xref: /openbmc/linux/kernel/locking/mutex.c (revision b7019ac5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/locking/mutex.c
4  *
5  * Mutexes: blocking mutual exclusion locks
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *
11  * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
12  * David Howells for suggestions and improvements.
13  *
14  *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
15  *    from the -rt tree, where it was originally implemented for rtmutexes
16  *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
17  *    and Sven Dietrich.
18  *
19  * Also see Documentation/locking/mutex-design.txt.
20  */
21 #include <linux/mutex.h>
22 #include <linux/ww_mutex.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/wake_q.h>
26 #include <linux/sched/debug.h>
27 #include <linux/export.h>
28 #include <linux/spinlock.h>
29 #include <linux/interrupt.h>
30 #include <linux/debug_locks.h>
31 #include <linux/osq_lock.h>
32 
33 #ifdef CONFIG_DEBUG_MUTEXES
34 # include "mutex-debug.h"
35 #else
36 # include "mutex.h"
37 #endif
38 
39 void
40 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
41 {
42 	atomic_long_set(&lock->owner, 0);
43 	spin_lock_init(&lock->wait_lock);
44 	INIT_LIST_HEAD(&lock->wait_list);
45 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
46 	osq_lock_init(&lock->osq);
47 #endif
48 
49 	debug_mutex_init(lock, name, key);
50 }
51 EXPORT_SYMBOL(__mutex_init);
52 
53 /*
54  * @owner: contains: 'struct task_struct *' to the current lock owner,
55  * NULL means not owned. Since task_struct pointers are aligned at
56  * at least L1_CACHE_BYTES, we have low bits to store extra state.
57  *
58  * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
59  * Bit1 indicates unlock needs to hand the lock to the top-waiter
60  * Bit2 indicates handoff has been done and we're waiting for pickup.
61  */
62 #define MUTEX_FLAG_WAITERS	0x01
63 #define MUTEX_FLAG_HANDOFF	0x02
64 #define MUTEX_FLAG_PICKUP	0x04
65 
66 #define MUTEX_FLAGS		0x07
67 
68 static inline struct task_struct *__owner_task(unsigned long owner)
69 {
70 	return (struct task_struct *)(owner & ~MUTEX_FLAGS);
71 }
72 
73 static inline unsigned long __owner_flags(unsigned long owner)
74 {
75 	return owner & MUTEX_FLAGS;
76 }
77 
78 /*
79  * Trylock variant that retuns the owning task on failure.
80  */
81 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
82 {
83 	unsigned long owner, curr = (unsigned long)current;
84 
85 	owner = atomic_long_read(&lock->owner);
86 	for (;;) { /* must loop, can race against a flag */
87 		unsigned long old, flags = __owner_flags(owner);
88 		unsigned long task = owner & ~MUTEX_FLAGS;
89 
90 		if (task) {
91 			if (likely(task != curr))
92 				break;
93 
94 			if (likely(!(flags & MUTEX_FLAG_PICKUP)))
95 				break;
96 
97 			flags &= ~MUTEX_FLAG_PICKUP;
98 		} else {
99 #ifdef CONFIG_DEBUG_MUTEXES
100 			DEBUG_LOCKS_WARN_ON(flags & MUTEX_FLAG_PICKUP);
101 #endif
102 		}
103 
104 		/*
105 		 * We set the HANDOFF bit, we must make sure it doesn't live
106 		 * past the point where we acquire it. This would be possible
107 		 * if we (accidentally) set the bit on an unlocked mutex.
108 		 */
109 		flags &= ~MUTEX_FLAG_HANDOFF;
110 
111 		old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags);
112 		if (old == owner)
113 			return NULL;
114 
115 		owner = old;
116 	}
117 
118 	return __owner_task(owner);
119 }
120 
121 /*
122  * Actual trylock that will work on any unlocked state.
123  */
124 static inline bool __mutex_trylock(struct mutex *lock)
125 {
126 	return !__mutex_trylock_or_owner(lock);
127 }
128 
129 #ifndef CONFIG_DEBUG_LOCK_ALLOC
130 /*
131  * Lockdep annotations are contained to the slow paths for simplicity.
132  * There is nothing that would stop spreading the lockdep annotations outwards
133  * except more code.
134  */
135 
136 /*
137  * Optimistic trylock that only works in the uncontended case. Make sure to
138  * follow with a __mutex_trylock() before failing.
139  */
140 static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
141 {
142 	unsigned long curr = (unsigned long)current;
143 	unsigned long zero = 0UL;
144 
145 	if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr))
146 		return true;
147 
148 	return false;
149 }
150 
151 static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
152 {
153 	unsigned long curr = (unsigned long)current;
154 
155 	if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr)
156 		return true;
157 
158 	return false;
159 }
160 #endif
161 
162 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
163 {
164 	atomic_long_or(flag, &lock->owner);
165 }
166 
167 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
168 {
169 	atomic_long_andnot(flag, &lock->owner);
170 }
171 
172 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
173 {
174 	return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
175 }
176 
177 /*
178  * Add @waiter to a given location in the lock wait_list and set the
179  * FLAG_WAITERS flag if it's the first waiter.
