep.
604  *
605  * The waiter flag is set to true if the spinner is a waiter in the wait
606  * queue. The waiter-spinner will spin on the lock directly and concurrently
607  * with the spinner at the head of the OSQ, if present, until the owner is
608  * changed to itself.
609  */
610 static __always_inline bool
611 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
612 		      const bool use_ww_ctx, struct mutex_waiter *waiter)
613 {
614 	if (!waiter) {
615 		/*
616 		 * The purpose of the mutex_can_spin_on_owner() function is
617 		 * to eliminate the overhead of osq_lock() and osq_unlock()
618 		 * in case spinning isn't possible. As a waiter-spinner
619 		 * is not going to take OSQ lock anyway, there is no need
620 		 * to call mutex_can_spin_on_owner().
621 		 */
622 		if (!mutex_can_spin_on_owner(lock))
623 			goto fail;
624 
625 		/*
626 		 * In order to avoid a stampede of mutex spinners trying to
627 		 * acquire the mutex all at once, the spinners need to take a
628 		 * MCS (queued) lock first before spinning on the owner field.
629 		 */
630 		if (!osq_lock(&lock->osq))
631 			goto fail;
632 	}
633 
634 	for (;;) {
635 		struct task_struct *owner;
636 
637 		/* Try to acquire the mutex... */
638 		owner = __mutex_trylock_or_owner(lock);
639 		if (!owner)
640 			break;
641 
642 		/*
643 		 * There's an owner, wait for it to either
644 		 * release the lock or go to sleep.
645 		 */
646 		if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
647 			goto fail_unlock;
648 
649 		/*
650 		 * The cpu_relax() call is a compiler barrier which forces
651 		 * everything in this loop to be re-loaded. We don't need
652 		 * memory barriers as we'll eventually observe the right
653 		 * values at the cost of a few extra spins.
654 		 */
655 		cpu_relax();
656 	}
657 
658 	if (!waiter)
659 		osq_unlock(&lock->osq);
660 
661 	return true;
662 
663 
664 fail_unlock:
665 	if (!waiter)
666 		osq_unlock(&lock->osq);
667 
668 fail:
669 	/*
670 	 * If we fell out of the spin path because of need_resched(),
671 	 * reschedule now, before we try-lock the mutex. This avoids getting
672 	 * scheduled out right after we obtained the mutex.
673 	 */
674 	if (need_resched()) {
675 		/*
676 		 * We _should_ have TASK_RUNNING here, but just in case
677 		 * we do not, make it so, otherwise we might get stuck.
678 		 */
679 		__set_current_state(TASK_RUNNING);
680 		schedule_preempt_disabled();
681 	}
682 
683 	return false;
684 }
685 #else
686 static __always_inline bool
687 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
688 		      const bool use_ww_ctx, struct mutex_waiter *waiter)
689 {
690 	return false;
691 }
692 #endif
693 
694 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
695 
696 /**
697  * mutex_unlock - release the mutex
698  * @lock: the mutex to be released
699  *
700  * Unlock a mutex that has been locked by this task previously.
701  *
702  * This function must not be used in interrupt context. Unlocking
703  * of a not locked mutex is not allowed.
704  *
705  * This function is similar to (but not equivalent to) up().
706  */
707 void __sched mutex_unlock(struct mutex *lock)
708 {
709 #ifndef CONFIG_DEBUG_LOCK_ALLOC
710 	if (__mutex_unlock_fast(lock))
711 		return;
712 #endif
713 	__mutex_unlock_slowpath(lock, _RET_IP_);
714 }
715 EXPORT_SYMBOL(mutex_unlock);
716 
717 /**
718  * ww_mutex_unlock - release the w/w mutex
719  * @lock: the mutex to be released
720  *
721  * Unlock a mutex that has been locked by this task previously with any of the
722  * ww_mutex_lock* functions (with or without an acquire context). It is
723  * forbidden to release the locks after releasing the acquire context.
724  *
725  * This function must not be used in interrupt context. Unlocking
726  * of a unlocked mutex is not allowed.
