xref: /openbmc/linux/kernel/locking/mutex.c (revision e0bf6c5c)
1 /*
2  * kernel/locking/mutex.c
3  *
4  * Mutexes: blocking mutual exclusion locks
5  *
6  * Started by Ingo Molnar:
7  *
8  *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9  *
10  * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11  * David Howells for suggestions and improvements.
12  *
13  *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14  *    from the -rt tree, where it was originally implemented for rtmutexes
15  *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16  *    and Sven Dietrich.
17  *
18  * Also see Documentation/locking/mutex-design.txt.
19  */
20 #include <linux/mutex.h>
21 #include <linux/ww_mutex.h>
22 #include <linux/sched.h>
23 #include <linux/sched/rt.h>
24 #include <linux/export.h>
25 #include <linux/spinlock.h>
26 #include <linux/interrupt.h>
27 #include <linux/debug_locks.h>
28 #include "mcs_spinlock.h"
29 
30 /*
31  * In the DEBUG case we are using the "NULL fastpath" for mutexes,
32  * which forces all calls into the slowpath:
33  */
34 #ifdef CONFIG_DEBUG_MUTEXES
35 # include "mutex-debug.h"
36 # include <asm-generic/mutex-null.h>
37 /*
38  * Must be 0 for the debug case so we do not do the unlock outside of the
39  * wait_lock region. debug_mutex_unlock() will do the actual unlock in this
40  * case.
41  */
42 # undef __mutex_slowpath_needs_to_unlock
43 # define  __mutex_slowpath_needs_to_unlock()	0
44 #else
45 # include "mutex.h"
46 # include <asm/mutex.h>
47 #endif
48 
49 void
50 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
51 {
52 	atomic_set(&lock->count, 1);
53 	spin_lock_init(&lock->wait_lock);
54 	INIT_LIST_HEAD(&lock->wait_list);
55 	mutex_clear_owner(lock);
56 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
57 	osq_lock_init(&lock->osq);
58 #endif
59 
60 	debug_mutex_init(lock, name, key);
61 }
62 
63 EXPORT_SYMBOL(__mutex_init);
64 
65 #ifndef CONFIG_DEBUG_LOCK_ALLOC
66 /*
67  * We split the mutex lock/unlock logic into separate fastpath and
68  * slowpath functions, to reduce the register pressure on the fastpath.
69  * We also put the fastpath first in the kernel image, to make sure the
70  * branch is predicted by the CPU as default-untaken.
71  */
72 __visible void __sched __mutex_lock_slowpath(atomic_t *lock_count);
73 
74 /**
75  * mutex_lock - acquire the mutex
76  * @lock: the mutex to be acquired
77  *
78  * Lock the mutex exclusively for this task. If the mutex is not
79  * available right now, it will sleep until it can get it.
80  *
81  * The mutex must later on be released by the same task that
82  * acquired it. Recursive locking is not allowed. The task
83  * may not exit without first unlocking the mutex. Also, kernel
84  * memory where the mutex resides must not be freed with
85  * the mutex still locked. The mutex must first be initialized
86  * (or statically defined) before it can be locked. memset()-ing
87  * the mutex to 0 is not allowed.
88  *
89  * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
90  *   checks that will enforce the restrictions and will also do
91  *   deadlock debugging. )
92  *
93  * This function is similar to (but not equivalent to) down().
94  */
95 void __sched mutex_lock(struct mutex *lock)
96 {
97 	might_sleep();
98 	/*
99 	 * The locking fastpath is the 1->0 transition from
100 	 * 'unlocked' into 'locked' state.
101 	 */
102 	__mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
103 	mutex_set_owner(lock);
104 }
105 
106 EXPORT_SYMBOL(mutex_lock);
107 #endif
108 
109 static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
110 						   struct ww_acquire_ctx *ww_ctx)
111 {
112 #ifdef CONFIG_DEBUG_MUTEXES
113 	/*
114 	 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
115 	 * but released with a normal mutex_unlock in this call.