180  */
181 static void __sched
182 __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter,
183 		   struct list_head *list)
184 {
185 	debug_mutex_add_waiter(lock, waiter, current);
186 
187 	list_add_tail(&waiter->list, list);
188 	if (__mutex_waiter_is_first(lock, waiter))
189 		__mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
190 }
191 
192 /*
193  * Give up ownership to a specific task, when @task = NULL, this is equivalent
194  * to a regular unlock. Sets PICKUP on a handoff, clears HANDOF, preserves
195  * WAITERS. Provides RELEASE semantics like a regular unlock, the
196  * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
197  */
198 static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
199 {
200 	unsigned long owner = atomic_long_read(&lock->owner);
201 
202 	for (;;) {
203 		unsigned long old, new;
204 
205 #ifdef CONFIG_DEBUG_MUTEXES
206 		DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
207 		DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
208 #endif
209 
210 		new = (owner & MUTEX_FLAG_WAITERS);
211 		new |= (unsigned long)task;
212 		if (task)
213 			new |= MUTEX_FLAG_PICKUP;
214 
215 		old = atomic_long_cmpxchg_release(&lock->owner, owner, new);
216 		if (old == owner)
217 			break;
218 
219 		owner = old;
220 	}
221 }
222 
223 #ifndef CONFIG_DEBUG_LOCK_ALLOC
224 /*
225  * We split the mutex lock/unlock logic into separate fastpath and
226  * slowpath functions, to reduce the register pressure on the fastpath.
227  * We also put the fastpath first in the kernel image, to make sure the
228  * branch is predicted by the CPU as default-untaken.
229  */
230 static void __sched __mutex_lock_slowpath(struct mutex *lock);
231 
232 /**
233  * mutex_lock - acquire the mutex
234  * @lock: the mutex to be acquired
235  *
236  * Lock the mutex exclusively for this task. If the mutex is not
237  * available right now, it will sleep until it can get it.
238  *
239  * The mutex must later on be released by the same task that
240  * acquired it. Recursive locking is not allowed. The task
241  * may not exit without first unlocking the mutex. Also, kernel
242  * memory where the mutex resides must not be freed with
243  * the mutex still locked. The mutex must first be initialized
244  * (or statically defined) before it can be locked. memset()-ing
245  * the mutex to 0 is not allowed.
246  *
247  * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
248  * checks that will enforce the restrictions and will also do
249  * deadlock debugging)
250  *
251  * This function is similar to (but not equivalent to) down().
252  */
253 void __sched mutex_lock(struct mutex *lock)
254 {
255 	might_sleep();
256 
257 	if (!__mutex_trylock_fast(lock))
258 		__mutex_lock_slowpath(lock);
259 }
260 EXPORT_SYMBOL(mutex_lock);
261 #endif
262 
263 /*
264  * Wait-Die:
265  *   The newer transactions are killed when:
266  *     It (the new transaction) makes a request for a lock being held
267  *     by an older transaction.
268  *
269  * Wound-Wait:
270  *   The newer transactions are wounded when:
271  *     An older transaction makes a request for a lock being held by
272  *     the newer transaction.
273  */
274 
275 /*
276  * Associate the ww_mutex @ww with the context @ww_ctx under which we acquired
277  * it.
278  */
279 static __always_inline void
280 ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
281 {
282 #ifdef CONFIG_DEBUG_MUTEXES
283 	/*
284 	 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
285 	 * but released with a normal mutex_unlock in this call.
286 	 *
287 	 * This should never happen, always use ww_mutex_unlock.
288 	 */
289 	DEBUG_LOCKS_WARN_ON(ww->ctx);
290 
291 	/*
292 	 * Not quite done after calling ww_acquire_done() ?
293 	 */
294 	DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
295 
296 	if (ww_ctx->contending_lock) {
297 		/*
298 		 * After -EDEADLK you tried to
299 		 * acquire a different ww_mutex? Bad!
300 		 */
301 		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
302 
303 		/*
304 		 * You called ww_mutex_lock after receiving -EDEADLK,
305 		 * but 'forgot' to unlock everything else first?
306 		 */
307 		DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
308 		ww_ctx->contending_lock = NULL;
309 	}
310 
311 	/*
312 	 * Naughty, using a different class will lead to undefined behavior!
313 	 */
314 	DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
315 #endif
316 	ww_ctx->acquired++;
317 	ww->ctx = ww_ctx;
318 }
319 
320 /*
321  * Determine if context @a is 'after' context @b. IOW, @a is a younger
322  * transaction than @b and depending on algorithm either needs to wait for
323  * @b or die.
324  */
325 static inline bool __sched
326 __ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b)
327 {
328 
329 	return (signed long)(a->stamp - b->stamp) > 0;
330 }
331 
332 /*
333  * Wait-Die; wake a younger waiter context (when locks held) such that it can
334  * die.
335  *
336  * Among waiters with context, only the first one can have other locks acquired
337  * already (ctx->acquired > 0), because __ww_mutex_add_waiter() and
338  * __ww_mutex_check_kill() wake any but the earliest context.
339  */
340 static bool __sched
341 __ww_mutex_die(struct mutex *lock, struct mutex_waiter *waiter,
342 	       struct ww_acquire_ctx *ww_ctx)
343 {
344 	if (!ww_ctx->is_wait_die)
345 		return false;
346 
347 	if (waiter->ww_ctx->acquired > 0 &&
348 			__ww_ctx_stamp_after(waiter->ww_ctx, ww_ctx)) {
349 		debug_mutex_wake_waiter(lock, waiter);
350 		wake_up_process(waiter->task);
351 	}
352 
353 	return true;
354 }
355 
356 /*
357  * Wound-Wait; wound a younger @hold_ctx if it holds the lock.
358  *
359  * Wound the lock holder if there are waiters with older transactions than
360  * the lock holders. Even if multiple waiters may wound the lock holder,
361  * it's sufficient that only one does.
362  */
363 static bool __ww_mutex_wound(struct mutex *lock,
364 			     struct ww_acquire_ctx *ww_ctx,
365 			     struct ww_acquire_ctx *hold_ctx)
366 {
367 	struct task_struct *owner = __mutex_owner(lock);
368 
369 	lockdep_assert_held(&lock->wait_lock);
370 
371 	/*
372 	 * Possible through __ww_mutex_add_waiter() when we race with
373 	 * ww_mutex_set_context_fastpath(). In that case we'll get here again
374 	 * through __ww_mutex_check_waiters().