727  */
728 void __sched ww_mutex_unlock(struct ww_mutex *lock)
729 {
730 	/*
731 	 * The unlocking fastpath is the 0->1 transition from 'locked'
732 	 * into 'unlocked' state:
733 	 */
734 	if (lock->ctx) {
735 #ifdef CONFIG_DEBUG_MUTEXES
736 		DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
737 #endif
738 		if (lock->ctx->acquired > 0)
739 			lock->ctx->acquired--;
740 		lock->ctx = NULL;
741 	}
742 
743 	mutex_unlock(&lock->base);
744 }
745 EXPORT_SYMBOL(ww_mutex_unlock);
746 
747 
748 static __always_inline int __sched
749 __ww_mutex_kill(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
750 {
751 	if (ww_ctx->acquired > 0) {
752 #ifdef CONFIG_DEBUG_MUTEXES
753 		struct ww_mutex *ww;
754 
755 		ww = container_of(lock, struct ww_mutex, base);
756 		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock);
757 		ww_ctx->contending_lock = ww;
758 #endif
759 		return -EDEADLK;
760 	}
761 
762 	return 0;
763 }
764 
765 
766 /*
767  * Check the wound condition for the current lock acquire.
768  *
769  * Wound-Wait: If we're wounded, kill ourself.
770  *
771  * Wait-Die: If we're trying to acquire a lock already held by an older
772  *           context, kill ourselves.
773  *
774  * Since __ww_mutex_add_waiter() orders the wait-list on stamp, we only have to
775  * look at waiters before us in the wait-list.
776  */
777 static inline int __sched
778 __ww_mutex_check_kill(struct mutex *lock, struct mutex_waiter *waiter,
779 		      struct ww_acquire_ctx *ctx)
780 {
781 	struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
782 	struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
783 	struct mutex_waiter *cur;
784 
785 	if (ctx->acquired == 0)
786 		return 0;
787 
788 	if (!ctx->is_wait_die) {
789 		if (ctx->wounded)
790 			return __ww_mutex_kill(lock, ctx);
791 
792 		return 0;
793 	}
794 
795 	if (hold_ctx && __ww_ctx_stamp_after(ctx, hold_ctx))
796 		return __ww_mutex_kill(lock, ctx);
797 
798 	/*
799 	 * If there is a waiter in front of us that has a context, then its
800 	 * stamp is earlier than ours and we must kill ourself.
801 	 */
802 	cur = waiter;
803 	list_for_each_entry_continue_reverse(cur, &lock->wait_list, list) {
804 		if (!cur->ww_ctx)
805 			continue;
806 
807 		return __ww_mutex_kill(lock, ctx);
808 	}
809 
810 	return 0;
811 }
812 
813 /*
814  * Add @waiter to the wait-list, keep the wait-list ordered by stamp, smallest
815  * first. Such that older contexts are preferred to acquire the lock over
816  * younger contexts.
817  *
818  * Waiters without context are interspersed in FIFO order.
819  *
820  * Furthermore, for Wait-Die kill ourself immediately when possible (there are
821  * older contexts already waiting) to avoid unnecessary waiting and for
822  * Wound-Wait ensure we wound the owning context when it is younger.
823  */
824 static inline int __sched
825 __ww_mutex_add_waiter(struct mutex_waiter *waiter,
826 		      struct mutex *lock,
827 		      struct ww_acquire_ctx *ww_ctx)
828 {
829 	struct mutex_waiter *cur;
830 	struct list_head *pos;
831 	bool is_wait_die;
832 
833 	if (!ww_ctx) {
834 		__mutex_add_waiter(lock, waiter, &lock->wait_list);
835 		return 0;
836 	}
837 
838 	is_wait_die = ww_ctx->is_wait_die;
839 
840 	/*
841 	 * Add the waiter before the first waiter with a higher stamp.
842 	 * Waiters without a context are skipped to avoid starving
843 	 * them. Wait-Die waiters may die here. Wound-Wait waiters
844 	 * never die here, but they are sorted in stamp order and
845 	 * may wound the lock holder.
846 	 */
847 	pos = &lock->wait_list;
848 	list_for_each_entry_reverse(cur, &lock->wait_list, list) {
849 		if (!cur->ww_ctx)
850 			continue;
851 
852 		if (__ww_ctx_stamp_after(ww_ctx, cur->ww_ctx)) {
853 			/*
854 			 * Wait-Die: if we find an older context waiting, there
855 			 * is no point in queueing behind it, as we'd have to
856 			 * die the moment it would acquire the lock.
857 			 */
858 			if (is_wait_die) {
859 				int ret = __ww_mutex_kill(lock, ww_ctx);
860 
861 				if (ret)
862 					return ret;
863 			}
864 
865 			break;
866 		}
867 
868 		pos = &cur->list;
869 
870 		/* Wait-Die: ensure younger waiters die. */
871 		__ww_mutex_die(lock, cur, ww_ctx);
872 	}
873 
874 	__mutex_add_waiter(lock, waiter, pos);
875 
876 	/*
877 	 * Wound-Wait: if we're blocking on a mutex owned by a younger context,
878 	 * wound that such that we might proceed.