116 	 *
117 	 * This should never happen, always use ww_mutex_unlock.
118 	 */
119 	DEBUG_LOCKS_WARN_ON(ww->ctx);
120 
121 	/*
122 	 * Not quite done after calling ww_acquire_done() ?
123 	 */
124 	DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
125 
126 	if (ww_ctx->contending_lock) {
127 		/*
128 		 * After -EDEADLK you tried to
129 		 * acquire a different ww_mutex? Bad!
130 		 */
131 		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
132 
133 		/*
134 		 * You called ww_mutex_lock after receiving -EDEADLK,
135 		 * but 'forgot' to unlock everything else first?
136 		 */
137 		DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
138 		ww_ctx->contending_lock = NULL;
139 	}
140 
141 	/*
142 	 * Naughty, using a different class will lead to undefined behavior!
143 	 */
144 	DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
145 #endif
146 	ww_ctx->acquired++;
147 }
148 
149 /*
150  * After acquiring lock with fastpath or when we lost out in contested
151  * slowpath, set ctx and wake up any waiters so they can recheck.
152  *
153  * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
154  * as the fastpath and opportunistic spinning are disabled in that case.
155  */
156 static __always_inline void
157 ww_mutex_set_context_fastpath(struct ww_mutex *lock,
158 			       struct ww_acquire_ctx *ctx)
159 {
160 	unsigned long flags;
161 	struct mutex_waiter *cur;
162 
163 	ww_mutex_lock_acquired(lock, ctx);
164 
165 	lock->ctx = ctx;
166 
167 	/*
168 	 * The lock->ctx update should be visible on all cores before
169 	 * the atomic read is done, otherwise contended waiters might be
170 	 * missed. The contended waiters will either see ww_ctx == NULL
171 	 * and keep spinning, or it will acquire wait_lock, add itself
172 	 * to waiter list and sleep.
173 	 */
174 	smp_mb(); /* ^^^ */
175 
176 	/*
177 	 * Check if lock is contended, if not there is nobody to wake up
178 	 */
179 	if (likely(atomic_read(&lock->base.count) == 0))
180 		return;
181 
182 	/*
183 	 * Uh oh, we raced in fastpath, wake up everyone in this case,
184 	 * so they can see the new lock->ctx.
185 	 */
186 	spin_lock_mutex(&lock->base.wait_lock, flags);
187 	list_for_each_entry(cur, &lock->base.wait_list, list) {
188 		debug_mutex_wake_waiter(&lock->base, cur);
189 		wake_up_process(cur->task);
190 	}
191 	spin_unlock_mutex(&lock->base.wait_lock, flags);
192 }
193 
194 /*
195  * After acquiring lock in the slowpath set ctx and wake up any
196  * waiters so they can recheck.
197  *
198  * Callers must hold the mutex wait_lock.
199  */
200 static __always_inline void
201 ww_mutex_set_context_slowpath(struct ww_mutex *lock,
202 			      struct ww_acquire_ctx *ctx)
203 {
204 	struct mutex_waiter *cur;
205 
206 	ww_mutex_lock_acquired(lock, ctx);
207 	lock->ctx = ctx;
208 
209 	/*
210 	 * Give any possible sleeping processes the chance to wake up,
211 	 * so they can recheck if they have to back off.
212 	 */
213 	list_for_each_entry(cur, &lock->base.wait_list, list) {
214 		debug_mutex_wake_waiter(&lock->base, cur);
215 		wake_up_process(cur->task);
216 	}
217 }
218 
219 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
220 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
221 {
222 	if (lock->owner != owner)
223 		return false;
224 
225 	/*
226 	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
227 	 * lock->owner still matches owner, if that fails, owner might
228 	 * point to free()d memory, if it still matches, the rcu_read_lock()
229 	 * ensures the memory stays valid.
230 	 */
231 	barrier();
232 
233 	return owner->on_cpu;
234 }
235 
236 /*
237  * Look out! "owner" is an entirely speculative pointer
238  * access and not reliable.
