xref: /openbmc/linux/kernel/locking/mutex.c (revision afb46f79)
1 /*
2  * kernel/locking/mutex.c
3  *
4  * Mutexes: blocking mutual exclusion locks
5  *
6  * Started by Ingo Molnar:
7  *
8  *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9  *
10  * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11  * David Howells for suggestions and improvements.
12  *
13  *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14  *    from the -rt tree, where it was originally implemented for rtmutexes
15  *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16  *    and Sven Dietrich.
17  *
18  * Also see Documentation/mutex-design.txt.
19  */
20 #include <linux/mutex.h>
21 #include <linux/ww_mutex.h>
22 #include <linux/sched.h>
23 #include <linux/sched/rt.h>
24 #include <linux/export.h>
25 #include <linux/spinlock.h>
26 #include <linux/interrupt.h>
27 #include <linux/debug_locks.h>
28 #include "mcs_spinlock.h"
29 
30 /*
31  * In the DEBUG case we are using the "NULL fastpath" for mutexes,
32  * which forces all calls into the slowpath:
33  */
34 #ifdef CONFIG_DEBUG_MUTEXES
35 # include "mutex-debug.h"
36 # include <asm-generic/mutex-null.h>
37 /*
38  * Must be 0 for the debug case so we do not do the unlock outside of the
39  * wait_lock region. debug_mutex_unlock() will do the actual unlock in this
40  * case.
41  */
42 # undef __mutex_slowpath_needs_to_unlock
43 # define  __mutex_slowpath_needs_to_unlock()	0
44 #else
45 # include "mutex.h"
46 # include <asm/mutex.h>
47 #endif
48 
49 /*
50  * A negative mutex count indicates that waiters are sleeping waiting for the
51  * mutex.
52  */
53 #define	MUTEX_SHOW_NO_WAITER(mutex)	(atomic_read(&(mutex)->count) >= 0)
54 
55 void
56 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
57 {
58 	atomic_set(&lock->count, 1);
59 	spin_lock_init(&lock->wait_lock);
60 	INIT_LIST_HEAD(&lock->wait_list);
61 	mutex_clear_owner(lock);
62 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
63 	lock->osq = NULL;
64 #endif
65 
66 	debug_mutex_init(lock, name, key);
67 }
68 
69 EXPORT_SYMBOL(__mutex_init);
70 
71 #ifndef CONFIG_DEBUG_LOCK_ALLOC
72 /*
73  * We split the mutex lock/unlock logic into separate fastpath and
74  * slowpath functions, to reduce the register pressure on the fastpath.
75  * We also put the fastpath first in the kernel image, to make sure the
76  * branch is predicted by the CPU as default-untaken.
77  */
78 __visible void __sched __mutex_lock_slowpath(atomic_t *lock_count);
79 
80 /**
81  * mutex_lock - acquire the mutex
82  * @lock: the mutex to be acquired
83  *
84  * Lock the mutex exclusively for this task. If the mutex is not
85  * available right now, it will sleep until it can get it.
86  *
87  * The mutex must later on be released by the same task that
88  * acquired it. Recursive locking is not allowed. The task
89  * may not exit without first unlocking the mutex. Also, kernel
90  * memory where the mutex resides mutex must not be freed with
91  * the mutex still locked. The mutex must first be initialized
92  * (or statically defined) before it can be locked. memset()-ing
93  * the mutex to 0 is not allowed.
94  *
95  * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
96  *   checks that will enforce the restrictions and will also do
97  *   deadlock debugging. )
98  *
99  * This function is similar to (but not equivalent to) down().
100  */
101 void __sched mutex_lock(struct mutex *lock)
102 {
103 	might_sleep();
104 	/*
105 	 * The locking fastpath is the 1->0 transition from
106 	 * 'unlocked' into 'locked' state.
107 	 */
108 	__mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
109 	mutex_set_owner(lock);
110 }
111 
112 EXPORT_SYMBOL(mutex_lock);
113 #endif
114 
115 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
116 /*
117  * In order to avoid a stampede of mutex spinners from acquiring the mutex
118  * more or less simultaneously, the spinners need to acquire a MCS lock
119  * first before spinning on the owner field.
