1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/locking/mutex.c 4 * 5 * Mutexes: blocking mutual exclusion locks 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 10 * 11 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and 12 * David Howells for suggestions and improvements. 13 * 14 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline 15 * from the -rt tree, where it was originally implemented for rtmutexes 16 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale 17 * and Sven Dietrich. 18 * 19 * Also see Documentation/locking/mutex-design.rst. 20 */ 21 #include <linux/mutex.h> 22 #include <linux/ww_mutex.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/rt.h> 25 #include <linux/sched/wake_q.h> 26 #include <linux/sched/debug.h> 27 #include <linux/export.h> 28 #include <linux/spinlock.h> 29 #include <linux/interrupt.h> 30 #include <linux/debug_locks.h> 31 #include <linux/osq_lock.h> 32 33 #ifdef CONFIG_DEBUG_MUTEXES 34 # include "mutex-debug.h" 35 #else 36 # include "mutex.h" 37 #endif 38 39 void 40 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key) 41 { 42 atomic_long_set(&lock->owner, 0); 43 spin_lock_init(&lock->wait_lock); 44 INIT_LIST_HEAD(&lock->wait_list); 45 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 46 osq_lock_init(&lock->osq); 47 #endif 48 49 debug_mutex_init(lock, name, key); 50 } 51 EXPORT_SYMBOL(__mutex_init); 52 53 /* 54 * @owner: contains: 'struct task_struct *' to the current lock owner, 55 * NULL means not owned. Since task_struct pointers are aligned at 56 * at least L1_CACHE_BYTES, we have low bits to store extra state. 57 * 58 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup. 59 * Bit1 indicates unlock needs to hand the lock to the top-waiter 60 * Bit2 indicates handoff has been done and we're waiting for pickup. 61 */ 62 #define MUTEX_FLAG_WAITERS 0x01 63 #define MUTEX_FLAG_HANDOFF 0x02 64 #define MUTEX_FLAG_PICKUP 0x04 65 66 #define MUTEX_FLAGS 0x07 67 68 /* 69 * Internal helper function; C doesn't allow us to hide it :/ 70 * 71 * DO NOT USE (outside of mutex code). 72 */ 73 static inline struct task_struct *__mutex_owner(struct mutex *lock) 74 { 75 return (struct task_struct *)(atomic_long_read(&lock->owner) & ~MUTEX_FLAGS); 76 } 77 78 static inline struct task_struct *__owner_task(unsigned long owner) 79 { 80 return (struct task_struct *)(owner & ~MUTEX_FLAGS); 81 } 82 83 bool mutex_is_locked(struct mutex *lock) 84 { 85 return __mutex_owner(lock) != NULL; 86 } 87 EXPORT_SYMBOL(mutex_is_locked); 88 89 static inline unsigned long __owner_flags(unsigned long owner) 90 { 91 return owner & MUTEX_FLAGS; 92 } 93 94 /* 95 * Trylock variant that retuns the owning task on failure. 96 */ 97 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock) 98 { 99 unsigned long owner, curr = (unsigned long)current; 100 101 owner = atomic_long_read(&lock->owner); 102 for (;;) { /* must loop, can race against a flag */ 103 unsigned long old, flags = __owner_flags(owner); 104 unsigned long task = owner & ~MUTEX_FLAGS; 105 106 if (task) { 107 if (likely(task != curr)) 108 break; 109 110 if (likely(!(flags & MUTEX_FLAG_PICKUP))) 111 break; 112 113 flags &= ~MUTEX_FLAG_PICKUP; 114 } else { 115 #ifdef CONFIG_DEBUG_MUTEXES 116 DEBUG_LOCKS_WARN_ON(flags & MUTEX_FLAG_PICKUP); 117 #endif 118 } 119 120 /* 121 * We set the HANDOFF bit, we must make sure it doesn't live 122 * past the point where we acquire it. This would be possible 123 * if we (accidentally) set the bit on an unlocked mutex. 124 */ 125 flags &= ~MUTEX_FLAG_HANDOFF; 126 127 old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags); 128 if (old == owner) 129 return NULL; 130 131 owner = old; 132 } 133 134 return __owner_task(owner); 135 } 136 137 /* 138 * Actual trylock that will work on any unlocked state. 139 */ 140 static inline bool __mutex_trylock(struct mutex *lock) 141 { 142 return !__mutex_trylock_or_owner(lock); 143 } 144 145 #ifndef CONFIG_DEBUG_LOCK_ALLOC 146 /* 147 * Lockdep annotations are contained to the slow paths for simplicity. 148 * There is nothing that would stop spreading the lockdep annotations outwards 149 * except more code. 150 */ 151 152 /* 153 * Optimistic trylock that only works in the uncontended case. Make sure to 154 * follow with a __mutex_trylock() before failing. 155 */ 156 static __always_inline bool __mutex_trylock_fast(struct mutex *lock) 157 { 158 unsigned long curr = (unsigned long)current; 159 unsigned long zero = 0UL; 160 161 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr)) 162 return true; 163 164 return false; 165 } 166 167 static __always_inline bool __mutex_unlock_fast(struct mutex *lock) 168 { 169 unsigned long curr = (unsigned long)current; 170 171 if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr) 172 return true; 173 174 return false; 175 } 176 #endif 177 178 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag) 179 { 180 atomic_long_or(flag, &lock->owner); 181 } 182 183 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag) 184 { 185 atomic_long_andnot(flag, &lock->owner); 186 } 187 188 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter) 189 { 190 return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter; 191 } 192 193 /* 194 * Add @waiter to a given location in the lock wait_list and set the 195 * FLAG_WAITERS flag if it's the first waiter. 