239  */
240 static noinline
241 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
242 {
243 	rcu_read_lock();
244 	while (owner_running(lock, owner)) {
245 		if (need_resched())
246 			break;
247 
248 		cpu_relax_lowlatency();
249 	}
250 	rcu_read_unlock();
251 
252 	/*
253 	 * We break out the loop above on need_resched() and when the
254 	 * owner changed, which is a sign for heavy contention. Return
255 	 * success only when lock->owner is NULL.
256 	 */
257 	return lock->owner == NULL;
258 }
259 
260 /*
261  * Initial check for entering the mutex spinning loop
262  */
263 static inline int mutex_can_spin_on_owner(struct mutex *lock)
264 {
265 	struct task_struct *owner;
266 	int retval = 1;
267 
268 	if (need_resched())
269 		return 0;
270 
271 	rcu_read_lock();
272 	owner = ACCESS_ONCE(lock->owner);
273 	if (owner)
274 		retval = owner->on_cpu;
275 	rcu_read_unlock();
276 	/*
277 	 * if lock->owner is not set, the mutex owner may have just acquired
278 	 * it and not set the owner yet or the mutex has been released.
279 	 */
280 	return retval;
281 }
282 
283 /*
284  * Atomically try to take the lock when it is available
285  */
286 static inline bool mutex_try_to_acquire(struct mutex *lock)
287 {
288 	return !mutex_is_locked(lock) &&
289 		(atomic_cmpxchg(&lock->count, 1, 0) == 1);
290 }
291 
292 /*
293  * Optimistic spinning.
294  *
295  * We try to spin for acquisition when we find that the lock owner
296  * is currently running on a (different) CPU and while we don't
297  * need to reschedule. The rationale is that if the lock owner is
298  * running, it is likely to release the lock soon.
299  *
300  * Since this needs the lock owner, and this mutex implementation
301  * doesn't track the owner atomically in the lock field, we need to
302  * track it non-atomically.
303  *
304  * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
305  * to serialize everything.
306  *
307  * The mutex spinners are queued up using MCS lock so that only one
308  * spinner can compete for the mutex. However, if mutex spinning isn't
309  * going to happen, there is no point in going through the lock/unlock
310  * overhead.
311  *
312  * Returns true when the lock was taken, otherwise false, indicating
313  * that we need to jump to the slowpath and sleep.
314  */
315 static bool mutex_optimistic_spin(struct mutex *lock,
316 				  struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
317 {
318 	struct task_struct *task = current;
319 
320 	if (!mutex_can_spin_on_owner(lock))
321 		goto done;
322 
323 	/*
324 	 * In order to avoid a stampede of mutex spinners trying to
325 	 * acquire the mutex all at once, the spinners need to take a
326 	 * MCS (queued) lock first before spinning on the owner field.
327 	 */
328 	if (!osq_lock(&lock->osq))
329 		goto done;
330 
331 	while (true) {
332 		struct task_struct *owner;
333 
334 		if (use_ww_ctx && ww_ctx->acquired > 0) {
335 			struct ww_mutex *ww;
336 
337 			ww = container_of(lock, struct ww_mutex, base);
338 			/*
339 			 * If ww->ctx is set the contents are undefined, only
340 			 * by acquiring wait_lock there is a guarantee that
341 			 * they are not invalid when reading.
342 			 *
343 			 * As such, when deadlock detection needs to be
344 			 * performed the optimistic spinning cannot be done.
345 			 */
346 			if (ACCESS_ONCE(ww->ctx))
347 				break;
348 		}
349 
350 		/*
351 		 * If there's an owner, wait for it to either
352 		 * release the lock or go to sleep.