120  *
121  */
122 
123 /*
124  * Mutex spinning code migrated from kernel/sched/core.c
125  */
126 
127 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
128 {
129 	if (lock->owner != owner)
130 		return false;
131 
132 	/*
133 	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
134 	 * lock->owner still matches owner, if that fails, owner might
135 	 * point to free()d memory, if it still matches, the rcu_read_lock()
136 	 * ensures the memory stays valid.
137 	 */
138 	barrier();
139 
140 	return owner->on_cpu;
141 }
142 
143 /*
144  * Look out! "owner" is an entirely speculative pointer
145  * access and not reliable.
146  */
147 static noinline
148 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
149 {
150 	rcu_read_lock();
151 	while (owner_running(lock, owner)) {
152 		if (need_resched())
153 			break;
154 
155 		arch_mutex_cpu_relax();
156 	}
157 	rcu_read_unlock();
158 
159 	/*
160 	 * We break out the loop above on need_resched() and when the
161 	 * owner changed, which is a sign for heavy contention. Return
162 	 * success only when lock->owner is NULL.
163 	 */
164 	return lock->owner == NULL;
165 }
166 
167 /*
168  * Initial check for entering the mutex spinning loop
169  */
170 static inline int mutex_can_spin_on_owner(struct mutex *lock)
171 {
172 	struct task_struct *owner;
173 	int retval = 1;
174 
175 	if (need_resched())
176 		return 0;
177 
178 	rcu_read_lock();
179 	owner = ACCESS_ONCE(lock->owner);
180 	if (owner)
181 		retval = owner->on_cpu;
182 	rcu_read_unlock();
183 	/*
184 	 * if lock->owner is not set, the mutex owner may have just acquired
185 	 * it and not set the owner yet or the mutex has been released.
186 	 */
187 	return retval;
188 }
189 #endif
190 
191 __visible __used noinline
192 void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
193 
194 /**
195  * mutex_unlock - release the mutex
196  * @lock: the mutex to be released
197  *
198  * Unlock a mutex that has been locked by this task previously.
199  *
200  * This function must not be used in interrupt context. Unlocking
201  * of a not locked mutex is not allowed.
202  *
203  * This function is similar to (but not equivalent to) up().
204  */
205 void __sched mutex_unlock(struct mutex *lock)
206 {
207 	/*
208 	 * The unlocking fastpath is the 0->1 transition from 'locked'
209 	 * into 'unlocked' state:
210 	 */
211 #ifndef CONFIG_DEBUG_MUTEXES
212 	/*
213 	 * When debugging is enabled we must not clear the owner before time,
214 	 * the slow path will always be taken, and that clears the owner field
215 	 * after verifying that it was indeed current.
216 	 */
217 	mutex_clear_owner(lock);
218 #endif
219 	__mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
220 }
221 
222 EXPORT_SYMBOL(mutex_unlock);
223 
224 /**
225  * ww_mutex_unlock - release the w/w mutex
226  * @lock: the mutex to be released
227  *
228  * Unlock a mutex that has been locked by this task previously with any of the
229  * ww_mutex_lock* functions (with or without an acquire context). It is
230  * forbidden to release the locks after releasing the acquire context.
231  *
232  * This function must not be used in interrupt context. Unlocking
233  * of a unlocked mutex is not allowed.
234  */
235 void __sched ww_mutex_unlock(struct ww_mutex *lock)
236 {
237 	/*
238 	 * The unlocking fastpath is the 0->1 transition from 'locked'
239 	 * into 'unlocked' state:
240 	 */
241 	if (lock->ctx) {
242 #ifdef CONFIG_DEBUG_MUTEXES
243 		DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
244 #endif
245 		if (lock->ctx->acquired > 0)
246 			lock->ctx->acquired--;
247 		lock->ctx = NULL;
248 	}
249 
250 #ifndef CONFIG_DEBUG_MUTEXES
251 	/*
252 	 * When debugging is enabled we must not clear the owner before time,
253 	 * the slow path will always be taken, and that clears the owner field
254 	 * after verifying that it was indeed current.