196 */ 197 static void __sched 198 __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter, 199 struct list_head *list) 200 { 201 debug_mutex_add_waiter(lock, waiter, current); 202 203 list_add_tail(&waiter->list, list); 204 if (__mutex_waiter_is_first(lock, waiter)) 205 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS); 206 } 207 208 /* 209 * Give up ownership to a specific task, when @task = NULL, this is equivalent 210 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOF, preserves 211 * WAITERS. Provides RELEASE semantics like a regular unlock, the 212 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff. 213 */ 214 static void __mutex_handoff(struct mutex *lock, struct task_struct *task) 215 { 216 unsigned long owner = atomic_long_read(&lock->owner); 217 218 for (;;) { 219 unsigned long old, new; 220 221 #ifdef CONFIG_DEBUG_MUTEXES 222 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current); 223 DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP); 224 #endif 225 226 new = (owner & MUTEX_FLAG_WAITERS); 227 new |= (unsigned long)task; 228 if (task) 229 new |= MUTEX_FLAG_PICKUP; 230 231 old = atomic_long_cmpxchg_release(&lock->owner, owner, new); 232 if (old == owner) 233 break; 234 235 owner = old; 236 } 237 } 238 239 #ifndef CONFIG_DEBUG_LOCK_ALLOC 240 /* 241 * We split the mutex lock/unlock logic into separate fastpath and 242 * slowpath functions, to reduce the register pressure on the fastpath. 243 * We also put the fastpath first in the kernel image, to make sure the 244 * branch is predicted by the CPU as default-untaken. 245 */ 246 static void __sched __mutex_lock_slowpath(struct mutex *lock); 247 248 /** 249 * mutex_lock - acquire the mutex 250 * @lock: the mutex to be acquired 251 * 252 * Lock the mutex exclusively for this task. If the mutex is not 253 * available right now, it will sleep until it can get it. 254 * 255 * The mutex must later on be released by the same task that 256 * acquired it. Recursive locking is not allowed. The task 257 * may not exit without first unlocking the mutex. Also, kernel 258 * memory where the mutex resides must not be freed with 259 * the mutex still locked. The mutex must first be initialized 260 * (or statically defined) before it can be locked. memset()-ing 261 * the mutex to 0 is not allowed. 262 * 263 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging 264 * checks that will enforce the restrictions and will also do 265 * deadlock debugging) 266 * 267 * This function is similar to (but not equivalent to) down(). 268 */ 269 void __sched mutex_lock(struct mutex *lock) 270 { 271 might_sleep(); 272 273 if (!__mutex_trylock_fast(lock)) 274 __mutex_lock_slowpath(lock); 275 } 276 EXPORT_SYMBOL(mutex_lock); 277 #endif 278 279 /* 280 * Wait-Die: 281 * The newer transactions are killed when: 282 * It (the new transaction) makes a request for a lock being held 283 * by an older transaction. 284 * 285 * Wound-Wait: 286 * The newer transactions are wounded when: 287 * An older transaction makes a request for a lock being held by 288 * the newer transaction. 289 */ 290 291 /* 292 * Associate the ww_mutex @ww with the context @ww_ctx under which we acquired 293 * it. 294 */ 295 static __always_inline void 296 ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx) 297 { 298 #ifdef CONFIG_DEBUG_MUTEXES 299 /* 300 * If this WARN_ON triggers, you used ww_mutex_lock to acquire, 301 * but released with a normal mutex_unlock in this call. 302 * 303 * This should never happen, always use ww_mutex_unlock. 304 */ 305 DEBUG_LOCKS_WARN_ON(ww->ctx); 306 307 /* 308 * Not quite done after calling ww_acquire_done() ? 309 */ 310 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire); 311 312 if (ww_ctx->contending_lock) { 313 /* 314 * After -EDEADLK you tried to 315 * acquire a different ww_mutex? Bad! 316 */ 317 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww); 318 319 /* 320 * You called ww_mutex_lock after receiving -EDEADLK, 321 * but 'forgot' to unlock everything else first? 322 */ 323 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0); 324 ww_ctx->contending_lock = NULL; 325 } 326 327 /* 328 * Naughty, using a different class will lead to undefined behavior! 329 */ 330 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class); 331 #endif 332 ww_ctx->acquired++; 333 ww->ctx = ww_ctx; 334 } 335 336 /* 337 * Determine if context @a is 'after' context @b. IOW, @a is a younger 338 * transaction than @b and depending on algorithm either needs to wait for 339 * @b or die. 340 */ 341 static inline bool __sched 342 __ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b) 343 { 344 345 return (signed long)(a->stamp - b->stamp) > 0; 346 } 347 348 /* 349 * Wait-Die; wake a younger waiter context (when locks held) such that it can 350 * die. 351 * 352 * Among waiters with context, only the first one can have other locks acquired 353 * already (ctx->acquired > 0), because __ww_mutex_add_waiter() and 354 * __ww_mutex_check_kill() wake any but the earliest context. 