xref: /openbmc/linux/kernel/locking/mutex.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/locking/mutex.c
4  *
5  * Mutexes: blocking mutual exclusion locks
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *
11  * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
12  * David Howells for suggestions and improvements.
13  *
14  *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
15  *    from the -rt tree, where it was originally implemented for rtmutexes
16  *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
17  *    and Sven Dietrich.
18  *
19  * Also see Documentation/locking/mutex-design.rst.
20  */
21 #include <linux/mutex.h>
22 #include <linux/ww_mutex.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/wake_q.h>
26 #include <linux/sched/debug.h>
27 #include <linux/export.h>
28 #include <linux/spinlock.h>
29 #include <linux/interrupt.h>
30 #include <linux/debug_locks.h>
31 #include <linux/osq_lock.h>
32 
33 #ifdef CONFIG_DEBUG_MUTEXES
34 # include "mutex-debug.h"
35 #else
36 # include "mutex.h"
37 #endif
38 
39 void
40 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
41 {
42 	atomic_long_set(&lock->owner, 0);
43 	spin_lock_init(&lock->wait_lock);
44 	INIT_LIST_HEAD(&lock->wait_list);
45 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
46 	osq_lock_init(&lock->osq);
47 #endif
48 
49 	debug_mutex_init(lock, name, key);
50 }
51 EXPORT_SYMBOL(__mutex_init);
52 
53 /*
54  * @owner: contains: 'struct task_struct *' to the current lock owner,
55  * NULL means not owned. Since task_struct pointers are aligned at
56  * at least L1_CACHE_BYTES, we have low bits to store extra state.
57  *
58  * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
59  * Bit1 indicates unlock needs to hand the lock to the top-waiter
60  * Bit2 indicates handoff has been done and we're waiting for pickup.
61  */
62 #define MUTEX_FLAG_WAITERS	0x01
63 #define MUTEX_FLAG_HANDOFF	0x02
64 #define MUTEX_FLAG_PICKUP	0x04
65 
66 #define MUTEX_FLAGS		0x07
67 
68 /*
69  * Internal helper function; C doesn't allow us to hide it :/
70  *
71  * DO NOT USE (outside of mutex code).
72  */
73 static inline struct task_struct *__mutex_owner(struct mutex *lock)
74 {
75 	return (struct task_struct *)(atomic_long_read(&lock->owner) & ~MUTEX_FLAGS);
76 }
77 
78 static inline struct task_struct *__owner_task(unsigned long owner)
79 {
80 	return (struct task_struct *)(owner & ~MUTEX_FLAGS);
81 }
82 
83 bool mutex_is_locked(struct mutex *lock)
84 {
85 	return __mutex_owner(lock) != NULL;
86 }
87 EXPORT_SYMBOL(mutex_is_locked);
88 
89 static inline unsigned long __owner_flags(unsigned long owner)
90 {
91 	return owner & MUTEX_FLAGS;
92 }
93 
94 /*
95  * Trylock variant that retuns the owning task on failure.
96  */
97 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
98 {
99 	unsigned long owner, curr = (unsigned long)current;
100 
101 	owner = atomic_long_read(&lock->owner);
102 	for (;;) { /* must loop, can race against a flag */
103 		unsigned long old, flags = __owner_flags(owner);
104 		unsigned long task = owner & ~MUTEX_FLAGS;
105 
106 		if (task) {
107 			if (likely(task != curr))
108 				break;
109 
110 			if (likely(!(flags & MUTEX_FLAG_PICKUP)))
111 				break;
112 
113 			flags &= ~MUTEX_FLAG_PICKUP;
114 		} else {
115 #ifdef CONFIG_DEBUG_MUTEXES
116 			DEBUG_LOCKS_WARN_ON(flags & MUTEX_FLAG_PICKUP);
117 #endif
118 		}
119 
120 		/*
121 		 * We set the HANDOFF bit, we must make sure it doesn't live
122 		 * past the point where we acquire it. This would be possible
123 		 * if we (accidentally) set the bit on an unlocked mutex.
124 		 */
125 		flags &= ~MUTEX_FLAG_HANDOFF;
126 
127 		old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags);
128 		if (old == owner)
129 			return NULL;
130 
131 		owner = old;
132 	}
133 
134 	return __owner_task(owner);
135 }
136 
137 /*
138  * Actual trylock that will work on any unlocked state.
139  */
140 static inline bool __mutex_trylock(struct mutex *lock)
141 {
142 	return !__mutex_trylock_or_owner(lock);
143 }
144 
145 #ifndef CONFIG_DEBUG_LOCK_ALLOC
146 /*
147  * Lockdep annotations are contained to the slow paths for simplicity.
148  * There is nothing that would stop spreading the lockdep annotations outwards
149  * except more code.
150  */
151 
152 /*
153  * Optimistic trylock that only works in the uncontended case. Make sure to
154  * follow with a __mutex_trylock() before failing.
155  */
156 static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
157 {
158 	unsigned long curr = (unsigned long)current;
159 	unsigned long zero = 0UL;
160 
161 	if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr))
162 		return true;
163 
164 	return false;
165 }
166 
167 static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
168 {
169 	unsigned long curr = (unsigned long)current;
170 
171 	if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr)
172 		return true;
173 
174 	return false;
175 }
176 #endif
177 
178 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
179 {
180 	atomic_long_or(flag, &lock->owner);
181 }
182 
183 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
184 {
185 	atomic_long_andnot(flag, &lock->owner);
186 }
187 
188 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
189 {
190 	return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
191 }
192 
193 /*
194  * Add @waiter to a given location in the lock wait_list and set the
195  * FLAG_WAITERS flag if it's the first waiter.