879 	 */
880 	if (!is_wait_die) {
881 		struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
882 
883 		/*
884 		 * See ww_mutex_set_context_fastpath(). Orders setting
885 		 * MUTEX_FLAG_WAITERS vs the ww->ctx load,
886 		 * such that either we or the fastpath will wound @ww->ctx.
887 		 */
888 		smp_mb();
889 		__ww_mutex_wound(lock, ww_ctx, ww->ctx);
890 	}
891 
892 	return 0;
893 }
894 
895 /*
896  * Lock a mutex (possibly interruptible), slowpath:
897  */
898 static __always_inline int __sched
899 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
900 		    struct lockdep_map *nest_lock, unsigned long ip,
901 		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
902 {
903 	struct mutex_waiter waiter;
904 	bool first = false;
905 	struct ww_mutex *ww;
906 	int ret;
907 
908 	might_sleep();
909 
910 	ww = container_of(lock, struct ww_mutex, base);
911 	if (use_ww_ctx && ww_ctx) {
912 		if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
913 			return -EALREADY;
914 
915 		/*
916 		 * Reset the wounded flag after a kill. No other process can
917 		 * race and wound us here since they can't have a valid owner
918 		 * pointer if we don't have any locks held.
919 		 */
920 		if (ww_ctx->acquired == 0)
921 			ww_ctx->wounded = 0;
922 	}
923 
924 	preempt_disable();
925 	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
926 
927 	if (__mutex_trylock(lock) ||
928 	    mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, NULL)) {
929 		/* got the lock, yay! */
930 		lock_acquired(&lock->dep_map, ip);
931 		if (use_ww_ctx && ww_ctx)
932 			ww_mutex_set_context_fastpath(ww, ww_ctx);
933 		preempt_enable();
934 		return 0;
935 	}
936 
937 	spin_lock(&lock->wait_lock);
938 	/*
939 	 * After waiting to acquire the wait_lock, try again.
940 	 */
941 	if (__mutex_trylock(lock)) {
942 		if (use_ww_ctx && ww_ctx)
943 			__ww_mutex_check_waiters(lock, ww_ctx);
944 
945 		goto skip_wait;
946 	}
947 
948 	debug_mutex_lock_common(lock, &waiter);
949 
950 	lock_contended(&lock->dep_map, ip);
951 
952 	if (!use_ww_ctx) {
953 		/* add waiting tasks to the end of the waitqueue (FIFO): */
954 		__mutex_add_waiter(lock, &waiter, &lock->wait_list);
955 
956 
957 #ifdef CONFIG_DEBUG_MUTEXES
958 		waiter.ww_ctx = MUTEX_POISON_WW_CTX;
959 #endif
960 	} else {
961 		/*
962 		 * Add in stamp order, waking up waiters that must kill
963 		 * themselves.
964 		 */
965 		ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx);
966 		if (ret)
967 			goto err_early_kill;
968 
969 		waiter.ww_ctx = ww_ctx;
970 	}
971 
972 	waiter.task = current;
973 
974 	set_current_state(state);
975 	for (;;) {
976 		/*
977 		 * Once we hold wait_lock, we're serialized against
978 		 * mutex_unlock() handing the lock off to us, do a trylock
979 		 * before testing the error conditions to make sure we pick up
980 		 * the handoff.
981 		 */
982 		if (__mutex_trylock(lock))
983 			goto acquired;
984 
985 		/*
986 		 * Check for signals and kill conditions while holding
987 		 * wait_lock. This ensures the lock cancellation is ordered
988 		 * against mutex_unlock() and wake-ups do not go missing.
989 		 */
990 		if (unlikely(signal_pending_state(state, current))) {
991 			ret = -EINTR;
992 			goto err;
993 		}
994 
995 		if (use_ww_ctx && ww_ctx) {
996 			ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx);
997 			if (ret)
998 				goto err;
999 		}
1000 
1001 		spin_unlock(&lock->wait_lock);
1002 		schedule_preempt_disabled();
1003 
1004 		/*
1005 		 * ww_mutex needs to always recheck its position since its waiter
1006 		 * list is not FIFO ordered.