255 	 */
256 	mutex_clear_owner(&lock->base);
257 #endif
258 	__mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
259 }
260 EXPORT_SYMBOL(ww_mutex_unlock);
261 
262 static inline int __sched
263 __mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
264 {
265 	struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
266 	struct ww_acquire_ctx *hold_ctx = ACCESS_ONCE(ww->ctx);
267 
268 	if (!hold_ctx)
269 		return 0;
270 
271 	if (unlikely(ctx == hold_ctx))
272 		return -EALREADY;
273 
274 	if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
275 	    (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
276 #ifdef CONFIG_DEBUG_MUTEXES
277 		DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
278 		ctx->contending_lock = ww;
279 #endif
280 		return -EDEADLK;
281 	}
282 
283 	return 0;
284 }
285 
286 static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
287 						   struct ww_acquire_ctx *ww_ctx)
288 {
289 #ifdef CONFIG_DEBUG_MUTEXES
290 	/*
291 	 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
292 	 * but released with a normal mutex_unlock in this call.
293 	 *
294 	 * This should never happen, always use ww_mutex_unlock.
295 	 */
296 	DEBUG_LOCKS_WARN_ON(ww->ctx);
297 
298 	/*
299 	 * Not quite done after calling ww_acquire_done() ?
300 	 */
301 	DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
302 
303 	if (ww_ctx->contending_lock) {
304 		/*
305 		 * After -EDEADLK you tried to
306 		 * acquire a different ww_mutex? Bad!
307 		 */
308 		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
309 
310 		/*
311 		 * You called ww_mutex_lock after receiving -EDEADLK,
312 		 * but 'forgot' to unlock everything else first?
313 		 */
314 		DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
315 		ww_ctx->contending_lock = NULL;
316 	}
317 
318 	/*
319 	 * Naughty, using a different class will lead to undefined behavior!
320 	 */
321 	DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
322 #endif
323 	ww_ctx->acquired++;
324 }
325 
326 /*
327  * after acquiring lock with fastpath or when we lost out in contested
328  * slowpath, set ctx and wake up any waiters so they can recheck.
329  *
330  * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
331  * as the fastpath and opportunistic spinning are disabled in that case.
332  */
333 static __always_inline void
334 ww_mutex_set_context_fastpath(struct ww_mutex *lock,
335 			       struct ww_acquire_ctx *ctx)
336 {
337 	unsigned long flags;
338 	struct mutex_waiter *cur;
339 
340 	ww_mutex_lock_acquired(lock, ctx);
341 
342 	lock->ctx = ctx;
343 
344 	/*
345 	 * The lock->ctx update should be visible on all cores before
346 	 * the atomic read is done, otherwise contended waiters might be
347 	 * missed. The contended waiters will either see ww_ctx == NULL
348 	 * and keep spinning, or it will acquire wait_lock, add itself
349 	 * to waiter list and sleep.
350 	 */
351 	smp_mb(); /* ^^^ */
352 
353 	/*
354 	 * Check if lock is contended, if not there is nobody to wake up
355 	 */
356 	if (likely(atomic_read(&lock->base.count) == 0))
357 		return;
358 
359 	/*
360 	 * Uh oh, we raced in fastpath, wake up everyone in this case,
361 	 * so they can see the new lock->ctx.
362 	 */
363 	spin_lock_mutex(&lock->base.wait_lock, flags);
364 	list_for_each_entry(cur, &lock->base.wait_list, list) {
365 		debug_mutex_wake_waiter(&lock->base, cur);
366 		wake_up_process(cur->task);
367 	}
368 	spin_unlock_mutex(&lock->base.wait_lock, flags);
369 }
370 
371 /*
372  * Lock a mutex (possibly interruptible), slowpath:
373  */
374 static __always_inline int __sched
375 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
376 		    struct lockdep_map *nest_lock, unsigned long ip,
377 		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
378 {
379 	struct task_struct *task = current;
380 	struct mutex_waiter waiter;
381 	unsigned long flags;
382 	int ret;
383 
384 	preempt_disable();
385 	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
386 
387 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
388 	/*
389 	 * Optimistic spinning.