196  */
197 static void __sched
198 __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter,
199 		   struct list_head *list)
200 {
201 	debug_mutex_add_waiter(lock, waiter, current);
202 
203 	list_add_tail(&waiter->list, list);
204 	if (__mutex_waiter_is_first(lock, waiter))
205 		__mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
206 }
207 
208 /*
209  * Give up ownership to a specific task, when @task = NULL, this is equivalent
210  * to a regular unlock. Sets PICKUP on a handoff, clears HANDOF, preserves
211  * WAITERS. Provides RELEASE semantics like a regular unlock, the
212  * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
213  */
214 static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
215 {
216 	unsigned long owner = atomic_long_read(&lock->owner);
217 
218 	for (;;) {
219 		unsigned long old, new;
220 
221 #ifdef CONFIG_DEBUG_MUTEXES
222 		DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
223 		DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
224 #endif
225 
226 		new = (owner & MUTEX_FLAG_WAITERS);
227 		new |= (unsigned long)task;
228 		if (task)
229 			new |= MUTEX_FLAG_PICKUP;
230 
231 		old = atomic_long_cmpxchg_release(&lock->owner, owner, new);
232 		if (old == owner)
233 			break;
234 
235 		owner = old;
236 	}
237 }
238 
239 #ifndef CONFIG_DEBUG_LOCK_ALLOC
240 /*
241  * We split the mutex lock/unlock logic into separate fastpath and
242  * slowpath functions, to reduce the register pressure on the fastpath.
243  * We also put the fastpath first in the kernel image, to make sure the
244  * branch is predicted by the CPU as default-untaken.
245  */
246 static void __sched __mutex_lock_slowpath(struct mutex *lock);
247 
248 /**
249  * mutex_lock - acquire the mutex
250  * @lock: the mutex to be acquired
251  *
252  * Lock the mutex exclusively for this task. If the mutex is not
253  * available right now, it will sleep until it can get it.
254  *
255  * The mutex must later on be released by the same task that
256  * acquired it. Recursive locking is not allowed. The task
257  * may not exit without first unlocking the mutex. Also, kernel
258  * memory where the mutex resides must not be freed with
259  * the mutex still locked. The mutex must first be initialized
260  * (or statically defined) before it can be locked. memset()-ing
261  * the mutex to 0 is not allowed.
262  *
263  * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
264  * checks that will enforce the restrictions and will also do
265  * deadlock debugging)
266  *
267  * This function is similar to (but not equivalent to) down().
268  */
269 void __sched mutex_lock(struct mutex *lock)
270 {
271 	might_sleep();
272 
273 	if (!__mutex_trylock_fast(lock))
274 		__mutex_lock_slowpath(lock);
275 }
276 EXPORT_SYMBOL(mutex_lock);
277 #endif
278 
279 /*
280  * Wait-Die:
281  *   The newer transactions are killed when:
282  *     It (the new transaction) makes a request for a lock being held
283  *     by an older transaction.
284  *
285  * Wound-Wait:
286  *   The newer transactions are wounded when:
287  *     An older transaction makes a request for a lock being held by
288  *     the newer transaction.
289  */
290 
291 /*
292  * Associate the ww_mutex @ww with the context @ww_ctx under which we acquired
293  * it.
294  */
295 static __always_inline void
296 ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
297 {
298 #ifdef CONFIG_DEBUG_MUTEXES
299 	/*
300 	 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
301 	 * but released with a normal mutex_unlock in this call.
302 	 *
303 	 * This should never happen, always use ww_mutex_unlock.
304 	 */
305 	DEBUG_LOCKS_WARN_ON(ww->ctx);
306 
307 	/*
308 	 * Not quite done after calling ww_acquire_done() ?
309 	 */
310 	DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
311 
312 	if (ww_ctx->contending_lock) {
313 		/*
314 		 * After -EDEADLK you tried to
315 		 * acquire a different ww_mutex? Bad!
316 		 */
317 		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
318 
319 		/*
320 		 * You called ww_mutex_lock after receiving -EDEADLK,
321 		 * but 'forgot' to unlock everything else first?
322 		 */
323 		DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
324 		ww_ctx->contending_lock = NULL;
325 	}
326 
327 	/*
328 	 * Naughty, using a different class will lead to undefined behavior!
329 	 */
330 	DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
331 #endif
332 	ww_ctx->acquired++;
333 	ww->ctx = ww_ctx;
334 }
335 
336 /*
337  * Determine if context @a is 'after' context @b. IOW, @a is a younger
338  * transaction than @b and depending on algorithm either needs to wait for
339  * @b or die.
340  */
341 static inline bool __sched
342 __ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b)
343 {
344 
345 	return (signed long)(a->stamp - b->stamp) > 0;
346 }
347 
348 /*
349  * Wait-Die; wake a younger waiter context (when locks held) such that it can
350  * die.
351  *
352  * Among waiters with context, only the first one can have other locks acquired
353  * already (ctx->acquired > 0), because __ww_mutex_add_waiter() and
354  * __ww_mutex_check_kill() wake any but the earliest context.
355  */
356 static bool __sched
357 __ww_mutex_die(struct mutex *lock, struct mutex_waiter *waiter,
358 	       struct ww_acquire_ctx *ww_ctx)
359 {
360 	if (!ww_ctx->is_wait_die)
361 		return false;
362 
363 	if (waiter->ww_ctx->acquired > 0 &&
364 			__ww_ctx_stamp_after(waiter->ww_ctx, ww_ctx)) {
365 		debug_mutex_wake_waiter(lock, waiter);
366 		wake_up_process(waiter->task);
367 	}
368 
369 	return true;
370 }
371 
372 /*
373  * Wound-Wait; wound a younger @hold_ctx if it holds the lock.
374  *
375  * Wound the lock holder if there are waiters with older transactions than
376  * the lock holders. Even if multiple waiters may wound the lock holder,
377  * it's sufficient that only one does.