355 */ 356 static bool __sched 357 __ww_mutex_die(struct mutex *lock, struct mutex_waiter *waiter, 358 struct ww_acquire_ctx *ww_ctx) 359 { 360 if (!ww_ctx->is_wait_die) 361 return false; 362 363 if (waiter->ww_ctx->acquired > 0 && 364 __ww_ctx_stamp_after(waiter->ww_ctx, ww_ctx)) { 365 debug_mutex_wake_waiter(lock, waiter); 366 wake_up_process(waiter->task); 367 } 368 369 return true; 370 } 371 372 /* 373 * Wound-Wait; wound a younger @hold_ctx if it holds the lock. 374 * 375 * Wound the lock holder if there are waiters with older transactions than 376 * the lock holders. Even if multiple waiters may wound the lock holder, 377 * it's sufficient that only one does. 378 */ 379 static bool __ww_mutex_wound(struct mutex *lock, 380 struct ww_acquire_ctx *ww_ctx, 381 struct ww_acquire_ctx *hold_ctx) 382 { 383 struct task_struct *owner = __mutex_owner(lock); 384 385 lockdep_assert_held(&lock->wait_lock); 386 387 /* 388 * Possible through __ww_mutex_add_waiter() when we race with 389 * ww_mutex_set_context_fastpath(). In that case we'll get here again 390 * through __ww_mutex_check_waiters(). 391 */ 392 if (!hold_ctx) 393 return false; 394 395 /* 396 * Can have !owner because of __mutex_unlock_slowpath(), but if owner, 397 * it cannot go away because we'll have FLAG_WAITERS set and hold 398 * wait_lock. 399 */ 400 if (!owner) 401 return false; 402 403 if (ww_ctx->acquired > 0 && __ww_ctx_stamp_after(hold_ctx, ww_ctx)) { 404 hold_ctx->wounded = 1; 405 406 /* 407 * wake_up_process() paired with set_current_state() 408 * inserts sufficient barriers to make sure @owner either sees 409 * it's wounded in __ww_mutex_check_kill() or has a 410 * wakeup pending to re-read the wounded state. 411 */ 412 if (owner != current) 413 wake_up_process(owner); 414 415 return true; 416 } 417 418 return false; 419 } 420 421 /* 422 * We just acquired @lock under @ww_ctx, if there are later contexts waiting 423 * behind us on the wait-list, check if they need to die, or wound us. 424 * 425 * See __ww_mutex_add_waiter() for the list-order construction; basically the 426 * list is ordered by stamp, smallest (oldest) first. 427 * 428 * This relies on never mixing wait-die/wound-wait on the same wait-list; 429 * which is currently ensured by that being a ww_class property. 430 * 431 * The current task must not be on the wait list. 432 */ 433 static void __sched 434 __ww_mutex_check_waiters(struct mutex *lock, struct ww_acquire_ctx *ww_ctx) 435 { 436 struct mutex_waiter *cur; 437 438 lockdep_assert_held(&lock->wait_lock); 439 440 list_for_each_entry(cur, &lock->wait_list, list) { 441 if (!cur->ww_ctx) 442 continue; 443 444 if (__ww_mutex_die(lock, cur, ww_ctx) || 445 __ww_mutex_wound(lock, cur->ww_ctx, ww_ctx)) 446 break; 447 } 448 } 449 450 /* 451 * After acquiring lock with fastpath, where we do not hold wait_lock, set ctx 452 * and wake up any waiters so they can recheck. 453 */ 454 static __always_inline void 455 ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 456 { 457 ww_mutex_lock_acquired(lock, ctx); 458 459 /* 460 * The lock->ctx update should be visible on all cores before 461 * the WAITERS check is done, otherwise contended waiters might be 462 * missed. The contended waiters will either see ww_ctx == NULL 463 * and keep spinning, or it will acquire wait_lock, add itself 464 * to waiter list and sleep. 465 */ 466 smp_mb(); /* See comments above and below. */ 467 468 /* 469 * [W] ww->ctx = ctx [W] MUTEX_FLAG_WAITERS 470 * MB MB 471 * [R] MUTEX_FLAG_WAITERS [R] ww->ctx 472 * 473 * The memory barrier above pairs with the memory barrier in 474 * __ww_mutex_add_waiter() and makes sure we either observe ww->ctx 475 * and/or !empty list. 476 */ 477 if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS))) 478 return; 479 480 /* 481 * Uh oh, we raced in fastpath, check if any of the waiters need to 482 * die or wound us. 483 */ 484 spin_lock(&lock->base.wait_lock); 485 __ww_mutex_check_waiters(&lock->base, ctx); 486 spin_unlock(&lock->base.wait_lock); 487 } 488 489 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 490 491 static inline 492 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 493 struct mutex_waiter *waiter) 494 { 495 struct ww_mutex *ww; 496 497 ww = container_of(lock, struct ww_mutex, base); 498 499 /* 500 * If ww->ctx is set the contents are undefined, only 501 * by acquiring wait_lock there is a guarantee that 502 * they are not invalid when reading. 503 * 504 * As such, when deadlock detection needs to be 505 * performed the optimistic spinning cannot be done. 506 * 507 * Check this in every inner iteration because we may 508 * be racing against another thread's ww_mutex_lock. 509 */ 510 if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx)) 511 return false; 512 513 /* 514 * If we aren't on the wait list yet, cancel the spin 515 * if there are waiters. We want to avoid stealing the 516 * lock from a waiter with an earlier stamp, since the 517 * other thread may already own a lock that we also 518 * need. 519 */ 520 if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS)) 521 return false; 522 523 /* 524 * Similarly, stop spinning if we are no longer the 525 * first waiter. 526 */ 527 if (waiter && !