375 	 */
376 	if (!hold_ctx)
377 		return false;
378 
379 	/*
380 	 * Can have !owner because of __mutex_unlock_slowpath(), but if owner,
381 	 * it cannot go away because we'll have FLAG_WAITERS set and hold
382 	 * wait_lock.
383 	 */
384 	if (!owner)
385 		return false;
386 
387 	if (ww_ctx->acquired > 0 && __ww_ctx_stamp_after(hold_ctx, ww_ctx)) {
388 		hold_ctx->wounded = 1;
389 
390 		/*
391 		 * wake_up_process() paired with set_current_state()
392 		 * inserts sufficient barriers to make sure @owner either sees
393 		 * it's wounded in __ww_mutex_check_kill() or has a
394 		 * wakeup pending to re-read the wounded state.
395 		 */
396 		if (owner != current)
397 			wake_up_process(owner);
398 
399 		return true;
400 	}
401 
402 	return false;
403 }
404 
405 /*
406  * We just acquired @lock under @ww_ctx, if there are later contexts waiting
407  * behind us on the wait-list, check if they need to die, or wound us.
408  *
409  * See __ww_mutex_add_waiter() for the list-order construction; basically the
410  * list is ordered by stamp, smallest (oldest) first.
411  *
412  * This relies on never mixing wait-die/wound-wait on the same wait-list;
413  * which is currently ensured by that being a ww_class property.
414  *
415  * The current task must not be on the wait list.
416  */
417 static void __sched
418 __ww_mutex_check_waiters(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
419 {
420 	struct mutex_waiter *cur;
421 
422 	lockdep_assert_held(&lock->wait_lock);
423 
424 	list_for_each_entry(cur, &lock->wait_list, list) {
425 		if (!cur->ww_ctx)
426 			continue;
427 
428 		if (__ww_mutex_die(lock, cur, ww_ctx) ||
429 		    __ww_mutex_wound(lock, cur->ww_ctx, ww_ctx))
430 			break;
431 	}
432 }
433 
434 /*
435  * After acquiring lock with fastpath, where we do not hold wait_lock, set ctx
436  * and wake up any waiters so they can recheck.
437  */
438 static __always_inline void
439 ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
440 {
441 	ww_mutex_lock_acquired(lock, ctx);
442 
443 	/*
444 	 * The lock->ctx update should be visible on all cores before
445 	 * the WAITERS check is done, otherwise contended waiters might be
446 	 * missed. The contended waiters will either see ww_ctx == NULL
447 	 * and keep spinning, or it will acquire wait_lock, add itself
448 	 * to waiter list and sleep.
449 	 */
450 	smp_mb(); /* See comments above and below. */
451 
452 	/*
453 	 * [W] ww->ctx = ctx	    [W] MUTEX_FLAG_WAITERS
454 	 *     MB		        MB
455 	 * [R] MUTEX_FLAG_WAITERS   [R] ww->ctx
456 	 *
457 	 * The memory barrier above pairs with the memory barrier in
458 	 * __ww_mutex_add_waiter() and makes sure we either observe ww->ctx
459 	 * and/or !empty list.
460 	 */
461 	if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
462 		return;
463 
464 	/*
465 	 * Uh oh, we raced in fastpath, check if any of the waiters need to
466 	 * die or wound us.
467 	 */
468 	spin_lock(&lock->base.wait_lock);
469 	__ww_mutex_check_waiters(&lock->base, ctx);
470 	spin_unlock(&lock->base.wait_lock);
471 }
472 
473 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
474 
475 static inline
476 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
477 			    struct mutex_waiter *waiter)
478 {
479 	struct ww_mutex *ww;
480 
481 	ww = container_of(lock, struct ww_mutex, base);
482 
483 	/*
484 	 * If ww->ctx is set the contents are undefined, only
485 	 * by acquiring wait_lock there is a guarantee that
486 	 * they are not invalid when reading.
487 	 *
488 	 * As such, when deadlock detection needs to be
489 	 * performed the optimistic spinning cannot be done.
490 	 *
491 	 * Check this in every inner iteration because we may
492 	 * be racing against another thread's ww_mutex_lock.
493 	 */
494 	if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
495 		return false;
496 
497 	/*
498 	 * If we aren't on the wait list yet, cancel the spin
499 	 * if there are waiters. We want  to avoid stealing the
500 	 * lock from a waiter with an earlier stamp, since the
501 	 * other thread may already own a lock that we also
502 	 * need.
503 	 */
504 	if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
505 		return false;
506 
507 	/*
508 	 * Similarly, stop spinning if we are no longer the
509 	 * first waiter.
510 	 */
511 	if (waiter && !__mutex_waiter_is_first(lock, waiter))
512 		return false;
513 
514 	return true;
515 }
516 
517 /*
518  * Look out! "owner" is an entirely speculative pointer access and not
519  * reliable.
520  *
521  * "noinline" so that this function shows up on perf profiles.
522  */
523 static noinline
524 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
525 			 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
526 {
527 	bool ret = true;
528 
529 	rcu_read_lock();
530 	while (__mutex_owner(lock) == owner) {
531 		/*
532 		 * Ensure we emit the owner->on_cpu, dereference _after_
533 		 * checking lock->owner still matches owner. If that fails,
534 		 * owner might point to freed memory. If it still matches,
535 		 * the rcu_read_lock() ensures the memory stays valid.
536 		 */
537 		barrier();
538 
539 		/*
540 		 * Use vcpu_is_preempted to detect lock holder preemption issue.