378  */
379 static bool __ww_mutex_wound(struct mutex *lock,
380 			     struct ww_acquire_ctx *ww_ctx,
381 			     struct ww_acquire_ctx *hold_ctx)
382 {
383 	struct task_struct *owner = __mutex_owner(lock);
384 
385 	lockdep_assert_held(&lock->wait_lock);
386 
387 	/*
388 	 * Possible through __ww_mutex_add_waiter() when we race with
389 	 * ww_mutex_set_context_fastpath(). In that case we'll get here again
390 	 * through __ww_mutex_check_waiters().
391 	 */
392 	if (!hold_ctx)
393 		return false;
394 
395 	/*
396 	 * Can have !owner because of __mutex_unlock_slowpath(), but if owner,
397 	 * it cannot go away because we'll have FLAG_WAITERS set and hold
398 	 * wait_lock.
399 	 */
400 	if (!owner)
401 		return false;
402 
403 	if (ww_ctx->acquired > 0 && __ww_ctx_stamp_after(hold_ctx, ww_ctx)) {
404 		hold_ctx->wounded = 1;
405 
406 		/*
407 		 * wake_up_process() paired with set_current_state()
408 		 * inserts sufficient barriers to make sure @owner either sees
409 		 * it's wounded in __ww_mutex_check_kill() or has a
410 		 * wakeup pending to re-read the wounded state.
411 		 */
412 		if (owner != current)
413 			wake_up_process(owner);
414 
415 		return true;
416 	}
417 
418 	return false;
419 }
420 
421 /*
422  * We just acquired @lock under @ww_ctx, if there are later contexts waiting
423  * behind us on the wait-list, check if they need to die, or wound us.
424  *
425  * See __ww_mutex_add_waiter() for the list-order construction; basically the
426  * list is ordered by stamp, smallest (oldest) first.
427  *
428  * This relies on never mixing wait-die/wound-wait on the same wait-list;
429  * which is currently ensured by that being a ww_class property.
430  *
431  * The current task must not be on the wait list.
432  */
433 static void __sched
434 __ww_mutex_check_waiters(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
435 {
436 	struct mutex_waiter *cur;
437 
438 	lockdep_assert_held(&lock->wait_lock);
439 
440 	list_for_each_entry(cur, &lock->wait_list, list) {
441 		if (!cur->ww_ctx)
442 			continue;
443 
444 		if (__ww_mutex_die(lock, cur, ww_ctx) ||
445 		    __ww_mutex_wound(lock, cur->ww_ctx, ww_ctx))
446 			break;
447 	}
448 }
449 
450 /*
451  * After acquiring lock with fastpath, where we do not hold wait_lock, set ctx
452  * and wake up any waiters so they can recheck.
453  */
454 static __always_inline void
455 ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
456 {
457 	ww_mutex_lock_acquired(lock, ctx);
458 
459 	/*
460 	 * The lock->ctx update should be visible on all cores before
461 	 * the WAITERS check is done, otherwise contended waiters might be
462 	 * missed. The contended waiters will either see ww_ctx == NULL
463 	 * and keep spinning, or it will acquire wait_lock, add itself
464 	 * to waiter list and sleep.
465 	 */
466 	smp_mb(); /* See comments above and below. */
467 
468 	/*
469 	 * [W] ww->ctx = ctx	    [W] MUTEX_FLAG_WAITERS
470 	 *     MB		        MB
471 	 * [R] MUTEX_FLAG_WAITERS   [R] ww->ctx
472 	 *
473 	 * The memory barrier above pairs with the memory barrier in
474 	 * __ww_mutex_add_waiter() and makes sure we either observe ww->ctx
475 	 * and/or !empty list.
476 	 */
477 	if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
478 		return;
479 
480 	/*
481 	 * Uh oh, we raced in fastpath, check if any of the waiters need to
482 	 * die or wound us.
483 	 */
484 	spin_lock(&lock->base.wait_lock);
485 	__ww_mutex_check_waiters(&lock->base, ctx);
486 	spin_unlock(&lock->base.wait_lock);
487 }
488 
489 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
490 
491 static inline
492 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
493 			    struct mutex_waiter *waiter)
494 {
495 	struct ww_mutex *ww;
496 
497 	ww = container_of(lock, struct ww_mutex, base);
498 
499 	/*
500 	 * If ww->ctx is set the contents are undefined, only
501 	 * by acquiring wait_lock there is a guarantee that
502 	 * they are not invalid when reading.
503 	 *
504 	 * As such, when deadlock detection needs to be
505 	 * performed the optimistic spinning cannot be done.
506 	 *
507 	 * Check this in every inner iteration because we may
508 	 * be racing against another thread's ww_mutex_lock.
509 	 */
510 	if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
511 		return false;
512 
513 	/*
514 	 * If we aren't on the wait list yet, cancel the spin
515 	 * if there are waiters. We want  to avoid stealing the
516 	 * lock from a waiter with an earlier stamp, since the
517 	 * other thread may already own a lock that we also
518 	 * need.
519 	 */
520 	if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
521 		return false;
522 
523 	/*
524 	 * Similarly, stop spinning if we are no longer the
525 	 * first waiter.
526 	 */
527 	if (waiter && !__mutex_waiter_is_first(lock, waiter))
528 		return false;
529 
530 	return true;
531 }
532 
533 /*
534  * Look out! "owner" is an entirely speculative pointer access and not
535  * reliable.
536  *
537  * "noinline" so that this function shows up on perf profiles.
538  */
539 static noinline
540 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
541 			 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
542 {
543 	bool ret = true;
544 
545 	rcu_read_lock();
546 	while (__mutex_owner(lock) == owner) {
547 		/*
548 		 * Ensure we emit the owner->on_cpu, dereference _after_
549 		 * checking lock->owner still matches owner. If that fails,
550 		 * owner might point to freed memory. If it still matches,
551 		 * the rcu_read_lock() ensures the memory stays valid.