__mutex_waiter_is_first(lock, waiter)) 528 return false; 529 530 return true; 531 } 532 533 /* 534 * Look out! "owner" is an entirely speculative pointer access and not 535 * reliable. 536 * 537 * "noinline" so that this function shows up on perf profiles. 538 */ 539 static noinline 540 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner, 541 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter) 542 { 543 bool ret = true; 544 545 rcu_read_lock(); 546 while (__mutex_owner(lock) == owner) { 547 /* 548 * Ensure we emit the owner->on_cpu, dereference _after_ 549 * checking lock->owner still matches owner. If that fails, 550 * owner might point to freed memory. If it still matches, 551 * the rcu_read_lock() ensures the memory stays valid. 552 */ 553 barrier(); 554 555 /* 556 * Use vcpu_is_preempted to detect lock holder preemption issue. 557 */ 558 if (!owner->on_cpu || need_resched() || 559 vcpu_is_preempted(task_cpu(owner))) { 560 ret = false; 561 break; 562 } 563 564 if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) { 565 ret = false; 566 break; 567 } 568 569 cpu_relax(); 570 } 571 rcu_read_unlock(); 572 573 return ret; 574 } 575 576 /* 577 * Initial check for entering the mutex spinning loop 578 */ 579 static inline int mutex_can_spin_on_owner(struct mutex *lock) 580 { 581 struct task_struct *owner; 582 int retval = 1; 583 584 if (need_resched()) 585 return 0; 586 587 rcu_read_lock(); 588 owner = __mutex_owner(lock); 589 590 /* 591 * As lock holder preemption issue, we both skip spinning if task is not 592 * on cpu or its cpu is preempted 593 */ 594 if (owner) 595 retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner)); 596 rcu_read_unlock(); 597 598 /* 599 * If lock->owner is not set, the mutex has been released. Return true 600 * such that we'll trylock in the spin path, which is a faster option 601 * than the blocking slow path. 602 */ 603 return retval; 604 } 605 606 /* 607 * Optimistic spinning. 608 * 609 * We try to spin for acquisition when we find that the lock owner 610 * is currently running on a (different) CPU and while we don't 611 * need to reschedule. The rationale is that if the lock owner is 612 * running, it is likely to release the lock soon. 613 * 614 * The mutex spinners are queued up using MCS lock so that only one 615 * spinner can compete for the mutex. However, if mutex spinning isn't 616 * going to happen, there is no point in going through the lock/unlock 617 * overhead. 618 * 619 * Returns true when the lock was taken, otherwise false, indicating 620 * that we need to jump to the slowpath and sleep. 621 * 622 * The waiter flag is set to true if the spinner is a waiter in the wait 623 * queue. The waiter-spinner will spin on the lock directly and concurrently 624 * with the spinner at the head of the OSQ, if present, until the owner is 625 * changed to itself. 626 */ 627 static __always_inline bool 628 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 629 struct mutex_waiter *waiter) 630 { 631 if (!waiter) { 632 /* 633 * The purpose of the mutex_can_spin_on_owner() function is 634 * to eliminate the overhead of osq_lock() and osq_unlock() 635 * in case spinning isn't possible. As a waiter-spinner 636 * is not going to take OSQ lock anyway, there is no need 637 * to call mutex_can_spin_on_owner(). 638 */ 639 if (!mutex_can_spin_on_owner(lock)) 640 goto fail; 641 642 /* 643 * In order to avoid a stampede of mutex spinners trying to 644 * acquire the mutex all at once, the spinners need to take a 645 * MCS (queued) lock first before spinning on the owner field. 646 */ 647 if (!osq_lock(&lock->osq)) 648 goto fail; 649 } 650 651 for (;;) { 652 struct task_struct *owner; 653 654 /* Try to acquire the mutex... */ 655 owner = __mutex_trylock_or_owner(lock); 656 if (!owner) 657 break; 658 659 /* 660 * There's an owner, wait for it to either 661 * release the lock or go to sleep. 662 */ 663 if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter)) 664 goto fail_unlock; 665 666 /* 667 * The cpu_relax() call is a compiler barrier which forces 668 * everything in this loop to be re-loaded. We don't need 669 * memory barriers as we'll eventually observe the right 670 * values at the cost of a few extra spins. 671 */ 672 cpu_relax(); 673 } 674 675 if (!waiter) 676 osq_unlock(&lock->osq); 677 678 return true; 679 680 681 fail_unlock: 682 if (!waiter) 683 osq_unlock(&lock->osq); 684 685 fail: 686 /* 687 * If we fell out of the spin path because of need_resched(), 688 * reschedule now, before we try-lock the mutex. This avoids getting 689 * scheduled out right after we obtained the mutex. 690 */ 691 if (need_resched()) { 692 /* 693 * We _should_ have TASK_RUNNING here, but just in case 694 * we do not, make it so, otherwise we might get stuck. 695 */ 696 __set_current_state(TASK_RUNNING); 697 schedule_preempt_disabled(); 698 } 699 700 return false; 701 } 702 #else 703 static __always_inline bool 704 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 705 struct mutex_waiter *waiter) 706 { 707 return false; 708 } 709 #endif 710 711 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip); 712 713 /** 714 * mutex_unlock - release the mutex 715 * @lock: the mutex to be released 716 * 717 * Unlock a mutex that has been locked by this task previously. 