1007 		 */
1008 		if ((use_ww_ctx && ww_ctx) || !first) {
1009 			first = __mutex_waiter_is_first(lock, &waiter);
1010 			if (first)
1011 				__mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
1012 		}
1013 
1014 		set_current_state(state);
1015 		/*
1016 		 * Here we order against unlock; we must either see it change
1017 		 * state back to RUNNING and fall through the next schedule(),
1018 		 * or we must see its unlock and acquire.
1019 		 */
1020 		if (__mutex_trylock(lock) ||
1021 		    (first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, &waiter)))
1022 			break;
1023 
1024 		spin_lock(&lock->wait_lock);
1025 	}
1026 	spin_lock(&lock->wait_lock);
1027 acquired:
1028 	__set_current_state(TASK_RUNNING);
1029 
1030 	if (use_ww_ctx && ww_ctx) {
1031 		/*
1032 		 * Wound-Wait; we stole the lock (!first_waiter), check the
1033 		 * waiters as anyone might want to wound us.
1034 		 */
1035 		if (!ww_ctx->is_wait_die &&
1036 		    !__mutex_waiter_is_first(lock, &waiter))
1037 			__ww_mutex_check_waiters(lock, ww_ctx);
1038 	}
1039 
1040 	mutex_remove_waiter(lock, &waiter, current);
1041 	if (likely(list_empty(&lock->wait_list)))
1042 		__mutex_clear_flag(lock, MUTEX_FLAGS);
1043 
1044 	debug_mutex_free_waiter(&waiter);
1045 
1046 skip_wait:
1047 	/* got the lock - cleanup and rejoice! */
1048 	lock_acquired(&lock->dep_map, ip);
1049 
1050 	if (use_ww_ctx && ww_ctx)
1051 		ww_mutex_lock_acquired(ww, ww_ctx);
1052 
1053 	spin_unlock(&lock->wait_lock);
1054 	preempt_enable();
1055 	return 0;
1056 
1057 err:
1058 	__set_current_state(TASK_RUNNING);
1059 	mutex_remove_waiter(lock, &waiter, current);
1060 err_early_kill:
1061 	spin_unlock(&lock->wait_lock);
1062 	debug_mutex_free_waiter(&waiter);
1063 	mutex_release(&lock->dep_map, 1, ip);
1064 	preempt_enable();
1065 	return ret;
1066 }
1067 
1068 static int __sched
1069 __mutex_lock(struct mutex *lock, long state, unsigned int subclass,
1070 	     struct lockdep_map *nest_lock, unsigned long ip)
1071 {
1072 	return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
1073 }
1074 
1075 static int __sched
1076 __ww_mutex_lock(struct mutex *lock, long state, unsigned int subclass,
1077 		struct lockdep_map *nest_lock, unsigned long ip,
1078 		struct ww_acquire_ctx *ww_ctx)
1079 {
1080 	return __mutex_lock_common(lock, state, subclass, nest_lock, ip, ww_ctx, true);
1081 }
1082 
1083 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1084 void __sched
1085 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
1086 {
1087 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
1088 }
1089 
1090 EXPORT_SYMBOL_GPL(mutex_lock_nested);
1091 
1092 void __sched
1093 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
1094 {
1095 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
1096 }
1097 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
1098 
1099 int __sched
1100 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
1101 {
1102 	return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
1103 }
1104 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
1105 
1106 int __sched
1107 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
1108 {
1109 	return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
1110 }
1111 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
1112 
1113 void __sched
1114 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
1115 {
1116 	int token;
1117 
1118 	might_sleep();
1119 
1120 	token = io_schedule_prepare();
1121 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
1122 			    subclass, NULL, _RET_IP_, NULL, 0);
1123 	io_schedule_finish(token);
1124 }
1125 EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
1126 
1127 static inline int
1128 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1129 {
1130 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
1131 	unsigned tmp;
1132 
1133 	if (ctx->deadlock_inject_countdown-- == 0) {
1134 		tmp = ctx->deadlock_inject_interval;
1135 		if (tmp > UINT_MAX/4)
1136 			tmp = UINT_MAX;
1137 		else
1138 			tmp = tmp*2 + tmp + tmp/2;
1139 
1140 		ctx->deadlock_inject_interval = tmp;
1141 		ctx->deadlock_inject_countdown = tmp;
1142 		ctx->contending_lock = lock;
1143 
1144 		ww_mutex_unlock(lock);
1145 
1146 		return -EDEADLK;
1147 	}
1148 #endif
1149 
1150 	return 0;
1151 }
1152 
1153 int __sched
1154 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1155 {
1156 	int ret;
1157 
1158 	might_sleep();
1159 	ret =  __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
1160 			       0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1161 			       ctx);
1162 	if (!ret && ctx && ctx->acquired > 1)
1163 		return ww_mutex_deadlock_injection(lock, ctx);
1164 
1165 	return ret;
1166 }
1167 EXPORT_SYMBOL_GPL(ww_mutex_lock);
1168 
1169 int __sched
1170 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1171 {
1172 	int ret;
1173 
1174 	might_sleep();
1175 	ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
1176 			      0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1177 			      ctx);
1178 
1179 	if (!ret && ctx && ctx->acquired > 1)
1180 		return ww_mutex_deadlock_injection(lock, ctx);
1181 
1182 	return ret;
1183 }
1184 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
1185 
1186 #endif
1187 
1188 /*
1189  * Release the lock, slowpath:
1190  */
1191 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
1192 {
1193 	struct task_struct *next = NULL;
1194 	DEFINE_WAKE_Q(wake_q);
1195 	unsigned long owner;
1196 
1197 	mutex_release(&lock->dep_map, 1, ip);
1198 
1199 	/*
1200 	 * Release the lock before (potentially) taking the spinlock such that
1201 	 * other contenders can get on with things ASAP.