552 		 */
553 		barrier();
554 
555 		/*
556 		 * Use vcpu_is_preempted to detect lock holder preemption issue.
557 		 */
558 		if (!owner->on_cpu || need_resched() ||
559 				vcpu_is_preempted(task_cpu(owner))) {
560 			ret = false;
561 			break;
562 		}
563 
564 		if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
565 			ret = false;
566 			break;
567 		}
568 
569 		cpu_relax();
570 	}
571 	rcu_read_unlock();
572 
573 	return ret;
574 }
575 
576 /*
577  * Initial check for entering the mutex spinning loop
578  */
579 static inline int mutex_can_spin_on_owner(struct mutex *lock)
580 {
581 	struct task_struct *owner;
582 	int retval = 1;
583 
584 	if (need_resched())
585 		return 0;
586 
587 	rcu_read_lock();
588 	owner = __mutex_owner(lock);
589 
590 	/*
591 	 * As lock holder preemption issue, we both skip spinning if task is not
592 	 * on cpu or its cpu is preempted
593 	 */
594 	if (owner)
595 		retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
596 	rcu_read_unlock();
597 
598 	/*
599 	 * If lock->owner is not set, the mutex has been released. Return true
600 	 * such that we'll trylock in the spin path, which is a faster option
601 	 * than the blocking slow path.
602 	 */
603 	return retval;
604 }
605 
606 /*
607  * Optimistic spinning.
608  *
609  * We try to spin for acquisition when we find that the lock owner
610  * is currently running on a (different) CPU and while we don't
611  * need to reschedule. The rationale is that if the lock owner is
612  * running, it is likely to release the lock soon.
613  *
614  * The mutex spinners are queued up using MCS lock so that only one
615  * spinner can compete for the mutex. However, if mutex spinning isn't
616  * going to happen, there is no point in going through the lock/unlock
617  * overhead.
618  *
619  * Returns true when the lock was taken, otherwise false, indicating
620  * that we need to jump to the slowpath and sleep.
621  *
622  * The waiter flag is set to true if the spinner is a waiter in the wait
623  * queue. The waiter-spinner will spin on the lock directly and concurrently
624  * with the spinner at the head of the OSQ, if present, until the owner is
625  * changed to itself.
626  */
627 static __always_inline bool
628 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
629 		      const bool use_ww_ctx, struct mutex_waiter *waiter)
630 {
631 	if (!waiter) {
632 		/*
633 		 * The purpose of the mutex_can_spin_on_owner() function is
634 		 * to eliminate the overhead of osq_lock() and osq_unlock()
635 		 * in case spinning isn't possible. As a waiter-spinner
636 		 * is not going to take OSQ lock anyway, there is no need
637 		 * to call mutex_can_spin_on_owner().
638 		 */
639 		if (!mutex_can_spin_on_owner(lock))
640 			goto fail;
641 
642 		/*
643 		 * In order to avoid a stampede of mutex spinners trying to
644 		 * acquire the mutex all at once, the spinners need to take a
645 		 * MCS (queued) lock first before spinning on the owner field.
646 		 */
647 		if (!osq_lock(&lock->osq))
648 			goto fail;
649 	}
650 
651 	for (;;) {
652 		struct task_struct *owner;
653 
654 		/* Try to acquire the mutex... */
655 		owner = __mutex_trylock_or_owner(lock);
656 		if (!owner)
657 			break;
658 
659 		/*
660 		 * There's an owner, wait for it to either
661 		 * release the lock or go to sleep.
662 		 */
663 		if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
664 			goto fail_unlock;
665 
666 		/*
667 		 * The cpu_relax() call is a compiler barrier which forces
668 		 * everything in this loop to be re-loaded. We don't need
669 		 * memory barriers as we'll eventually observe the right
670 		 * values at the cost of a few extra spins.
671 		 */
672 		cpu_relax();
673 	}
674 
675 	if (!waiter)
676 		osq_unlock(&lock->osq);
677 
678 	return true;
679 
680 
681 fail_unlock:
682 	if (!waiter)
683 		osq_unlock(&lock->osq);
684 
685 fail:
686 	/*
687 	 * If we fell out of the spin path because of need_resched(),
688 	 * reschedule now, before we try-lock the mutex. This avoids getting
689 	 * scheduled out right after we obtained the mutex.
690 	 */
691 	if (need_resched()) {
692 		/*
693 		 * We _should_ have TASK_RUNNING here, but just in case
694 		 * we do not, make it so, otherwise we might get stuck.
695 		 */
696 		__set_current_state(TASK_RUNNING);
697 		schedule_preempt_disabled();
698 	}
699 
700 	return false;
701 }
702 #else
703 static __always_inline bool
704 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
705 		      const bool use_ww_ctx, struct mutex_waiter *waiter)
706 {
707 	return false;
708 }
709 #endif
710 
711 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
712 
713 /**
714  * mutex_unlock - release the mutex
715  * @lock: the mutex to be released
716  *
717  * Unlock a mutex that has been locked by this task previously.
718  *
719  * This function must not be used in interrupt context. Unlocking
720  * of a not locked mutex is not allowed.
721  *
722  * This function is similar to (but not equivalent to) up().
723  */
724 void __sched mutex_unlock(struct mutex *lock)
725 {
726 #ifndef CONFIG_DEBUG_LOCK_ALLOC
727 	if (__mutex_unlock_fast(lock))
728 		return;
729 #endif
730 	__mutex_unlock_slowpath(lock, _RET_IP_);
731 }
732 EXPORT_SYMBOL(mutex_unlock);
733 
734 /**
735  * ww_mutex_unlock - release the w/w mutex
736  * @lock: the mutex to be released
737  *
738  * Unlock a mutex that has been locked by this task previously with any of the
739  * ww_mutex_lock* functions (with or without an acquire context). It is
740  * forbidden to release the locks after releasing the acquire context.