390 	 *
391 	 * We try to spin for acquisition when we find that there are no
392 	 * pending waiters and the lock owner is currently running on a
393 	 * (different) CPU.
394 	 *
395 	 * The rationale is that if the lock owner is running, it is likely to
396 	 * release the lock soon.
397 	 *
398 	 * Since this needs the lock owner, and this mutex implementation
399 	 * doesn't track the owner atomically in the lock field, we need to
400 	 * track it non-atomically.
401 	 *
402 	 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
403 	 * to serialize everything.
404 	 *
405 	 * The mutex spinners are queued up using MCS lock so that only one
406 	 * spinner can compete for the mutex. However, if mutex spinning isn't
407 	 * going to happen, there is no point in going through the lock/unlock
408 	 * overhead.
409 	 */
410 	if (!mutex_can_spin_on_owner(lock))
411 		goto slowpath;
412 
413 	if (!osq_lock(&lock->osq))
414 		goto slowpath;
415 
416 	for (;;) {
417 		struct task_struct *owner;
418 
419 		if (use_ww_ctx && ww_ctx->acquired > 0) {
420 			struct ww_mutex *ww;
421 
422 			ww = container_of(lock, struct ww_mutex, base);
423 			/*
424 			 * If ww->ctx is set the contents are undefined, only
425 			 * by acquiring wait_lock there is a guarantee that
426 			 * they are not invalid when reading.
427 			 *
428 			 * As such, when deadlock detection needs to be
429 			 * performed the optimistic spinning cannot be done.
430 			 */
431 			if (ACCESS_ONCE(ww->ctx))
432 				break;
433 		}
434 
435 		/*
436 		 * If there's an owner, wait for it to either
437 		 * release the lock or go to sleep.
438 		 */
439 		owner = ACCESS_ONCE(lock->owner);
440 		if (owner && !mutex_spin_on_owner(lock, owner))
441 			break;
442 
443 		if ((atomic_read(&lock->count) == 1) &&
444 		    (atomic_cmpxchg(&lock->count, 1, 0) == 1)) {
445 			lock_acquired(&lock->dep_map, ip);
446 			if (use_ww_ctx) {
447 				struct ww_mutex *ww;
448 				ww = container_of(lock, struct ww_mutex, base);
449 
450 				ww_mutex_set_context_fastpath(ww, ww_ctx);
451 			}
452 
453 			mutex_set_owner(lock);
454 			osq_unlock(&lock->osq);
455 			preempt_enable();
456 			return 0;
457 		}
458 
459 		/*
460 		 * When there's no owner, we might have preempted between the
461 		 * owner acquiring the lock and setting the owner field. If
462 		 * we're an RT task that will live-lock because we won't let
463 		 * the owner complete.
464 		 */
465 		if (!owner && (need_resched() || rt_task(task)))
466 			break;
467 
468 		/*
469 		 * The cpu_relax() call is a compiler barrier which forces
470 		 * everything in this loop to be re-loaded. We don't need
471 		 * memory barriers as we'll eventually observe the right
472 		 * values at the cost of a few extra spins.
473 		 */
474 		arch_mutex_cpu_relax();
475 	}
476 	osq_unlock(&lock->osq);
477 slowpath:
478 	/*
479 	 * If we fell out of the spin path because of need_resched(),
480 	 * reschedule now, before we try-lock the mutex. This avoids getting
481 	 * scheduled out right after we obtained the mutex.