353 		 */
354 		owner = ACCESS_ONCE(lock->owner);
355 		if (owner && !mutex_spin_on_owner(lock, owner))
356 			break;
357 
358 		/* Try to acquire the mutex if it is unlocked. */
359 		if (mutex_try_to_acquire(lock)) {
360 			lock_acquired(&lock->dep_map, ip);
361 
362 			if (use_ww_ctx) {
363 				struct ww_mutex *ww;
364 				ww = container_of(lock, struct ww_mutex, base);
365 
366 				ww_mutex_set_context_fastpath(ww, ww_ctx);
367 			}
368 
369 			mutex_set_owner(lock);
370 			osq_unlock(&lock->osq);
371 			return true;
372 		}
373 
374 		/*
375 		 * When there's no owner, we might have preempted between the
376 		 * owner acquiring the lock and setting the owner field. If
377 		 * we're an RT task that will live-lock because we won't let
378 		 * the owner complete.
379 		 */
380 		if (!owner && (need_resched() || rt_task(task)))
381 			break;
382 
383 		/*
384 		 * The cpu_relax() call is a compiler barrier which forces
385 		 * everything in this loop to be re-loaded. We don't need
386 		 * memory barriers as we'll eventually observe the right
387 		 * values at the cost of a few extra spins.
388 		 */
389 		cpu_relax_lowlatency();
390 	}
391 
392 	osq_unlock(&lock->osq);
393 done:
394 	/*
395 	 * If we fell out of the spin path because of need_resched(),
396 	 * reschedule now, before we try-lock the mutex. This avoids getting
397 	 * scheduled out right after we obtained the mutex.
398 	 */
399 	if (need_resched()) {
400 		/*
401 		 * We _should_ have TASK_RUNNING here, but just in case
402 		 * we do not, make it so, otherwise we might get stuck.
403 		 */
404 		__set_current_state(TASK_RUNNING);
405 		schedule_preempt_disabled();
406 	}
407 
408 	return false;
409 }
410 #else
411 static bool mutex_optimistic_spin(struct mutex *lock,
412 				  struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
413 {
414 	return false;
415 }
416 #endif
417 
418 __visible __used noinline
419 void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
420 
421 /**
422  * mutex_unlock - release the mutex
423  * @lock: the mutex to be released
424  *
425  * Unlock a mutex that has been locked by this task previously.
426  *
427  * This function must not be used in interrupt context. Unlocking
428  * of a not locked mutex is not allowed.
429  *
430  * This function is similar to (but not equivalent to) up().
431  */
432 void __sched mutex_unlock(struct mutex *lock)
433 {
434 	/*
435 	 * The unlocking fastpath is the 0->1 transition from 'locked'
436 	 * into 'unlocked' state:
437 	 */
438 #ifndef CONFIG_DEBUG_MUTEXES
439 	/*
440 	 * When debugging is enabled we must not clear the owner before time,
441 	 * the slow path will always be taken, and that clears the owner field
442 	 * after verifying that it was indeed current.
443 	 */
444 	mutex_clear_owner(lock);
445 #endif
446 	__mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
447 }
448 
449 EXPORT_SYMBOL(mutex_unlock);
450 
451 /**
452  * ww_mutex_unlock - release the w/w mutex
453  * @lock: the mutex to be released
454  *
455  * Unlock a mutex that has been locked by this task previously with any of the
456  * ww_mutex_lock* functions (with or without an acquire context). It is
457  * forbidden to release the locks after releasing the acquire context.
458  *
459  * This function must not be used in interrupt context. Unlocking
460  * of a unlocked mutex is not allowed.
461  */
462 void __sched ww_mutex_unlock(struct ww_mutex *lock)
463 {
464 	/*
465 	 * The unlocking fastpath is the 0->1 transition from 'locked'
466 	 * into 'unlocked' state:
467 	 */
468 	if (lock->ctx) {
469 #ifdef CONFIG_DEBUG_MUTEXES
470 		DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
471 #endif
472 		if (lock->ctx->acquired > 0)
473 			lock->ctx->acquired--;
474 		lock->ctx = NULL;
475 	}
476 
477 #ifndef CONFIG_DEBUG_MUTEXES
478 	/*
479 	 * When debugging is enabled we must not clear the owner before time,
480 	 * the slow path will always be taken, and that clears the owner field
481 	 * after verifying that it was indeed current.