541 		 */
542 		if (!owner->on_cpu || need_resched() ||
543 				vcpu_is_preempted(task_cpu(owner))) {
544 			ret = false;
545 			break;
546 		}
547 
548 		if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
549 			ret = false;
550 			break;
551 		}
552 
553 		cpu_relax();
554 	}
555 	rcu_read_unlock();
556 
557 	return ret;
558 }
559 
560 /*
561  * Initial check for entering the mutex spinning loop
562  */
563 static inline int mutex_can_spin_on_owner(struct mutex *lock)
564 {
565 	struct task_struct *owner;
566 	int retval = 1;
567 
568 	if (need_resched())
569 		return 0;
570 
571 	rcu_read_lock();
572 	owner = __mutex_owner(lock);
573 
574 	/*
575 	 * As lock holder preemption issue, we both skip spinning if task is not
576 	 * on cpu or its cpu is preempted
577 	 */
578 	if (owner)
579 		retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
580 	rcu_read_unlock();
581 
582 	/*
583 	 * If lock->owner is not set, the mutex has been released. Return true
584 	 * such that we'll trylock in the spin path, which is a faster option
585 	 * than the blocking slow path.
586 	 */
587 	return retval;
588 }
589 
590 /*
591  * Optimistic spinning.
592  *
593  * We try to spin for acquisition when we find that the lock owner
594  * is currently running on a (different) CPU and while we don't
595  * need to reschedule. The rationale is that if the lock owner is
596  * running, it is likely to release the lock soon.
597  *
598  * The mutex spinners are queued up using MCS lock so that only one
599  * spinner can compete for the mutex. However, if mutex spinning isn't
600  * going to happen, there is no point in going through the lock/unlock
601  * overhead.
602  *
603  * Returns true when the lock was taken, otherwise false, indicating
604  * that we need to jump to the slowpath and sleep.
605  *
606  * The waiter flag is set to true if the spinner is a waiter in the wait
607  * queue. The waiter-spinner will spin on the lock directly and concurrently
608  * with the spinner at the head of the OSQ, if present, until the owner is
609  * changed to itself.
610  */
611 static __always_inline bool
612 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
613 		      const bool use_ww_ctx, struct mutex_waiter *waiter)
614 {
615 	if (!waiter) {
616 		/*
617 		 * The purpose of the mutex_can_spin_on_owner() function is
618 		 * to eliminate the overhead of osq_lock() and osq_unlock()
619 		 * in case spinning isn't possible. As a waiter-spinner
620 		 * is not going to take OSQ lock anyway, there is no need
621 		 * to call mutex_can_spin_on_owner().
622 		 */
623 		if (!mutex_can_spin_on_owner(lock))
624 			goto fail;
625 
626 		/*
627 		 * In order to avoid a stampede of mutex spinners trying to
628 		 * acquire the mutex all at once, the spinners need to take a
629 		 * MCS (queued) lock first before spinning on the owner field.
630 		 */
631 		if (!osq_lock(&lock->osq))
632 			goto fail;
633 	}
634 
635 	for (;;) {
636 		struct task_struct *owner;
637 
638 		/* Try to acquire the mutex... */
639 		owner = __mutex_trylock_or_owner(lock);
640 		if (!owner)
641 			break;
642 
643 		/*
644 		 * There's an owner, wait for it to either
645 		 * release the lock or go to sleep.
646 		 */
647 		if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
648 			goto fail_unlock;
649 
650 		/*
651 		 * The cpu_relax() call is a compiler barrier which forces
652 		 * everything in this loop to be re-loaded. We don't need
653 		 * memory barriers as we'll eventually observe the right
654 		 * values at the cost of a few extra spins.
655 		 */
656 		cpu_relax();
657 	}
658 
659 	if (!waiter)
660 		osq_unlock(&lock->osq);
661 
662 	return true;
663 
664 
665 fail_unlock:
666 	if (!waiter)
667 		osq_unlock(&lock->osq);
668 
669 fail:
670 	/*
671 	 * If we fell out of the spin path because of need_resched(),
672 	 * reschedule now, before we try-lock the mutex. This avoids getting
673 	 * scheduled out right after we obtained the mutex.
674 	 */
675 	if (need_resched()) {
676 		/*
677 		 * We _should_ have TASK_RUNNING here, but just in case
678 		 * we do not, make it so, otherwise we might get stuck.
679 		 */
680 		__set_current_state(TASK_RUNNING);
681 		schedule_preempt_disabled();
682 	}
683 
684 	return false;
685 }
686 #else
687 static __always_inline bool
688 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
689 		      const bool use_ww_ctx, struct mutex_waiter *waiter)
690 {
691 	return false;
692 }
693 #endif
694 
695 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
696 
697 /**
698  * mutex_unlock - release the mutex
699  * @lock: the mutex to be released
700  *
701  * Unlock a mutex that has been locked by this task previously.
702  *
703  * This function must not be used in interrupt context. Unlocking
704  * of a not locked mutex is not allowed.
705  *
706  * This function is similar to (but not equivalent to) up().
707  */
708 void __sched mutex_unlock(struct mutex *lock)
709 {
710 #ifndef CONFIG_DEBUG_LOCK_ALLOC
711 	if (__mutex_unlock_fast(lock))
712 		return;
713 #endif
714 	__mutex_unlock_slowpath(lock, _RET_IP_);
715 }
716 EXPORT_SYMBOL(mutex_unlock);
717 
718 /**
719  * ww_mutex_unlock - release the w/w mutex
720  * @lock: the mutex to be released
721  *
722  * Unlock a mutex that has been locked by this task previously with any of the
723  * ww_mutex_lock* functions (with or without an acquire context). It is
724  * forbidden to release the locks after releasing the acquire context.