741  *
742  * This function must not be used in interrupt context. Unlocking
743  * of a unlocked mutex is not allowed.
744  */
745 void __sched ww_mutex_unlock(struct ww_mutex *lock)
746 {
747 	/*
748 	 * The unlocking fastpath is the 0->1 transition from 'locked'
749 	 * into 'unlocked' state:
750 	 */
751 	if (lock->ctx) {
752 #ifdef CONFIG_DEBUG_MUTEXES
753 		DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
754 #endif
755 		if (lock->ctx->acquired > 0)
756 			lock->ctx->acquired--;
757 		lock->ctx = NULL;
758 	}
759 
760 	mutex_unlock(&lock->base);
761 }
762 EXPORT_SYMBOL(ww_mutex_unlock);
763 
764 
765 static __always_inline int __sched
766 __ww_mutex_kill(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
767 {
768 	if (ww_ctx->acquired > 0) {
769 #ifdef CONFIG_DEBUG_MUTEXES
770 		struct ww_mutex *ww;
771 
772 		ww = container_of(lock, struct ww_mutex, base);
773 		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock);
774 		ww_ctx->contending_lock = ww;
775 #endif
776 		return -EDEADLK;
777 	}
778 
779 	return 0;
780 }
781 
782 
783 /*
784  * Check the wound condition for the current lock acquire.
785  *
786  * Wound-Wait: If we're wounded, kill ourself.
787  *
788  * Wait-Die: If we're trying to acquire a lock already held by an older
789  *           context, kill ourselves.
790  *
791  * Since __ww_mutex_add_waiter() orders the wait-list on stamp, we only have to
792  * look at waiters before us in the wait-list.
793  */
794 static inline int __sched
795 __ww_mutex_check_kill(struct mutex *lock, struct mutex_waiter *waiter,
796 		      struct ww_acquire_ctx *ctx)
797 {
798 	struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
799 	struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
800 	struct mutex_waiter *cur;
801 
802 	if (ctx->acquired == 0)
803 		return 0;
804 
805 	if (!ctx->is_wait_die) {
806 		if (ctx->wounded)
807 			return __ww_mutex_kill(lock, ctx);
808 
809 		return 0;
810 	}
811 
812 	if (hold_ctx && __ww_ctx_stamp_after(ctx, hold_ctx))
813 		return __ww_mutex_kill(lock, ctx);
814 
815 	/*
816 	 * If there is a waiter in front of us that has a context, then its
817 	 * stamp is earlier than ours and we must kill ourself.
818 	 */
819 	cur = waiter;
820 	list_for_each_entry_continue_reverse(cur, &lock->wait_list, list) {
821 		if (!cur->ww_ctx)
822 			continue;
823 
824 		return __ww_mutex_kill(lock, ctx);
825 	}
826 
827 	return 0;
828 }
829 
830 /*
831  * Add @waiter to the wait-list, keep the wait-list ordered by stamp, smallest
832  * first. Such that older contexts are preferred to acquire the lock over
833  * younger contexts.
834  *
835  * Waiters without context are interspersed in FIFO order.
836  *
837  * Furthermore, for Wait-Die kill ourself immediately when possible (there are
838  * older contexts already waiting) to avoid unnecessary waiting and for
839  * Wound-Wait ensure we wound the owning context when it is younger.
840  */
841 static inline int __sched
842 __ww_mutex_add_waiter(struct mutex_waiter *waiter,
843 		      struct mutex *lock,
844 		      struct ww_acquire_ctx *ww_ctx)
845 {
846 	struct mutex_waiter *cur;
847 	struct list_head *pos;
848 	bool is_wait_die;
849 
850 	if (!ww_ctx) {
851 		__mutex_add_waiter(lock, waiter, &lock->wait_list);
852 		return 0;
853 	}
854 
855 	is_wait_die = ww_ctx->is_wait_die;
856 
857 	/*
858 	 * Add the waiter before the first waiter with a higher stamp.
859 	 * Waiters without a context are skipped to avoid starving
860 	 * them. Wait-Die waiters may die here. Wound-Wait waiters
861 	 * never die here, but they are sorted in stamp order and
862 	 * may wound the lock holder.
863 	 */
864 	pos = &lock->wait_list;
865 	list_for_each_entry_reverse(cur, &lock->wait_list, list) {
866 		if (!cur->ww_ctx)
867 			continue;
868 
869 		if (__ww_ctx_stamp_after(ww_ctx, cur->ww_ctx)) {
870 			/*
871 			 * Wait-Die: if we find an older context waiting, there
872 			 * is no point in queueing behind it, as we'd have to
873 			 * die the moment it would acquire the lock.
874 			 */
875 			if (is_wait_die) {
876 				int ret = __ww_mutex_kill(lock, ww_ctx);
877 
878 				if (ret)
879 					return ret;
880 			}
881 
882 			break;
883 		}
884 
885 		pos = &cur->list;
886 
887 		/* Wait-Die: ensure younger waiters die. */
888 		__ww_mutex_die(lock, cur, ww_ctx);
889 	}
890 
891 	__mutex_add_waiter(lock, waiter, pos);
892 
893 	/*
894 	 * Wound-Wait: if we're blocking on a mutex owned by a younger context,
895 	 * wound that such that we might proceed.
896 	 */
897 	if (!is_wait_die) {
898 		struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
899 
900 		/*
901 		 * See ww_mutex_set_context_fastpath(). Orders setting
902 		 * MUTEX_FLAG_WAITERS vs the ww->ctx load,
903 		 * such that either we or the fastpath will wound @ww->ctx.