482 	 */
483 	mutex_clear_owner(&lock->base);
484 #endif
485 	__mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
486 }
487 EXPORT_SYMBOL(ww_mutex_unlock);
488 
489 static inline int __sched
490 __ww_mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
491 {
492 	struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
493 	struct ww_acquire_ctx *hold_ctx = ACCESS_ONCE(ww->ctx);
494 
495 	if (!hold_ctx)
496 		return 0;
497 
498 	if (unlikely(ctx == hold_ctx))
499 		return -EALREADY;
500 
501 	if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
502 	    (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
503 #ifdef CONFIG_DEBUG_MUTEXES
504 		DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
505 		ctx->contending_lock = ww;
506 #endif
507 		return -EDEADLK;
508 	}
509 
510 	return 0;
511 }
512 
513 /*
514  * Lock a mutex (possibly interruptible), slowpath:
515  */
516 static __always_inline int __sched
517 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
518 		    struct lockdep_map *nest_lock, unsigned long ip,
519 		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
520 {
521 	struct task_struct *task = current;
522 	struct mutex_waiter waiter;
523 	unsigned long flags;
524 	int ret;
525 
526 	preempt_disable();
527 	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
528 
529 	if (mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx)) {
530 		/* got the lock, yay! */
531 		preempt_enable();
532 		return 0;
533 	}
534 
535 	spin_lock_mutex(&lock->wait_lock, flags);
536 
537 	/*
538 	 * Once more, try to acquire the lock. Only try-lock the mutex if
539 	 * it is unlocked to reduce unnecessary xchg() operations.
540 	 */
541 	if (!mutex_is_locked(lock) && (atomic_xchg(&lock->count, 0) == 1))
542 		goto skip_wait;
543 
544 	debug_mutex_lock_common(lock, &waiter);
545 	debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
546 
547 	/* add waiting tasks to the end of the waitqueue (FIFO): */
548 	list_add_tail(&waiter.list, &lock->wait_list);
549 	waiter.task = task;
550 
551 	lock_contended(&lock->dep_map, ip);
552 
553 	for (;;) {
554 		/*
555 		 * Lets try to take the lock again - this is needed even if
556 		 * we get here for the first time (shortly after failing to
557 		 * acquire the lock), to make sure that we get a wakeup once
558 		 * it's unlocked. Later on, if we sleep, this is the
559 		 * operation that gives us the lock. We xchg it to -1, so
560 		 * that when we release the lock, we properly wake up the
561 		 * other waiters. We only attempt the xchg if the count is
562 		 * non-negative in order to avoid unnecessary xchg operations:
563 		 */
564 		if (atomic_read(&lock->count) >= 0 &&
565 		    (atomic_xchg(&lock->count, -1) == 1))
566 			break;
567 
568 		/*
569 		 * got a signal? (This code gets eliminated in the
570 		 * TASK_UNINTERRUPTIBLE case.)