718 * 719 * This function must not be used in interrupt context. Unlocking 720 * of a not locked mutex is not allowed. 721 * 722 * This function is similar to (but not equivalent to) up(). 723 */ 724 void __sched mutex_unlock(struct mutex *lock) 725 { 726 #ifndef CONFIG_DEBUG_LOCK_ALLOC 727 if (__mutex_unlock_fast(lock)) 728 return; 729 #endif 730 __mutex_unlock_slowpath(lock, _RET_IP_); 731 } 732 EXPORT_SYMBOL(mutex_unlock); 733 734 /** 735 * ww_mutex_unlock - release the w/w mutex 736 * @lock: the mutex to be released 737 * 738 * Unlock a mutex that has been locked by this task previously with any of the 739 * ww_mutex_lock* functions (with or without an acquire context). It is 740 * forbidden to release the locks after releasing the acquire context. 741 * 742 * This function must not be used in interrupt context. Unlocking 743 * of a unlocked mutex is not allowed. 744 */ 745 void __sched ww_mutex_unlock(struct ww_mutex *lock) 746 { 747 /* 748 * The unlocking fastpath is the 0->1 transition from 'locked' 749 * into 'unlocked' state: 750 */ 751 if (lock->ctx) { 752 #ifdef CONFIG_DEBUG_MUTEXES 753 DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired); 754 #endif 755 if (lock->ctx->acquired > 0) 756 lock->ctx->acquired--; 757 lock->ctx = NULL; 758 } 759 760 mutex_unlock(&lock->base); 761 } 762 EXPORT_SYMBOL(ww_mutex_unlock); 763 764 765 static __always_inline int __sched 766 __ww_mutex_kill(struct mutex *lock, struct ww_acquire_ctx *ww_ctx) 767 { 768 if (ww_ctx->acquired > 0) { 769 #ifdef CONFIG_DEBUG_MUTEXES 770 struct ww_mutex *ww; 771 772 ww = container_of(lock, struct ww_mutex, base); 773 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock); 774 ww_ctx->contending_lock = ww; 775 #endif 776 return -EDEADLK; 777 } 778 779 return 0; 780 } 781 782 783 /* 784 * Check the wound condition for the current lock acquire. 785 * 786 * Wound-Wait: If we're wounded, kill ourself. 787 * 788 * Wait-Die: If we're trying to acquire a lock already held by an older 789 * context, kill ourselves. 790 * 791 * Since __ww_mutex_add_waiter() orders the wait-list on stamp, we only have to 792 * look at waiters before us in the wait-list. 793 */ 794 static inline int __sched 795 __ww_mutex_check_kill(struct mutex *lock, struct mutex_waiter *waiter, 796 struct ww_acquire_ctx *ctx) 797 { 798 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base); 799 struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx); 800 struct mutex_waiter *cur; 801 802 if (ctx->acquired == 0) 803 return 0; 804 805 if (!ctx->is_wait_die) { 806 if (ctx->wounded) 807 return __ww_mutex_kill(lock, ctx); 808 809 return 0; 810 } 811 812 if (hold_ctx && __ww_ctx_stamp_after(ctx, hold_ctx)) 813 return __ww_mutex_kill(lock, ctx); 814 815 /* 816 * If there is a waiter in front of us that has a context, then its 817 * stamp is earlier than ours and we must kill ourself. 818 */ 819 cur = waiter; 820 list_for_each_entry_continue_reverse(cur, &lock->wait_list, list) { 821 if (!cur->ww_ctx) 822 continue; 823 824 return __ww_mutex_kill(lock, ctx); 825 } 826 827 return 0; 828 } 829 830 /* 831 * Add @waiter to the wait-list, keep the wait-list ordered by stamp, smallest 832 * first. Such that older contexts are preferred to acquire the lock over 833 * younger contexts. 834 * 835 * Waiters without context are interspersed in FIFO order. 836 * 837 * Furthermore, for Wait-Die kill ourself immediately when possible (there are 838 * older contexts already waiting) to avoid unnecessary waiting and for 839 * Wound-Wait ensure we wound the owning context when it is younger. 840 */ 841 static inline int __sched 842 __ww_mutex_add_waiter(struct mutex_waiter *waiter, 843 struct mutex *lock, 844 struct ww_acquire_ctx *ww_ctx) 845 { 846 struct mutex_waiter *cur; 847 struct list_head *pos; 848 bool is_wait_die; 849 850 if (!ww_ctx) { 851 __mutex_add_waiter(lock, waiter, &lock->wait_list); 852 return 0; 853 } 854 855 is_wait_die = ww_ctx->is_wait_die; 856 857 /* 858 * Add the waiter before the first waiter with a higher stamp. 859 * Waiters without a context are skipped to avoid starving 860 * them. Wait-Die waiters may die here. Wound-Wait waiters 861 * never die here, but they are sorted in stamp order and 862 * may wound the lock holder. 863 */ 864 pos = &lock->wait_list; 865 list_for_each_entry_reverse(cur, &lock->wait_list, list) { 866 if (!cur->ww_ctx) 867 continue; 868 869 if (__ww_ctx_stamp_after(ww_ctx, cur->ww_ctx)) { 870 /* 871 * Wait-Die: if we find an older context waiting, there 872 * is no point in queueing behind it, as we'd have to 873 * die the moment it would acquire the lock. 874 */ 875 if (is_wait_die) { 876 int ret = __ww_mutex_kill(lock, ww_ctx); 877 878 if (ret) 879 return ret; 880 } 881 882 break; 883 } 884 885 pos = &cur->list; 886 887 /* Wait-Die: ensure younger waiters die. */ 888 __ww_mutex_die(lock, cur, ww_ctx); 889 } 890 891 __mutex_add_waiter(lock, waiter, pos); 892 893 /* 894 * Wound-Wait: if we're blocking on a mutex owned by a younger context, 895 * wound that such that we might proceed. 