725  *
726  * This function must not be used in interrupt context. Unlocking
727  * of a unlocked mutex is not allowed.
728  */
729 void __sched ww_mutex_unlock(struct ww_mutex *lock)
730 {
731 	/*
732 	 * The unlocking fastpath is the 0->1 transition from 'locked'
733 	 * into 'unlocked' state:
734 	 */
735 	if (lock->ctx) {
736 #ifdef CONFIG_DEBUG_MUTEXES
737 		DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
738 #endif
739 		if (lock->ctx->acquired > 0)
740 			lock->ctx->acquired--;
741 		lock->ctx = NULL;
742 	}
743 
744 	mutex_unlock(&lock->base);
745 }
746 EXPORT_SYMBOL(ww_mutex_unlock);
747 
748 
749 static __always_inline int __sched
750 __ww_mutex_kill(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
751 {
752 	if (ww_ctx->acquired > 0) {
753 #ifdef CONFIG_DEBUG_MUTEXES
754 		struct ww_mutex *ww;
755 
756 		ww = container_of(lock, struct ww_mutex, base);
757 		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock);
758 		ww_ctx->contending_lock = ww;
759 #endif
760 		return -EDEADLK;
761 	}
762 
763 	return 0;
764 }
765 
766 
767 /*
768  * Check the wound condition for the current lock acquire.
769  *
770  * Wound-Wait: If we're wounded, kill ourself.
771  *
772  * Wait-Die: If we're trying to acquire a lock already held by an older
773  *           context, kill ourselves.
774  *
775  * Since __ww_mutex_add_waiter() orders the wait-list on stamp, we only have to
776  * look at waiters before us in the wait-list.
777  */
778 static inline int __sched
779 __ww_mutex_check_kill(struct mutex *lock, struct mutex_waiter *waiter,
780 		      struct ww_acquire_ctx *ctx)
781 {
782 	struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
783 	struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
784 	struct mutex_waiter *cur;
785 
786 	if (ctx->acquired == 0)
787 		return 0;
788 
789 	if (!ctx->is_wait_die) {
790 		if (ctx->wounded)
791 			return __ww_mutex_kill(lock, ctx);
792 
793 		return 0;
794 	}
795 
796 	if (hold_ctx && __ww_ctx_stamp_after(ctx, hold_ctx))
797 		return __ww_mutex_kill(lock, ctx);
798 
799 	/*
800 	 * If there is a waiter in front of us that has a context, then its
801 	 * stamp is earlier than ours and we must kill ourself.
802 	 */
803 	cur = waiter;
804 	list_for_each_entry_continue_reverse(cur, &lock->wait_list, list) {
805 		if (!cur->ww_ctx)
806 			continue;
807 
808 		return __ww_mutex_kill(lock, ctx);
809 	}
810 
811 	return 0;
812 }
813 
814 /*
815  * Add @waiter to the wait-list, keep the wait-list ordered by stamp, smallest
816  * first. Such that older contexts are preferred to acquire the lock over
817  * younger contexts.
818  *
819  * Waiters without context are interspersed in FIFO order.
820  *
821  * Furthermore, for Wait-Die kill ourself immediately when possible (there are
822  * older contexts already waiting) to avoid unnecessary waiting and for
823  * Wound-Wait ensure we wound the owning context when it is younger.
824  */
825 static inline int __sched
826 __ww_mutex_add_waiter(struct mutex_waiter *waiter,
827 		      struct mutex *lock,
828 		      struct ww_acquire_ctx *ww_ctx)
829 {
830 	struct mutex_waiter *cur;
831 	struct list_head *pos;
832 	bool is_wait_die;
833 
834 	if (!ww_ctx) {
835 		__mutex_add_waiter(lock, waiter, &lock->wait_list);
836 		return 0;
837 	}
838 
839 	is_wait_die = ww_ctx->is_wait_die;
840 
841 	/*
842 	 * Add the waiter before the first waiter with a higher stamp.
843 	 * Waiters without a context are skipped to avoid starving
844 	 * them. Wait-Die waiters may die here. Wound-Wait waiters
845 	 * never die here, but they are sorted in stamp order and
846 	 * may wound the lock holder.
847 	 */
848 	pos = &lock->wait_list;
849 	list_for_each_entry_reverse(cur, &lock->wait_list, list) {
850 		if (!cur->ww_ctx)
851 			continue;
852 
853 		if (__ww_ctx_stamp_after(ww_ctx, cur->ww_ctx)) {
854 			/*
855 			 * Wait-Die: if we find an older context waiting, there
856 			 * is no point in queueing behind it, as we'd have to
857 			 * die the moment it would acquire the lock.
858 			 */
859 			if (is_wait_die) {
860 				int ret = __ww_mutex_kill(lock, ww_ctx);
861 
862 				if (ret)
863 					return ret;
864 			}
865 
866 			break;
867 		}
868 
869 		pos = &cur->list;
870 
871 		/* Wait-Die: ensure younger waiters die. */
872 		__ww_mutex_die(lock, cur, ww_ctx);
873 	}
874 
875 	__mutex_add_waiter(lock, waiter, pos);
876 
877 	/*
878 	 * Wound-Wait: if we're blocking on a mutex owned by a younger context,
879 	 * wound that such that we might proceed.
880 	 */
881 	if (!is_wait_die) {
882 		struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
883 
884 		/*
885 		 * See ww_mutex_set_context_fastpath(). Orders setting
886 		 * MUTEX_FLAG_WAITERS vs the ww->ctx load,
887 		 * such that either we or the fastpath will wound @ww->ctx.