904 		 */
905 		smp_mb();
906 		__ww_mutex_wound(lock, ww_ctx, ww->ctx);
907 	}
908 
909 	return 0;
910 }
911 
912 /*
913  * Lock a mutex (possibly interruptible), slowpath:
914  */
915 static __always_inline int __sched
916 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
917 		    struct lockdep_map *nest_lock, unsigned long ip,
918 		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
919 {
920 	struct mutex_waiter waiter;
921 	bool first = false;
922 	struct ww_mutex *ww;
923 	int ret;
924 
925 	might_sleep();
926 
927 #ifdef CONFIG_DEBUG_MUTEXES
928 	DEBUG_LOCKS_WARN_ON(lock->magic != lock);
929 #endif
930 
931 	ww = container_of(lock, struct ww_mutex, base);
932 	if (use_ww_ctx && ww_ctx) {
933 		if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
934 			return -EALREADY;
935 
936 		/*
937 		 * Reset the wounded flag after a kill. No other process can
938 		 * race and wound us here since they can't have a valid owner
939 		 * pointer if we don't have any locks held.
940 		 */
941 		if (ww_ctx->acquired == 0)
942 			ww_ctx->wounded = 0;
943 	}
944 
945 	preempt_disable();
946 	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
947 
948 	if (__mutex_trylock(lock) ||
949 	    mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, NULL)) {
950 		/* got the lock, yay! */
951 		lock_acquired(&lock->dep_map, ip);
952 		if (use_ww_ctx && ww_ctx)
953 			ww_mutex_set_context_fastpath(ww, ww_ctx);
954 		preempt_enable();
955 		return 0;
956 	}
957 
958 	spin_lock(&lock->wait_lock);
959 	/*
960 	 * After waiting to acquire the wait_lock, try again.
961 	 */
962 	if (__mutex_trylock(lock)) {
963 		if (use_ww_ctx && ww_ctx)
964 			__ww_mutex_check_waiters(lock, ww_ctx);
965 
966 		goto skip_wait;
967 	}
968 
969 	debug_mutex_lock_common(lock, &waiter);
970 
971 	lock_contended(&lock->dep_map, ip);
972 
973 	if (!use_ww_ctx) {
974 		/* add waiting tasks to the end of the waitqueue (FIFO): */
975 		__mutex_add_waiter(lock, &waiter, &lock->wait_list);
976 
977 
978 #ifdef CONFIG_DEBUG_MUTEXES
979 		waiter.ww_ctx = MUTEX_POISON_WW_CTX;
980 #endif
981 	} else {
982 		/*
983 		 * Add in stamp order, waking up waiters that must kill
984 		 * themselves.
985 		 */
986 		ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx);
987 		if (ret)
988 			goto err_early_kill;
989 
990 		waiter.ww_ctx = ww_ctx;
991 	}
992 
993 	waiter.task = current;
994 
995 	set_current_state(state);
996 	for (;;) {
997 		/*
998 		 * Once we hold wait_lock, we're serialized against
999 		 * mutex_unlock() handing the lock off to us, do a trylock
1000 		 * before testing the error conditions to make sure we pick up
1001 		 * the handoff.
1002 		 */
1003 		if (__mutex_trylock(lock))
1004 			goto acquired;
1005 
1006 		/*
1007 		 * Check for signals and kill conditions while holding
1008 		 * wait_lock. This ensures the lock cancellation is ordered
1009 		 * against mutex_unlock() and wake-ups do not go missing.
1010 		 */
1011 		if (signal_pending_state(state, current)) {
1012 			ret = -EINTR;
1013 			goto err;
1014 		}
1015 
1016 		if (use_ww_ctx && ww_ctx) {
1017 			ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx);
1018 			if (ret)
1019 				goto err;
1020 		}
1021 
1022 		spin_unlock(&lock->wait_lock);
1023 		schedule_preempt_disabled();
1024 
1025 		/*
1026 		 * ww_mutex needs to always recheck its position since its waiter
1027 		 * list is not FIFO ordered.
1028 		 */
1029 		if ((use_ww_ctx && ww_ctx) || !first) {
1030 			first = __mutex_waiter_is_first(lock, &waiter);
1031 			if (first)
1032 				__mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
1033 		}
1034 
1035 		set_current_state(state);
1036 		/*
1037 		 * Here we order against unlock; we must either see it change
1038 		 * state back to RUNNING and fall through the next schedule(),
1039 		 * or we must see its unlock and acquire.
1040 		 */
1041 		if (__mutex_trylock(lock) ||
1042 		    (first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, &waiter)))
1043 			break;
1044 
1045 		spin_lock(&lock->wait_lock);
1046 	}
1047 	spin_lock(&lock->wait_lock);
1048 acquired:
1049 	__set_current_state(TASK_RUNNING);
1050 
1051 	if (use_ww_ctx && ww_ctx) {
1052 		/*
1053 		 * Wound-Wait; we stole the lock (!first_waiter), check the
1054 		 * waiters as anyone might want to wound us.