571 		 */
572 		if (unlikely(signal_pending_state(state, task))) {
573 			ret = -EINTR;
574 			goto err;
575 		}
576 
577 		if (use_ww_ctx && ww_ctx->acquired > 0) {
578 			ret = __ww_mutex_lock_check_stamp(lock, ww_ctx);
579 			if (ret)
580 				goto err;
581 		}
582 
583 		__set_task_state(task, state);
584 
585 		/* didn't get the lock, go to sleep: */
586 		spin_unlock_mutex(&lock->wait_lock, flags);
587 		schedule_preempt_disabled();
588 		spin_lock_mutex(&lock->wait_lock, flags);
589 	}
590 	__set_task_state(task, TASK_RUNNING);
591 
592 	mutex_remove_waiter(lock, &waiter, current_thread_info());
593 	/* set it to 0 if there are no waiters left: */
594 	if (likely(list_empty(&lock->wait_list)))
595 		atomic_set(&lock->count, 0);
596 	debug_mutex_free_waiter(&waiter);
597 
598 skip_wait:
599 	/* got the lock - cleanup and rejoice! */
600 	lock_acquired(&lock->dep_map, ip);
601 	mutex_set_owner(lock);
602 
603 	if (use_ww_ctx) {
604 		struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
605 		ww_mutex_set_context_slowpath(ww, ww_ctx);
606 	}
607 
608 	spin_unlock_mutex(&lock->wait_lock, flags);
609 	preempt_enable();
610 	return 0;
611 
612 err:
613 	mutex_remove_waiter(lock, &waiter, task_thread_info(task));
614 	spin_unlock_mutex(&lock->wait_lock, flags);
615 	debug_mutex_free_waiter(&waiter);
616 	mutex_release(&lock->dep_map, 1, ip);
617 	preempt_enable();
618 	return ret;
619 }
620 
621 #ifdef CONFIG_DEBUG_LOCK_ALLOC
622 void __sched
623 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
624 {
625 	might_sleep();
626 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
627 			    subclass, NULL, _RET_IP_, NULL, 0);
628 }
629 
630 EXPORT_SYMBOL_GPL(mutex_lock_nested);
631 
632 void __sched
633 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
634 {
635 	might_sleep();
636 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
637 			    0, nest, _RET_IP_, NULL, 0);
638 }
639 
640 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
641 
642 int __sched
643 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
644 {
645 	might_sleep();
646 	return __mutex_lock_common(lock, TASK_KILLABLE,
647 				   subclass, NULL, _RET_IP_, NULL, 0);
648 }
649 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
650 
651 int __sched
652 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
653 {
654 	might_sleep();
655 	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
656 				   subclass, NULL, _RET_IP_, NULL, 0);
657 }
658 
659 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
660 
661 static inline int
662 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
663 {
664 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
665 	unsigned tmp;
666 
667 	if (ctx->deadlock_inject_countdown-- == 0) {
668 		tmp = ctx->deadlock_inject_interval;
669 		if (tmp > UINT_MAX/4)
670 			tmp = UINT_MAX;
671 		else
672 			tmp = tmp*2 + tmp + tmp/2;
673 
674 		ctx->deadlock_inject_interval = tmp;
675 		ctx->deadlock_inject_countdown = tmp;
676 		ctx->contending_lock = lock;
677 
678 		ww_mutex_unlock(lock);
679 
680 		return -EDEADLK;
681 	}
682 #endif
683 
684 	return 0;
685 }
686 
687 int __sched
688 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
689 {
690 	int ret;
691 
692 	might_sleep();
693 	ret =  __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
694 				   0, &ctx->dep_map, _RET_IP_, ctx, 1);
695 	if (!ret && ctx->acquired > 1)
696 		return ww_mutex_deadlock_injection(lock, ctx);
697 
698 	return ret;
699 }
700 EXPORT_SYMBOL_GPL(__ww_mutex_lock);
701 
702 int __sched
703 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
704 {
705 	int ret;
706 
707 	might_sleep();
708 	ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
709 				  0, &ctx->dep_map, _RET_IP_, ctx, 1);
710 
711 	if (!ret && ctx->acquired > 1)
712 		return ww_mutex_deadlock_injection(lock, ctx);
713 
714 	return ret;
715 }
716 EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
717 
718 #endif
719 
720 /*
721  * Release the lock, slowpath:
722  */
723 static inline void
724 __mutex_unlock_common_slowpath(struct mutex *lock, int nested)
725 {
726 	unsigned long flags;
727 
728 	/*
729 	 * As a performance measurement, release the lock before doing other
730 	 * wakeup related duties to follow. This allows other tasks to acquire
731 	 * the lock sooner, while still handling cleanups in past unlock calls.
732 	 * This can be done as we do not enforce strict equivalence between the
733 	 * mutex counter and wait_list.