896 */ 897 if (!is_wait_die) { 898 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base); 899 900 /* 901 * See ww_mutex_set_context_fastpath(). Orders setting 902 * MUTEX_FLAG_WAITERS vs the ww->ctx load, 903 * such that either we or the fastpath will wound @ww->ctx. 904 */ 905 smp_mb(); 906 __ww_mutex_wound(lock, ww_ctx, ww->ctx); 907 } 908 909 return 0; 910 } 911 912 /* 913 * Lock a mutex (possibly interruptible), slowpath: 914 */ 915 static __always_inline int __sched 916 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass, 917 struct lockdep_map *nest_lock, unsigned long ip, 918 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx) 919 { 920 struct mutex_waiter waiter; 921 bool first = false; 922 struct ww_mutex *ww; 923 int ret; 924 925 if (!use_ww_ctx) 926 ww_ctx = NULL; 927 928 might_sleep(); 929 930 #ifdef CONFIG_DEBUG_MUTEXES 931 DEBUG_LOCKS_WARN_ON(lock->magic != lock); 932 #endif 933 934 ww = container_of(lock, struct ww_mutex, base); 935 if (ww_ctx) { 936 if (unlikely(ww_ctx == READ_ONCE(ww->ctx))) 937 return -EALREADY; 938 939 /* 940 * Reset the wounded flag after a kill. No other process can 941 * race and wound us here since they can't have a valid owner 942 * pointer if we don't have any locks held. 943 */ 944 if (ww_ctx->acquired == 0) 945 ww_ctx->wounded = 0; 946 } 947 948 preempt_disable(); 949 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip); 950 951 if (__mutex_trylock(lock) || 952 mutex_optimistic_spin(lock, ww_ctx, NULL)) { 953 /* got the lock, yay! */ 954 lock_acquired(&lock->dep_map, ip); 955 if (ww_ctx) 956 ww_mutex_set_context_fastpath(ww, ww_ctx); 957 preempt_enable(); 958 return 0; 959 } 960 961 spin_lock(&lock->wait_lock); 962 /* 963 * After waiting to acquire the wait_lock, try again. 964 */ 965 if (__mutex_trylock(lock)) { 966 if (ww_ctx) 967 __ww_mutex_check_waiters(lock, ww_ctx); 968 969 goto skip_wait; 970 } 971 972 debug_mutex_lock_common(lock, &waiter); 973 974 lock_contended(&lock->dep_map, ip); 975 976 if (!use_ww_ctx) { 977 /* add waiting tasks to the end of the waitqueue (FIFO): */ 978 __mutex_add_waiter(lock, &waiter, &lock->wait_list); 979 980 981 #ifdef CONFIG_DEBUG_MUTEXES 982 waiter.ww_ctx = MUTEX_POISON_WW_CTX; 983 #endif 984 } else { 985 /* 986 * Add in stamp order, waking up waiters that must kill 987 * themselves. 988 */ 989 ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx); 990 if (ret) 991 goto err_early_kill; 992 993 waiter.ww_ctx = ww_ctx; 994 } 995 996 waiter.task = current; 997 998 set_current_state(state); 999 for (;;) { 1000 /* 1001 * Once we hold wait_lock, we're serialized against 1002 * mutex_unlock() handing the lock off to us, do a trylock 1003 * before testing the error conditions to make sure we pick up 1004 * the handoff. 1005 */ 1006 if (__mutex_trylock(lock)) 1007 goto acquired; 1008 1009 /* 1010 * Check for signals and kill conditions while holding 1011 * wait_lock. This ensures the lock cancellation is ordered 1012 * against mutex_unlock() and wake-ups do not go missing. 1013 */ 1014 if (signal_pending_state(state, current)) { 1015 ret = -EINTR; 1016 goto err; 1017 } 1018 1019 if (ww_ctx) { 1020 ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx); 1021 if (ret) 1022 goto err; 1023 } 1024 1025 spin_unlock(&lock->wait_lock); 1026 schedule_preempt_disabled(); 1027 1028 /* 1029 * ww_mutex needs to always recheck its position since its waiter 1030 * list is not FIFO ordered. 1031 */ 1032 if (ww_ctx || !first) { 1033 first = __mutex_waiter_is_first(lock, &waiter); 1034 if (first) 1035 __mutex_set_flag(lock, MUTEX_FLAG_HANDOFF); 1036 } 1037 1038 set_current_state(state); 1039 /* 1040 * Here we order against unlock; we must either see it change 1041 * state back to RUNNING and fall through the next schedule(), 1042 * or we must see its unlock and acquire. 1043 */ 1044 if (__mutex_trylock(lock) || 1045 (first && mutex_optimistic_spin(lock, ww_ctx, &waiter))) 1046 break; 1047 1048 spin_lock(&lock->wait_lock); 1049 } 1050 spin_lock(&lock->wait_lock); 1051 acquired: 1052 __set_current_state(TASK_RUNNING); 1053 1054 if (ww_ctx) { 1055 /* 1056 * Wound-Wait; we stole the lock (!first_waiter), check the 1057 * waiters as anyone might want to wound us. 1058 */ 1059 if (!ww_ctx->is_wait_die && 1060 !__mutex_waiter_is_first(lock, &waiter)) 1061 __ww_mutex_check_waiters(lock, ww_ctx); 1062 } 1063 1064 mutex_remove_waiter(lock, &waiter, current); 1065 if (likely(list_empty(&lock->wait_list))) 1066 __mutex_clear_flag(lock, MUTEX_FLAGS); 1067 1068 debug_mutex_free_waiter(&waiter); 1069 1070 skip_wait: 1071 /* got the lock - cleanup and rejoice! */ 1072 lock_acquired(&lock->dep_map, ip); 1073 1074 if (ww_ctx) 1075 ww_mutex_lock_acquired(ww, ww_ctx); 1076 1077 spin_unlock(&lock->wait_lock); 1078 preempt_enable(); 1079 return 0; 1080 1081 err: 1082 __set_current_state(TASK_RUNNING); 1083 mutex_remove_waiter(lock, &waiter, current); 1084 err_early_kill: 1085 spin_unlock(&lock->wait_lock); 1086 debug_mutex_free_waiter(&waiter); 1087 mutex_release(&lock->dep_map, ip); 1088 preempt_enable(); 1089 return ret; 1090 } 1091 1092 static int __sched 1093 __mutex_lock(struct mutex *lock, long state, unsigned int subclass, 1094 struct lockdep_map *nest_lock, unsigned long ip) 1095 { 1096 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false); 1097 } 1098 1099 static int __sched 1100 __ww_mutex_lock(struct mutex *lock, long state, unsigned int subclass, 1101 struct lockdep_map *nest_lock, unsigned long ip, 1102 struct ww_acquire_ctx *ww_ctx) 1103 { 1104 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, ww_ctx, true); 1105 } 1106 1107 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1108 void __sched 1109 mutex_lock_nested(struct mutex *lock, unsigned int subclass) 1110 { 1111 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_); 1112 } 1113 1114 EXPORT_SYMBOL_GPL(mutex_lock_nested); 1115 1116 void __sched 1117 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest) 1118 { 1119 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_); 1120 } 1121 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock); 1122 1123 int __sched 1124 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass) 1125 { 1126 return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_); 1127 } 1128 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested); 1129 1130 int __sched 1131 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass) 1132 { 1133 return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_); 1134 } 1135 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); 1136 1137 void __sched 1138 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass) 1139 { 1140 int token; 1141 1142 might_sleep(); 1143 1144 token = io_schedule_prepare(); 1145 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 1146 subclass, NULL, _RET_IP_, NULL, 0); 1147 io_schedule_finish(token); 1148 } 1149 EXPORT_SYMBOL_GPL(mutex_lock_io_nested); 1150 1151 static inline int 1152 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1153 { 1154 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH 1155 unsigned tmp; 1156 1157 if (ctx->deadlock_inject_countdown-- == 0) { 1158 tmp = ctx->deadlock_inject_interval; 1159 if (tmp > UINT_MAX/4) 1160 tmp = UINT_MAX; 1161 else 1162 tmp = tmp*2 + tmp + tmp/2; 1163 1164 ctx->deadlock_inject_interval = tmp; 1165 ctx->deadlock_inject_countdown = tmp; 1166 ctx->contending_lock = lock; 1167 1168 ww_mutex_unlock(lock); 1169 1170 return -EDEADLK; 1171 } 1172 #endif 1173 1174 return 0; 1175 } 1176 1177 int __sched 1178 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1179 { 1180 int ret; 1181 1182 might_sleep(); 1183 ret = __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 1184 0, ctx ? &ctx->dep_map : NULL, _RET_IP_, 1185 ctx); 1186 if (!ret && ctx && ctx->acquired > 1) 1187 return ww_mutex_deadlock_injection(lock, ctx); 1188 1189 return ret; 1190 } 1191 EXPORT_SYMBOL_GPL(ww_mutex_lock); 1192 1193 int __sched 1194 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1195 { 1196 int ret; 1197 1198 might_sleep(); 1199 ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 1200 0, ctx ? &ctx->dep_map : NULL, _RET_IP_, 1201 ctx); 1202 1203 if (!ret && ctx && ctx->acquired > 1) 1204 return ww_mutex_deadlock_injection(lock, ctx); 1205 1206 return ret; 1207 } 1208 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible); 1209 1210 #endif 1211 1212 /* 1213 * Release the lock, slowpath: 1214 */ 1215 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip) 1216 { 1217 struct task_struct *next = NULL; 1218 DEFINE_WAKE_Q(wake_q); 1219 unsigned long owner; 1220 1221 mutex_release(&lock->dep_map, ip); 1222 1223 /* 1224 * Release the lock before (potentially) taking the spinlock such that 1225 * other contenders can get on with things ASAP. 1226 * 1227 * Except when HANDOFF, in that case we must not clear the owner field, 1228 * but instead set it to the top waiter. 1229 */ 1230 owner = atomic_long_read(&lock->owner); 1231 for (;;) { 1232 unsigned long old; 1233 1234 #ifdef CONFIG_DEBUG_MUTEXES 1235 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current); 1236 DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP); 1237 #endif 1238 1239 if (owner & MUTEX_FLAG_HANDOFF) 1240 break; 1241 1242 old = atomic_long_cmpxchg_release(&lock->owner, owner, 1243 __owner_flags(owner)); 1244 if (old == owner) { 1245 if (owner & MUTEX_FLAG_WAITERS) 1246 break; 1247 1248 return; 1249 } 1250 1251 owner = old; 1252 } 1253 1254 spin_lock(&lock->wait_lock); 1255 debug_mutex_unlock(lock); 1256 if (!list_empty(&lock->wait_list)) { 1257 /* get the first entry from the wait-list: */ 1258 struct mutex_waiter *waiter = 1259 list_first_entry(&lock->wait_list, 1260 struct mutex_waiter, list); 1261 1262 next = waiter->task; 1263 1264 debug_mutex_wake_waiter(lock, waiter); 1265 wake_q_add(&wake_q, next); 1266 } 1267 1268 if (owner & MUTEX_FLAG_HANDOFF) 1269 __mutex_handoff(lock, next); 1270 1271 spin_unlock(&lock->wait_lock); 1272 1273 wake_up_q(&wake_q); 1274 } 1275 1276 #ifndef CONFIG_DEBUG_LOCK_ALLOC 1277 /* 1278 * Here come the less common (and hence less performance-critical) APIs: 1279 * mutex_lock_interruptible() and mutex_trylock(). 1280 */ 1281 static noinline int __sched 1282 __mutex_lock_killable_slowpath(struct mutex *lock); 1283 1284 static noinline int __sched 1285 __mutex_lock_interruptible_slowpath(struct mutex *lock); 1286 1287 /** 1288 * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals. 1289 * @lock: The mutex to be acquired. 1290 * 1291 * Lock the mutex like mutex_lock(). If a signal is delivered while the 1292 * process is sleeping, this function will return without acquiring the 1293 * mutex. 