1202 	 *
1203 	 * Except when HANDOFF, in that case we must not clear the owner field,
1204 	 * but instead set it to the top waiter.
1205 	 */
1206 	owner = atomic_long_read(&lock->owner);
1207 	for (;;) {
1208 		unsigned long old;
1209 
1210 #ifdef CONFIG_DEBUG_MUTEXES
1211 		DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
1212 		DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
1213 #endif
1214 
1215 		if (owner & MUTEX_FLAG_HANDOFF)
1216 			break;
1217 
1218 		old = atomic_long_cmpxchg_release(&lock->owner, owner,
1219 						  __owner_flags(owner));
1220 		if (old == owner) {
1221 			if (owner & MUTEX_FLAG_WAITERS)
1222 				break;
1223 
1224 			return;
1225 		}
1226 
1227 		owner = old;
1228 	}
1229 
1230 	spin_lock(&lock->wait_lock);
1231 	debug_mutex_unlock(lock);
1232 	if (!list_empty(&lock->wait_list)) {
1233 		/* get the first entry from the wait-list: */
1234 		struct mutex_waiter *waiter =
1235 			list_first_entry(&lock->wait_list,
1236 					 struct mutex_waiter, list);
1237 
1238 		next = waiter->task;
1239 
1240 		debug_mutex_wake_waiter(lock, waiter);
1241 		wake_q_add(&wake_q, next);
1242 	}
1243 
1244 	if (owner & MUTEX_FLAG_HANDOFF)
1245 		__mutex_handoff(lock, next);
1246 
1247 	spin_unlock(&lock->wait_lock);
1248 
1249 	wake_up_q(&wake_q);
1250 }
1251 
1252 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1253 /*
1254  * Here come the less common (and hence less performance-critical) APIs:
1255  * mutex_lock_interruptible() and mutex_trylock().
1256  */
1257 static noinline int __sched
1258 __mutex_lock_killable_slowpath(struct mutex *lock);
1259 
1260 static noinline int __sched
1261 __mutex_lock_interruptible_slowpath(struct mutex *lock);
1262 
1263 /**
1264  * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals.
1265  * @lock: The mutex to be acquired.
1266  *
1267  * Lock the mutex like mutex_lock().  If a signal is delivered while the
1268  * process is sleeping, this function will return without acquiring the
1269  * mutex.
1270  *
1271  * Context: Process context.
1272  * Return: 0 if the lock was successfully acquired or %-EINTR if a
1273  * signal arrived.
1274  */
1275 int __sched mutex_lock_interruptible(struct mutex *lock)
1276 {
1277 	might_sleep();
1278 
1279 	if (__mutex_trylock_fast(lock))
1280 		return 0;
1281 
1282 	return __mutex_lock_interruptible_slowpath(lock);
1283 }
1284 
1285 EXPORT_SYMBOL(mutex_lock_interruptible);
1286 
1287 /**
1288  * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals.
1289  * @lock: The mutex to be acquired.
1290  *
1291  * Lock the mutex like mutex_lock().  If a signal which will be fatal to
1292  * the current process is delivered while the process is sleeping, this
1293  * function will return without acquiring the mutex.
1294  *
1295  * Context: Process context.