734 	 *
735 	 *
736 	 * Some architectures leave the lock unlocked in the fastpath failure
737 	 * case, others need to leave it locked. In the later case we have to
738 	 * unlock it here - as the lock counter is currently 0 or negative.
739 	 */
740 	if (__mutex_slowpath_needs_to_unlock())
741 		atomic_set(&lock->count, 1);
742 
743 	spin_lock_mutex(&lock->wait_lock, flags);
744 	mutex_release(&lock->dep_map, nested, _RET_IP_);
745 	debug_mutex_unlock(lock);
746 
747 	if (!list_empty(&lock->wait_list)) {
748 		/* get the first entry from the wait-list: */
749 		struct mutex_waiter *waiter =
750 				list_entry(lock->wait_list.next,
751 					   struct mutex_waiter, list);
752 
753 		debug_mutex_wake_waiter(lock, waiter);
754 
755 		wake_up_process(waiter->task);
756 	}
757 
758 	spin_unlock_mutex(&lock->wait_lock, flags);
759 }
760 
761 /*
762  * Release the lock, slowpath:
763  */
764 __visible void
765 __mutex_unlock_slowpath(atomic_t *lock_count)
766 {
767 	struct mutex *lock = container_of(lock_count, struct mutex, count);
768 
769 	__mutex_unlock_common_slowpath(lock, 1);
770 }
771 
772 #ifndef CONFIG_DEBUG_LOCK_ALLOC
773 /*
774  * Here come the less common (and hence less performance-critical) APIs:
775  * mutex_lock_interruptible() and mutex_trylock().
776  */
777 static noinline int __sched
778 __mutex_lock_killable_slowpath(struct mutex *lock);
779 
780 static noinline int __sched
781 __mutex_lock_interruptible_slowpath(struct mutex *lock);
782 
783 /**
784  * mutex_lock_interruptible - acquire the mutex, interruptible
785  * @lock: the mutex to be acquired
786  *
787  * Lock the mutex like mutex_lock(), and return 0 if the mutex has
788  * been acquired or sleep until the mutex becomes available. If a
789  * signal arrives while waiting for the lock then this function
790  * returns -EINTR.
791  *
792  * This function is similar to (but not equivalent to) down_interruptible().
793  */
794 int __sched mutex_lock_interruptible(struct mutex *lock)
795 {
796 	int ret;
797 
798 	might_sleep();
799 	ret =  __mutex_fastpath_lock_retval(&lock->count);
800 	if (likely(!ret)) {
801 		mutex_set_owner(lock);
802 		return 0;
803 	} else
804 		return __mutex_lock_interruptible_slowpath(lock);
805 }
806 
807 EXPORT_SYMBOL(mutex_lock_interruptible);
808 
809 int __sched mutex_lock_killable(struct mutex *lock)
810 {
811 	int ret;
812 
813 	might_sleep();
814 	ret = __mutex_fastpath_lock_retval(&lock->count);
815 	if (likely(!ret)) {
816 		mutex_set_owner(lock);
817 		return 0;
818 	} else
819 		return __mutex_lock_killable_slowpath(lock);
820 }
821 EXPORT_SYMBOL(mutex_lock_killable);
822 
823 __visible void __sched
824 __mutex_lock_slowpath(atomic_t *lock_count)
825 {
826 	struct mutex *lock = container_of(lock_count, struct mutex, count);
827 
828 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
829 			    NULL, _RET_IP_, NULL, 0);
830 }
831 
832 static noinline int __sched
833 __mutex_lock_killable_slowpath(struct mutex *lock)
834 {
835 	return __mutex_lock_common(lock, TASK_KILLABLE, 0,
836 				   NULL, _RET_IP_, NULL, 0);
837 }
838 
839 static noinline int __sched
840 __mutex_lock_interruptible_slowpath(struct mutex *lock)
841 {
842 	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
843 				   NULL, _RET_IP_, NULL, 0);
844 }
845 
846 static noinline int __sched
847 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
848 {
849 	return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
850 				   NULL, _RET_IP_, ctx, 1);
851 }
852 
853 static noinline int __sched
854 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