888 		 */
889 		smp_mb();
890 		__ww_mutex_wound(lock, ww_ctx, ww->ctx);
891 	}
892 
893 	return 0;
894 }
895 
896 /*
897  * Lock a mutex (possibly interruptible), slowpath:
898  */
899 static __always_inline int __sched
900 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
901 		    struct lockdep_map *nest_lock, unsigned long ip,
902 		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
903 {
904 	struct mutex_waiter waiter;
905 	bool first = false;
906 	struct ww_mutex *ww;
907 	int ret;
908 
909 	might_sleep();
910 
911 	ww = container_of(lock, struct ww_mutex, base);
912 	if (use_ww_ctx && ww_ctx) {
913 		if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
914 			return -EALREADY;
915 
916 		/*
917 		 * Reset the wounded flag after a kill. No other process can
918 		 * race and wound us here since they can't have a valid owner
919 		 * pointer if we don't have any locks held.
920 		 */
921 		if (ww_ctx->acquired == 0)
922 			ww_ctx->wounded = 0;
923 	}
924 
925 	preempt_disable();
926 	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
927 
928 	if (__mutex_trylock(lock) ||
929 	    mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, NULL)) {
930 		/* got the lock, yay! */
931 		lock_acquired(&lock->dep_map, ip);
932 		if (use_ww_ctx && ww_ctx)
933 			ww_mutex_set_context_fastpath(ww, ww_ctx);
934 		preempt_enable();
935 		return 0;
936 	}
937 
938 	spin_lock(&lock->wait_lock);
939 	/*
940 	 * After waiting to acquire the wait_lock, try again.
941 	 */
942 	if (__mutex_trylock(lock)) {
943 		if (use_ww_ctx && ww_ctx)
944 			__ww_mutex_check_waiters(lock, ww_ctx);
945 
946 		goto skip_wait;
947 	}
948 
949 	debug_mutex_lock_common(lock, &waiter);
950 
951 	lock_contended(&lock->dep_map, ip);
952 
953 	if (!use_ww_ctx) {
954 		/* add waiting tasks to the end of the waitqueue (FIFO): */
955 		__mutex_add_waiter(lock, &waiter, &lock->wait_list);
956 
957 
958 #ifdef CONFIG_DEBUG_MUTEXES
959 		waiter.ww_ctx = MUTEX_POISON_WW_CTX;
960 #endif
961 	} else {
962 		/*
963 		 * Add in stamp order, waking up waiters that must kill
964 		 * themselves.
965 		 */
966 		ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx);
967 		if (ret)
968 			goto err_early_kill;
969 
970 		waiter.ww_ctx = ww_ctx;
971 	}
972 
973 	waiter.task = current;
974 
975 	set_current_state(state);
976 	for (;;) {
977 		/*
978 		 * Once we hold wait_lock, we're serialized against
979 		 * mutex_unlock() handing the lock off to us, do a trylock
980 		 * before testing the error conditions to make sure we pick up
981 		 * the handoff.
982 		 */
983 		if (__mutex_trylock(lock))
984 			goto acquired;
985 
986 		/*
987 		 * Check for signals and kill conditions while holding
988 		 * wait_lock. This ensures the lock cancellation is ordered
989 		 * against mutex_unlock() and wake-ups do not go missing.
990 		 */
991 		if (signal_pending_state(state, current)) {
992 			ret = -EINTR;
993 			goto err;
994 		}
995 
996 		if (use_ww_ctx && ww_ctx) {
997 			ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx);
998 			if (ret)
999 				goto err;
1000 		}
1001 
1002 		spin_unlock(&lock->wait_lock);
1003 		schedule_preempt_disabled();
1004 
1005 		/*
1006 		 * ww_mutex needs to always recheck its position since its waiter
1007 		 * list is not FIFO ordered.
1008 		 */
1009 		if ((use_ww_ctx && ww_ctx) || !first) {
1010 			first = __mutex_waiter_is_first(lock, &waiter);
1011 			if (first)
1012 				__mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
1013 		}
1014 
1015 		set_current_state(state);
1016 		/*
1017 		 * Here we order against unlock; we must either see it change
1018 		 * state back to RUNNING and fall through the next schedule(),
1019 		 * or we must see its unlock and acquire.
1020 		 */
1021 		if (__mutex_trylock(lock) ||
1022 		    (first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, &waiter)))
1023 			break;
1024 
1025 		spin_lock(&lock->wait_lock);
1026 	}
1027 	spin_lock(&lock->wait_lock);
1028 acquired:
1029 	__set_current_state(TASK_RUNNING);
1030 
1031 	if (use_ww_ctx && ww_ctx) {
1032 		/*
1033 		 * Wound-Wait; we stole the lock (!first_waiter), check the
1034 		 * waiters as anyone might want to wound us.