1296  * Return: 0 if the lock was successfully acquired or %-EINTR if a
1297  * fatal signal arrived.
1298  */
1299 int __sched mutex_lock_killable(struct mutex *lock)
1300 {
1301 	might_sleep();
1302 
1303 	if (__mutex_trylock_fast(lock))
1304 		return 0;
1305 
1306 	return __mutex_lock_killable_slowpath(lock);
1307 }
1308 EXPORT_SYMBOL(mutex_lock_killable);
1309 
1310 /**
1311  * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O
1312  * @lock: The mutex to be acquired.
1313  *
1314  * Lock the mutex like mutex_lock().  While the task is waiting for this
1315  * mutex, it will be accounted as being in the IO wait state by the
1316  * scheduler.
1317  *
1318  * Context: Process context.
1319  */
1320 void __sched mutex_lock_io(struct mutex *lock)
1321 {
1322 	int token;
1323 
1324 	token = io_schedule_prepare();
1325 	mutex_lock(lock);
1326 	io_schedule_finish(token);
1327 }
1328 EXPORT_SYMBOL_GPL(mutex_lock_io);
1329 
1330 static noinline void __sched
1331 __mutex_lock_slowpath(struct mutex *lock)
1332 {
1333 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
1334 }
1335 
1336 static noinline int __sched
1337 __mutex_lock_killable_slowpath(struct mutex *lock)
1338 {
1339 	return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
1340 }
1341 
1342 static noinline int __sched
1343 __mutex_lock_interruptible_slowpath(struct mutex *lock)
1344 {
1345 	return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
1346 }
1347 
1348 static noinline int __sched
1349 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1350 {
1351 	return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, NULL,
1352 			       _RET_IP_, ctx);
1353 }
1354 
1355 static noinline int __sched
1356 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1357 					    struct ww_acquire_ctx *ctx)
1358 {
1359 	return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, NULL,
1360 			       _RET_IP_, ctx);
1361 }
1362 
1363 #endif
1364 
1365 /**
1366  * mutex_trylock - try to acquire the mutex, without waiting
1367  * @lock: the mutex to be acquired
1368  *
1369  * Try to acquire the mutex atomically. Returns 1 if the mutex
1370  * has been acquired successfully, and 0 on contention.
1371  *
1372  * NOTE: this function follows the spin_trylock() convention, so
1373  * it is negated from the down_trylock() return values! Be careful
1374  * about this when converting semaphore users to mutexes.
1375  *
1376  * This function must not be used in interrupt context. The
1377  * mutex must be released by the same task that acquired it.
1378  */
1379 int __sched mutex_trylock(struct mutex *lock)
1380 {
1381 	bool locked = __mutex_trylock(lock);
1382 
1383 	if (locked)
1384 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1385 
1386 	return locked;
1387 }
1388 EXPORT_SYMBOL(mutex_trylock);
1389 
1390 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1391 int __sched
1392 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1393 {
1394 	might_sleep();
1395 
1396 	if (__mutex_trylock_fast(&lock->base)) {
1397 		if (ctx)
1398 			ww_mutex_set_context_fastpath(lock, ctx);
1399 		return 0;
1400 	}
1401 
1402 	return __ww_mutex_lock_slowpath(lock, ctx);
1403 }
1404 EXPORT_SYMBOL(ww_mutex_lock);
1405 
1406 int __sched
1407 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1408 {
1409 	might_sleep();
1410 
1411 	if (__mutex_trylock_fast(&lock->base)) {
1412 		if (ctx)
1413 			ww_mutex_set_context_fastpath(lock, ctx);
1414 		return 0;
1415 	}
1416 
1417 	return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1418 }
1419 EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1420 
1421 #endif
1422 
1423 /**
1424  * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1425  * @cnt: the atomic which we are to dec
1426  * @lock: the mutex to return holding if we dec to 0
1427  *
1428  * return true and hold lock if we dec to 0, return false otherwise
1429  */
1430 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1431 {
1432 	/* dec if we can't possibly hit 0 */
1433 	if (atomic_add_unless(cnt, -1, 1))
1434 		return 0;
1435 	/* we might hit 0, so take the lock */
1436 	mutex_lock(lock);
1437 	if (!atomic_dec_and_test(cnt)) {
1438 		/* when we actually did the dec, we didn't hit 0 */
1439 		mutex_unlock(lock);
1440 		return 0;
1441 	}
1442 	/* we hit 0, and we hold the lock */
1443 	return 1;
1444 }
1445 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
1446