855 					    struct ww_acquire_ctx *ctx)
856 {
857 	return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
858 				   NULL, _RET_IP_, ctx, 1);
859 }
860 
861 #endif
862 
863 /*
864  * Spinlock based trylock, we take the spinlock and check whether we
865  * can get the lock:
866  */
867 static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
868 {
869 	struct mutex *lock = container_of(lock_count, struct mutex, count);
870 	unsigned long flags;
871 	int prev;
872 
873 	/* No need to trylock if the mutex is locked. */
874 	if (mutex_is_locked(lock))
875 		return 0;
876 
877 	spin_lock_mutex(&lock->wait_lock, flags);
878 
879 	prev = atomic_xchg(&lock->count, -1);
880 	if (likely(prev == 1)) {
881 		mutex_set_owner(lock);
882 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
883 	}
884 
885 	/* Set it back to 0 if there are no waiters: */
886 	if (likely(list_empty(&lock->wait_list)))
887 		atomic_set(&lock->count, 0);
888 
889 	spin_unlock_mutex(&lock->wait_lock, flags);
890 
891 	return prev == 1;
892 }
893 
894 /**
895  * mutex_trylock - try to acquire the mutex, without waiting
896  * @lock: the mutex to be acquired
897  *
898  * Try to acquire the mutex atomically. Returns 1 if the mutex
899  * has been acquired successfully, and 0 on contention.
900  *
901  * NOTE: this function follows the spin_trylock() convention, so
902  * it is negated from the down_trylock() return values! Be careful
903  * about this when converting semaphore users to mutexes.
904  *
905  * This function must not be used in interrupt context. The
906  * mutex must be released by the same task that acquired it.
907  */
908 int __sched mutex_trylock(struct mutex *lock)
909 {
910 	int ret;
911 
912 	ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
913 	if (ret)
914 		mutex_set_owner(lock);
915 
916 	return ret;
917 }
918 EXPORT_SYMBOL(mutex_trylock);
919 
920 #ifndef CONFIG_DEBUG_LOCK_ALLOC
921 int __sched
922 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
923 {
924 	int ret;
925 
926 	might_sleep();
927 
928 	ret = __mutex_fastpath_lock_retval(&lock->base.count);
929 
930 	if (likely(!ret)) {
931 		ww_mutex_set_context_fastpath(lock, ctx);
932 		mutex_set_owner(&lock->base);
933 	} else
934 		ret = __ww_mutex_lock_slowpath(lock, ctx);
935 	return ret;
936 }
937 EXPORT_SYMBOL(__ww_mutex_lock);
938 
939 int __sched
940 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
941 {
942 	int ret;
943 
944 	might_sleep();
945 
946 	ret = __mutex_fastpath_lock_retval(&lock->base.count);
947 
948 	if (likely(!ret)) {
949 		ww_mutex_set_context_fastpath(lock, ctx);
950 		mutex_set_owner(&lock->base);
951 	} else
952 		ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
953 	return ret;
954 }
955 EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
956 
957 #endif
958 
959 /**
960  * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
961  * @cnt: the atomic which we are to dec
962  * @lock: the mutex to return holding if we dec to 0
963  *
964  * return true and hold lock if we dec to 0, return false otherwise
965  */
966 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
967 {
968 	/* dec if we can't possibly hit 0 */
969 	if (atomic_add_unless(cnt, -1, 1))
970 		return 0;
971 	/* we might hit 0, so take the lock */
972 	mutex_lock(lock);
973 	if (!atomic_dec_and_test(cnt)) {
974 		/* when we actually did the dec, we didn't hit 0 */
975 		mutex_unlock(lock);
976 		return 0;
977 	}
978 	/* we hit 0, and we hold the lock */
979 	return 1;
980 }
981 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
982