1035 		 */
1036 		if (!ww_ctx->is_wait_die &&
1037 		    !__mutex_waiter_is_first(lock, &waiter))
1038 			__ww_mutex_check_waiters(lock, ww_ctx);
1039 	}
1040 
1041 	mutex_remove_waiter(lock, &waiter, current);
1042 	if (likely(list_empty(&lock->wait_list)))
1043 		__mutex_clear_flag(lock, MUTEX_FLAGS);
1044 
1045 	debug_mutex_free_waiter(&waiter);
1046 
1047 skip_wait:
1048 	/* got the lock - cleanup and rejoice! */
1049 	lock_acquired(&lock->dep_map, ip);
1050 
1051 	if (use_ww_ctx && ww_ctx)
1052 		ww_mutex_lock_acquired(ww, ww_ctx);
1053 
1054 	spin_unlock(&lock->wait_lock);
1055 	preempt_enable();
1056 	return 0;
1057 
1058 err:
1059 	__set_current_state(TASK_RUNNING);
1060 	mutex_remove_waiter(lock, &waiter, current);
1061 err_early_kill:
1062 	spin_unlock(&lock->wait_lock);
1063 	debug_mutex_free_waiter(&waiter);
1064 	mutex_release(&lock->dep_map, 1, ip);
1065 	preempt_enable();
1066 	return ret;
1067 }
1068 
1069 static int __sched
1070 __mutex_lock(struct mutex *lock, long state, unsigned int subclass,
1071 	     struct lockdep_map *nest_lock, unsigned long ip)
1072 {
1073 	return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
1074 }
1075 
1076 static int __sched
1077 __ww_mutex_lock(struct mutex *lock, long state, unsigned int subclass,
1078 		struct lockdep_map *nest_lock, unsigned long ip,
1079 		struct ww_acquire_ctx *ww_ctx)
1080 {
1081 	return __mutex_lock_common(lock, state, subclass, nest_lock, ip, ww_ctx, true);
1082 }
1083 
1084 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1085 void __sched
1086 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
1087 {
1088 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
1089 }
1090 
1091 EXPORT_SYMBOL_GPL(mutex_lock_nested);
1092 
1093 void __sched
1094 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
1095 {
1096 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
1097 }
1098 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
1099 
1100 int __sched
1101 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
1102 {
1103 	return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
1104 }
1105 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
1106 
1107 int __sched
1108 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
1109 {
1110 	return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
1111 }
1112 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
1113 
1114 void __sched
1115 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
1116 {
1117 	int token;
1118 
1119 	might_sleep();
1120 
1121 	token = io_schedule_prepare();
1122 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
1123 			    subclass, NULL, _RET_IP_, NULL, 0);
1124 	io_schedule_finish(token);
1125 }
1126 EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
1127 
1128 static inline int
1129 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1130 {
1131 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
1132 	unsigned tmp;
1133 
1134 	if (ctx->deadlock_inject_countdown-- == 0) {
1135 		tmp = ctx->deadlock_inject_interval;
1136 		if (tmp > UINT_MAX/4)
1137 			tmp = UINT_MAX;
1138 		else
1139 			tmp = tmp*2 + tmp + tmp/2;
1140 
1141 		ctx->deadlock_inject_interval = tmp;
1142 		ctx->deadlock_inject_countdown = tmp;
1143 		ctx->contending_lock = lock;
1144 
1145 		ww_mutex_unlock(lock);
1146 
1147 		return -EDEADLK;
1148 	}
1149 #endif
1150 
1151 	return 0;
1152 }
1153 
1154 int __sched
1155 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1156 {
1157 	int ret;
1158 
1159 	might_sleep();
1160 	ret =  __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
1161 			       0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1162 			       ctx);
1163 	if (!ret && ctx && ctx->acquired > 1)
1164 		return ww_mutex_deadlock_injection(lock, ctx);
1165 
1166 	return ret;
1167 }
1168 EXPORT_SYMBOL_GPL(ww_mutex_lock);
1169 
1170 int __sched
1171 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1172 {
1173 	int ret;
1174 
1175 	might_sleep();
1176 	ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
1177 			      0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1178 			      ctx);
1179 
1180 	if (!ret && ctx && ctx->acquired > 1)
1181 		return ww_mutex_deadlock_injection(lock, ctx);
1182 
1183 	return ret;
1184 }
1185 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
1186 
1187 #endif
1188 
1189 /*
1190  * Release the lock, slowpath:
1191  */
1192 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
1193 {
1194 	struct task_struct *next = NULL;
1195 	DEFINE_WAKE_Q(wake_q);
1196 	unsigned long owner;
1197 
1198 	mutex_release(&lock->dep_map, 1, ip);
1199 
1200 	/*
1201 	 * Release the lock before (potentially) taking the spinlock such that
1202 	 * other contenders can get on with things ASAP.
1203 	 *
1204 	 * Except when HANDOFF, in that case we must not clear the owner field,
1205 	 * but instead set it to the top waiter.
1206 	 */
1207 	owner = atomic_long_read(&lock->owner);
1208 	for (;;) {
1209 		unsigned long old;
1210 
1211 #ifdef CONFIG_DEBUG_MUTEXES
1212 		DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
1213 		DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
1214 #endif
1215 
1216 		if (owner & MUTEX_FLAG_HANDOFF)
1217 			break;
1218 
1219 		old = atomic_long_cmpxchg_release(&lock->owner, owner,
1220 						  __owner_flags(owner));
1221 		if (old == owner) {
1222 			if (owner & MUTEX_FLAG_WAITERS)
1223 				break;
1224 
1225 			return;
1226 		}
1227 
1228 		owner = old;
1229 	}
1230 
1231 	spin_lock(&lock->wait_lock);
1232 	debug_mutex_unlock(lock);
1233 	if (!list_empty(&lock->wait_list)) {
1234 		/* get the first entry from the wait-list: */
1235 		struct mutex_waiter *waiter =
1236 			list_first_entry(&lock->wait_list,
1237 					 struct mutex_waiter, list);
1238 
1239 		next = waiter->task;
1240 
1241 		debug_mutex_wake_waiter(lock, waiter);
1242 		wake_q_add(&wake_q, next);
1243 	}
1244 
1245 	if (owner & MUTEX_FLAG_HANDOFF)
1246 		__mutex_handoff(lock, next);
1247 
1248 	spin_unlock(&lock->wait_lock);
1249 
1250 	wake_up_q(&wake_q);
1251 }
1252 
1253 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1254 /*
1255  * Here come the less common (and hence less performance-critical) APIs:
1256  * mutex_lock_interruptible() and mutex_trylock().