1294 * 1295 * Context: Process context. 1296 * Return: 0 if the lock was successfully acquired or %-EINTR if a 1297 * signal arrived. 1298 */ 1299 int __sched mutex_lock_interruptible(struct mutex *lock) 1300 { 1301 might_sleep(); 1302 1303 if (__mutex_trylock_fast(lock)) 1304 return 0; 1305 1306 return __mutex_lock_interruptible_slowpath(lock); 1307 } 1308 1309 EXPORT_SYMBOL(mutex_lock_interruptible); 1310 1311 /** 1312 * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals. 1313 * @lock: The mutex to be acquired. 1314 * 1315 * Lock the mutex like mutex_lock(). If a signal which will be fatal to 1316 * the current process is delivered while the process is sleeping, this 1317 * function will return without acquiring the mutex. 1318 * 1319 * Context: Process context. 1320 * Return: 0 if the lock was successfully acquired or %-EINTR if a 1321 * fatal signal arrived. 1322 */ 1323 int __sched mutex_lock_killable(struct mutex *lock) 1324 { 1325 might_sleep(); 1326 1327 if (__mutex_trylock_fast(lock)) 1328 return 0; 1329 1330 return __mutex_lock_killable_slowpath(lock); 1331 } 1332 EXPORT_SYMBOL(mutex_lock_killable); 1333 1334 /** 1335 * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O 1336 * @lock: The mutex to be acquired. 1337 * 1338 * Lock the mutex like mutex_lock(). While the task is waiting for this 1339 * mutex, it will be accounted as being in the IO wait state by the 1340 * scheduler. 1341 * 1342 * Context: Process context. 1343 */ 1344 void __sched mutex_lock_io(struct mutex *lock) 1345 { 1346 int token; 1347 1348 token = io_schedule_prepare(); 1349 mutex_lock(lock); 1350 io_schedule_finish(token); 1351 } 1352 EXPORT_SYMBOL_GPL(mutex_lock_io); 1353 1354 static noinline void __sched 1355 __mutex_lock_slowpath(struct mutex *lock) 1356 { 1357 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_); 1358 } 1359 1360 static noinline int __sched 1361 __mutex_lock_killable_slowpath(struct mutex *lock) 1362 { 1363 return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_); 1364 } 1365 1366 static noinline int __sched 1367 __mutex_lock_interruptible_slowpath(struct mutex *lock) 1368 { 1369 return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_); 1370 } 1371 1372 static noinline int __sched 1373 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1374 { 1375 return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, NULL, 1376 _RET_IP_, ctx); 1377 } 1378 1379 static noinline int __sched 1380 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock, 1381 struct ww_acquire_ctx *ctx) 1382 { 1383 return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, NULL, 1384 _RET_IP_, ctx); 1385 } 1386 1387 #endif 1388 1389 /** 1390 * mutex_trylock - try to acquire the mutex, without waiting 1391 * @lock: the mutex to be acquired 1392 * 1393 * Try to acquire the mutex atomically. Returns 1 if the mutex 1394 * has been acquired successfully, and 0 on contention. 1395 * 1396 * NOTE: this function follows the spin_trylock() convention, so 1397 * it is negated from the down_trylock() return values! Be careful 1398 * about this when converting semaphore users to mutexes. 1399 * 1400 * This function must not be used in interrupt context. The 1401 * mutex must be released by the same task that acquired it. 1402 */ 1403 int __sched mutex_trylock(struct mutex *lock) 1404 { 1405 bool locked; 1406 1407 #ifdef CONFIG_DEBUG_MUTEXES 1408 DEBUG_LOCKS_WARN_ON(lock->magic != lock); 1409 #endif 1410 1411 locked = __mutex_trylock(lock); 1412 if (locked) 1413 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); 1414 1415 return locked; 1416 } 1417 EXPORT_SYMBOL(mutex_trylock); 1418 1419 #ifndef CONFIG_DEBUG_LOCK_ALLOC 1420 int __sched 1421 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1422 { 1423 might_sleep(); 1424 1425 if (__mutex_trylock_fast(&lock->base)) { 1426 if (ctx) 1427 ww_mutex_set_context_fastpath(lock, ctx); 1428 return 0; 1429 } 1430 1431 return __ww_mutex_lock_slowpath(lock, ctx); 1432 } 1433 EXPORT_SYMBOL(ww_mutex_lock); 1434 1435 int __sched 1436 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1437 { 1438 might_sleep(); 1439 1440 if (__mutex_trylock_fast(&lock->base)) { 1441 if (ctx) 1442 ww_mutex_set_context_fastpath(lock, ctx); 1443 return 0; 1444 } 1445 1446 return __ww_mutex_lock_interruptible_slowpath(lock, ctx); 1447 } 1448 EXPORT_SYMBOL(ww_mutex_lock_interruptible); 1449 1450 #endif 1451 1452 /** 1453 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0 1454 * @cnt: the atomic which we are to dec 1455 * @lock: the mutex to return holding if we dec to 0 1456 * 1457 * return true and hold lock if we dec to 0, return false otherwise 1458 */ 1459 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock) 1460 { 1461 /* dec if we can't possibly hit 0 */ 1462 if (atomic_add_unless(cnt, -1, 1)) 1463 return 0; 1464 /* we might hit 0, so take the lock */ 1465 mutex_lock(lock); 1466 if (!atomic_dec_and_test(cnt)) { 1467 /* when we actually did the dec, we didn't hit 0 */ 1468 mutex_unlock(lock); 1469 return 0; 1470 } 1471 /* we hit 0, and we hold the lock */ 1472 return 1; 1473 } 1474 EXPORT_SYMBOL(atomic_dec_and_mutex_lock); 1475