1055 		 */
1056 		if (!ww_ctx->is_wait_die &&
1057 		    !__mutex_waiter_is_first(lock, &waiter))
1058 			__ww_mutex_check_waiters(lock, ww_ctx);
1059 	}
1060 
1061 	mutex_remove_waiter(lock, &waiter, current);
1062 	if (likely(list_empty(&lock->wait_list)))
1063 		__mutex_clear_flag(lock, MUTEX_FLAGS);
1064 
1065 	debug_mutex_free_waiter(&waiter);
1066 
1067 skip_wait:
1068 	/* got the lock - cleanup and rejoice! */
1069 	lock_acquired(&lock->dep_map, ip);
1070 
1071 	if (use_ww_ctx && ww_ctx)
1072 		ww_mutex_lock_acquired(ww, ww_ctx);
1073 
1074 	spin_unlock(&lock->wait_lock);
1075 	preempt_enable();
1076 	return 0;
1077 
1078 err:
1079 	__set_current_state(TASK_RUNNING);
1080 	mutex_remove_waiter(lock, &waiter, current);
1081 err_early_kill:
1082 	spin_unlock(&lock->wait_lock);
1083 	debug_mutex_free_waiter(&waiter);
1084 	mutex_release(&lock->dep_map, ip);
1085 	preempt_enable();
1086 	return ret;
1087 }
1088 
1089 static int __sched
1090 __mutex_lock(struct mutex *lock, long state, unsigned int subclass,
1091 	     struct lockdep_map *nest_lock, unsigned long ip)
1092 {
1093 	return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
1094 }
1095 
1096 static int __sched
1097 __ww_mutex_lock(struct mutex *lock, long state, unsigned int subclass,
1098 		struct lockdep_map *nest_lock, unsigned long ip,
1099 		struct ww_acquire_ctx *ww_ctx)
1100 {
1101 	return __mutex_lock_common(lock, state, subclass, nest_lock, ip, ww_ctx, true);
1102 }
1103 
1104 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1105 void __sched
1106 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
1107 {
1108 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
1109 }
1110 
1111 EXPORT_SYMBOL_GPL(mutex_lock_nested);
1112 
1113 void __sched
1114 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
1115 {
1116 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
1117 }
1118 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
1119 
1120 int __sched
1121 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
1122 {
1123 	return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
1124 }
1125 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
1126 
1127 int __sched
1128 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
1129 {
1130 	return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
1131 }
1132 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
1133 
1134 void __sched
1135 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
1136 {
1137 	int token;
1138 
1139 	might_sleep();
1140 
1141 	token = io_schedule_prepare();
1142 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
1143 			    subclass, NULL, _RET_IP_, NULL, 0);
1144 	io_schedule_finish(token);
1145 }
1146 EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
1147 
1148 static inline int
1149 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1150 {
1151 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
1152 	unsigned tmp;
1153 
1154 	if (ctx->deadlock_inject_countdown-- == 0) {
1155 		tmp = ctx->deadlock_inject_interval;
1156 		if (tmp > UINT_MAX/4)
1157 			tmp = UINT_MAX;
1158 		else
1159 			tmp = tmp*2 + tmp + tmp/2;
1160 
1161 		ctx->deadlock_inject_interval = tmp;
1162 		ctx->deadlock_inject_countdown = tmp;
1163 		ctx->contending_lock = lock;
1164 
1165 		ww_mutex_unlock(lock);
1166 
1167 		return -EDEADLK;
1168 	}
1169 #endif
1170 
1171 	return 0;
1172 }
1173 
1174 int __sched
1175 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1176 {
1177 	int ret;
1178 
1179 	might_sleep();
1180 	ret =  __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
1181 			       0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1182 			       ctx);
1183 	if (!ret && ctx && ctx->acquired > 1)
1184 		return ww_mutex_deadlock_injection(lock, ctx);
1185 
1186 	return ret;
1187 }
1188 EXPORT_SYMBOL_GPL(ww_mutex_lock);
1189 
1190 int __sched
1191 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1192 {
1193 	int ret;
1194 
1195 	might_sleep();
1196 	ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
1197 			      0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1198 			      ctx);
1199 
1200 	if (!ret && ctx && ctx->acquired > 1)
1201 		return ww_mutex_deadlock_injection(lock, ctx);
1202 
1203 	return ret;
1204 }
1205 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
1206 
1207 #endif
1208 
1209 /*
1210  * Release the lock, slowpath:
1211  */
1212 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
1213 {
1214 	struct task_struct *next = NULL;
1215 	DEFINE_WAKE_Q(wake_q);
1216 	unsigned long owner;
1217 
1218 	mutex_release(&lock->dep_map, ip);
1219 
1220 	/*
1221 	 * Release the lock before (potentially) taking the spinlock such that
1222 	 * other contenders can get on with things ASAP.
1223 	 *
1224 	 * Except when HANDOFF, in that case we must not clear the owner field,
1225 	 * but instead set it to the top waiter.
1226 	 */
1227 	owner = atomic_long_read(&lock->owner);
1228 	for (;;) {
1229 		unsigned long old;
1230 
1231 #ifdef CONFIG_DEBUG_MUTEXES
1232 		DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
1233 		DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
1234 #endif
1235 
1236 		if (owner & MUTEX_FLAG_HANDOFF)
1237 			break;
1238 
1239 		old = atomic_long_cmpxchg_release(&lock->owner, owner,
1240 						  __owner_flags(owner));
1241 		if (old == owner) {
1242 			if (owner & MUTEX_FLAG_WAITERS)
1243 				break;
1244 
1245 			return;
1246 		}
1247 
1248 		owner = old;
1249 	}
1250 
1251 	spin_lock(&lock->wait_lock);
1252 	debug_mutex_unlock(lock);
1253 	if (!list_empty(&lock->wait_list)) {
1254 		/* get the first entry from the wait-list: */
1255 		struct mutex_waiter *waiter =
1256 			list_first_entry(&lock->wait_list,
1257 					 struct mutex_waiter, list);
1258 
1259 		next = waiter->task;
1260 
1261 		debug_mutex_wake_waiter(lock, waiter);
1262 		wake_q_add(&wake_q, next);
1263 	}
1264 
1265 	if (owner & MUTEX_FLAG_HANDOFF)
1266 		__mutex_handoff(lock, next);
1267 
1268 	spin_unlock(&lock->wait_lock);
1269 
1270 	wake_up_q(&wake_q);
1271 }
1272 
1273 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1274 /*
1275  * Here come the less common (and hence less performance-critical) APIs:
1276  * mutex_lock_interruptible() and mutex_trylock().
1277  */
1278 static noinline int __sched
1279 __mutex_lock_killable_slowpath(struct mutex *lock);
1280 
1281 static noinline int __sched
1282 __mutex_lock_interruptible_slowpath(struct mutex *lock);
1283 
1284 /**
1285  * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals.