1257  */
1258 static noinline int __sched
1259 __mutex_lock_killable_slowpath(struct mutex *lock);
1260 
1261 static noinline int __sched
1262 __mutex_lock_interruptible_slowpath(struct mutex *lock);
1263 
1264 /**
1265  * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals.
1266  * @lock: The mutex to be acquired.
1267  *
1268  * Lock the mutex like mutex_lock().  If a signal is delivered while the
1269  * process is sleeping, this function will return without acquiring the
1270  * mutex.
1271  *
1272  * Context: Process context.
1273  * Return: 0 if the lock was successfully acquired or %-EINTR if a
1274  * signal arrived.
1275  */
1276 int __sched mutex_lock_interruptible(struct mutex *lock)
1277 {
1278 	might_sleep();
1279 
1280 	if (__mutex_trylock_fast(lock))
1281 		return 0;
1282 
1283 	return __mutex_lock_interruptible_slowpath(lock);
1284 }
1285 
1286 EXPORT_SYMBOL(mutex_lock_interruptible);
1287 
1288 /**
1289  * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals.
1290  * @lock: The mutex to be acquired.
1291  *
1292  * Lock the mutex like mutex_lock().  If a signal which will be fatal to
1293  * the current process is delivered while the process is sleeping, this
1294  * function will return without acquiring the mutex.
1295  *
1296  * Context: Process context.
1297  * Return: 0 if the lock was successfully acquired or %-EINTR if a
1298  * fatal signal arrived.
1299  */
1300 int __sched mutex_lock_killable(struct mutex *lock)
1301 {
1302 	might_sleep();
1303 
1304 	if (__mutex_trylock_fast(lock))
1305 		return 0;
1306 
1307 	return __mutex_lock_killable_slowpath(lock);
1308 }
1309 EXPORT_SYMBOL(mutex_lock_killable);
1310 
1311 /**
1312  * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O
1313  * @lock: The mutex to be acquired.
1314  *
1315  * Lock the mutex like mutex_lock().  While the task is waiting for this
1316  * mutex, it will be accounted as being in the IO wait state by the
1317  * scheduler.
1318  *
1319  * Context: Process context.
1320  */
1321 void __sched mutex_lock_io(struct mutex *lock)
1322 {
1323 	int token;
1324 
1325 	token = io_schedule_prepare();
1326 	mutex_lock(lock);
1327 	io_schedule_finish(token);
1328 }
1329 EXPORT_SYMBOL_GPL(mutex_lock_io);
1330 
1331 static noinline void __sched
1332 __mutex_lock_slowpath(struct mutex *lock)
1333 {
1334 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
1335 }
1336 
1337 static noinline int __sched
1338 __mutex_lock_killable_slowpath(struct mutex *lock)
1339 {
1340 	return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
1341 }
1342 
1343 static noinline int __sched
1344 __mutex_lock_interruptible_slowpath(struct mutex *lock)
1345 {
1346 	return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
1347 }
1348 
1349 static noinline int __sched
1350 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1351 {
1352 	return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, NULL,
1353 			       _RET_IP_, ctx);
1354 }
1355 
1356 static noinline int __sched
1357 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1358 					    struct ww_acquire_ctx *ctx)
1359 {
1360 	return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, NULL,
1361 			       _RET_IP_, ctx);
1362 }
1363 
1364 #endif
1365 
1366 /**
1367  * mutex_trylock - try to acquire the mutex, without waiting
1368  * @lock: the mutex to be acquired
1369  *
1370  * Try to acquire the mutex atomically. Returns 1 if the mutex
1371  * has been acquired successfully, and 0 on contention.
1372  *
1373  * NOTE: this function follows the spin_trylock() convention, so
1374  * it is negated from the down_trylock() return values! Be careful
1375  * about this when converting semaphore users to mutexes.
1376  *
1377  * This function must not be used in interrupt context. The
1378  * mutex must be released by the same task that acquired it.
1379  */
1380 int __sched mutex_trylock(struct mutex *lock)
1381 {
1382 	bool locked = __mutex_trylock(lock);
1383 
1384 	if (locked)
1385 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1386 
1387 	return locked;
1388 }
1389 EXPORT_SYMBOL(mutex_trylock);
1390 
1391 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1392 int __sched
1393 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1394 {
1395 	might_sleep();
1396 
1397 	if (__mutex_trylock_fast(&lock->base)) {
1398 		if (ctx)
1399 			ww_mutex_set_context_fastpath(lock, ctx);
1400 		return 0;
1401 	}
1402 
1403 	return __ww_mutex_lock_slowpath(lock, ctx);
1404 }
1405 EXPORT_SYMBOL(ww_mutex_lock);
1406 
1407 int __sched
1408 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1409 {
1410 	might_sleep();
1411 
1412 	if (__mutex_trylock_fast(&lock->base)) {
1413 		if (ctx)
1414 			ww_mutex_set_context_fastpath(lock, ctx);
1415 		return 0;
1416 	}
1417 
1418 	return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1419 }
1420 EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1421 
1422 #endif
1423 
1424 /**
1425  * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1426  * @cnt: the atomic which we are to dec
1427  * @lock: the mutex to return holding if we dec to 0
1428  *
1429  * return true and hold lock if we dec to 0, return false otherwise
1430  */
1431 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1432 {
1433 	/* dec if we can't possibly hit 0 */
1434 	if (atomic_add_unless(cnt, -1, 1))
1435 		return 0;
1436 	/* we might hit 0, so take the lock */
1437 	mutex_lock(lock);
1438 	if (!atomic_dec_and_test(cnt)) {
1439 		/* when we actually did the dec, we didn't hit 0 */
1440 		mutex_unlock(lock);
1441 		return 0;
1442 	}
1443 	/* we hit 0, and we hold the lock */
1444 	return 1;
1445 }
1446 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
1447