1286  * @lock: The mutex to be acquired.
1287  *
1288  * Lock the mutex like mutex_lock().  If a signal is delivered while the
1289  * process is sleeping, this function will return without acquiring the
1290  * mutex.
1291  *
1292  * Context: Process context.
1293  * Return: 0 if the lock was successfully acquired or %-EINTR if a
1294  * signal arrived.
1295  */
1296 int __sched mutex_lock_interruptible(struct mutex *lock)
1297 {
1298 	might_sleep();
1299 
1300 	if (__mutex_trylock_fast(lock))
1301 		return 0;
1302 
1303 	return __mutex_lock_interruptible_slowpath(lock);
1304 }
1305 
1306 EXPORT_SYMBOL(mutex_lock_interruptible);
1307 
1308 /**
1309  * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals.
1310  * @lock: The mutex to be acquired.
1311  *
1312  * Lock the mutex like mutex_lock().  If a signal which will be fatal to
1313  * the current process is delivered while the process is sleeping, this
1314  * function will return without acquiring the mutex.
1315  *
1316  * Context: Process context.
1317  * Return: 0 if the lock was successfully acquired or %-EINTR if a
1318  * fatal signal arrived.
1319  */
1320 int __sched mutex_lock_killable(struct mutex *lock)
1321 {
1322 	might_sleep();
1323 
1324 	if (__mutex_trylock_fast(lock))
1325 		return 0;
1326 
1327 	return __mutex_lock_killable_slowpath(lock);
1328 }
1329 EXPORT_SYMBOL(mutex_lock_killable);
1330 
1331 /**
1332  * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O
1333  * @lock: The mutex to be acquired.
1334  *
1335  * Lock the mutex like mutex_lock().  While the task is waiting for this
1336  * mutex, it will be accounted as being in the IO wait state by the
1337  * scheduler.
1338  *
1339  * Context: Process context.
1340  */
1341 void __sched mutex_lock_io(struct mutex *lock)
1342 {
1343 	int token;
1344 
1345 	token = io_schedule_prepare();
1346 	mutex_lock(lock);
1347 	io_schedule_finish(token);
1348 }
1349 EXPORT_SYMBOL_GPL(mutex_lock_io);
1350 
1351 static noinline void __sched
1352 __mutex_lock_slowpath(struct mutex *lock)
1353 {
1354 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
1355 }
1356 
1357 static noinline int __sched
1358 __mutex_lock_killable_slowpath(struct mutex *lock)
1359 {
1360 	return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
1361 }
1362 
1363 static noinline int __sched
1364 __mutex_lock_interruptible_slowpath(struct mutex *lock)
1365 {
1366 	return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
1367 }
1368 
1369 static noinline int __sched
1370 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1371 {
1372 	return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, NULL,
1373 			       _RET_IP_, ctx);
1374 }
1375 
1376 static noinline int __sched
1377 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1378 					    struct ww_acquire_ctx *ctx)
1379 {
1380 	return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, NULL,
1381 			       _RET_IP_, ctx);
1382 }
1383 
1384 #endif
1385 
1386 /**
1387  * mutex_trylock - try to acquire the mutex, without waiting
1388  * @lock: the mutex to be acquired
1389  *
1390  * Try to acquire the mutex atomically. Returns 1 if the mutex
1391  * has been acquired successfully, and 0 on contention.
1392  *
1393  * NOTE: this function follows the spin_trylock() convention, so
1394  * it is negated from the down_trylock() return values! Be careful
1395  * about this when converting semaphore users to mutexes.
1396  *
1397  * This function must not be used in interrupt context. The
1398  * mutex must be released by the same task that acquired it.
1399  */
1400 int __sched mutex_trylock(struct mutex *lock)
1401 {
1402 	bool locked;
1403 
1404 #ifdef CONFIG_DEBUG_MUTEXES
1405 	DEBUG_LOCKS_WARN_ON(lock->magic != lock);
1406 #endif
1407 
1408 	locked = __mutex_trylock(lock);
1409 	if (locked)
1410 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1411 
1412 	return locked;
1413 }
1414 EXPORT_SYMBOL(mutex_trylock);
1415 
1416 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1417 int __sched
1418 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1419 {
1420 	might_sleep();
1421 
1422 	if (__mutex_trylock_fast(&lock->base)) {
1423 		if (ctx)
1424 			ww_mutex_set_context_fastpath(lock, ctx);
1425 		return 0;
1426 	}
1427 
1428 	return __ww_mutex_lock_slowpath(lock, ctx);
1429 }
1430 EXPORT_SYMBOL(ww_mutex_lock);
1431 
1432 int __sched
1433 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1434 {
1435 	might_sleep();
1436 
1437 	if (__mutex_trylock_fast(&lock->base)) {
1438 		if (ctx)
1439 			ww_mutex_set_context_fastpath(lock, ctx);
1440 		return 0;
1441 	}
1442 
1443 	return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1444 }
1445 EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1446 
1447 #endif
1448 
1449 /**
1450  * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1451  * @cnt: the atomic which we are to dec
1452  * @lock: the mutex to return holding if we dec to 0
1453  *
1454  * return true and hold lock if we dec to 0, return false otherwise
1455  */
1456 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1457 {
1458 	/* dec if we can't possibly hit 0 */
1459 	if (atomic_add_unless(cnt, -1, 1))
1460 		return 0;
1461 	/* we might hit 0, so take the lock */
1462 	mutex_lock(lock);
1463 	if (!atomic_dec_and_test(cnt)) {
1464 		/* when we actually did the dec, we didn't hit 0 */
1465 		mutex_unlock(lock);
1466 		return 0;
1467 	}
1468 	/* we hit 0, and we hold the lock */
1469 	return 1;
1470 }
1471 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
1472