482 	 */
483 	if (need_resched())
484 		schedule_preempt_disabled();
485 #endif
486 	spin_lock_mutex(&lock->wait_lock, flags);
487 
488 	/* once more, can we acquire the lock? */
489 	if (MUTEX_SHOW_NO_WAITER(lock) && (atomic_xchg(&lock->count, 0) == 1))
490 		goto skip_wait;
491 
492 	debug_mutex_lock_common(lock, &waiter);
493 	debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
494 
495 	/* add waiting tasks to the end of the waitqueue (FIFO): */
496 	list_add_tail(&waiter.list, &lock->wait_list);
497 	waiter.task = task;
498 
499 	lock_contended(&lock->dep_map, ip);
500 
501 	for (;;) {
502 		/*
503 		 * Lets try to take the lock again - this is needed even if
504 		 * we get here for the first time (shortly after failing to
505 		 * acquire the lock), to make sure that we get a wakeup once
506 		 * it's unlocked. Later on, if we sleep, this is the
507 		 * operation that gives us the lock. We xchg it to -1, so
508 		 * that when we release the lock, we properly wake up the
509 		 * other waiters:
510 		 */
511 		if (MUTEX_SHOW_NO_WAITER(lock) &&
512 		    (atomic_xchg(&lock->count, -1) == 1))
513 			break;
514 
515 		/*
516 		 * got a signal? (This code gets eliminated in the
517 		 * TASK_UNINTERRUPTIBLE case.)
518 		 */
519 		if (unlikely(signal_pending_state(state, task))) {
520 			ret = -EINTR;
521 			goto err;
522 		}
523 
524 		if (use_ww_ctx && ww_ctx->acquired > 0) {
525 			ret = __mutex_lock_check_stamp(lock, ww_ctx);
526 			if (ret)
527 				goto err;
528 		}
529 
530 		__set_task_state(task, state);
531 
532 		/* didn't get the lock, go to sleep: */
533 		spin_unlock_mutex(&lock->wait_lock, flags);
534 		schedule_preempt_disabled();
535 		spin_lock_mutex(&lock->wait_lock, flags);
536 	}
537 	mutex_remove_waiter(lock, &waiter, current_thread_info());
538 	/* set it to 0 if there are no waiters left: */
539 	if (likely(list_empty(&lock->wait_list)))
540 		atomic_set(&lock->count, 0);
541 	debug_mutex_free_waiter(&waiter);
542 
543 skip_wait:
544 	/* got the lock - cleanup and rejoice! */
545 	lock_acquired(&lock->dep_map, ip);
546 	mutex_set_owner(lock);
547 
548 	if (use_ww_ctx) {
549 		struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
550 		struct mutex_waiter *cur;
551 
552 		/*
553 		 * This branch gets optimized out for the common case,
554 		 * and is only important for ww_mutex_lock.
555 		 */
556 		ww_mutex_lock_acquired(ww, ww_ctx);
557 		ww->ctx = ww_ctx;
558 
559 		/*
560 		 * Give any possible sleeping processes the chance to wake up,
561 		 * so they can recheck if they have to back off.
562 		 */
563 		list_for_each_entry(cur, &lock->wait_list, list) {
564 			debug_mutex_wake_waiter(lock, cur);
565 			wake_up_process(cur->task);
566 		}
567 	}
568 
569 	spin_unlock_mutex(&lock->wait_lock, flags);
570 	preempt_enable();
571 	return 0;
572 
573 err:
574 	mutex_remove_waiter(lock, &waiter, task_thread_info(task));
575 	spin_unlock_mutex(&lock->wait_lock, flags);
576 	debug_mutex_free_waiter(&waiter);
577 	mutex_release(&lock->dep_map, 1, ip);
578 	preempt_enable();
579 	return ret;
580 }
581 
582 #ifdef CONFIG_DEBUG_LOCK_ALLOC
583 void __sched
584 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
585 {
586 	might_sleep();
587 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
588 			    subclass, NULL, _RET_IP_, NULL, 0);
589 }
590 
591 EXPORT_SYMBOL_GPL(mutex_lock_nested);
592 
593 void __sched
594 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
595 {
596 	might_sleep();
597 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
598 			    0, nest, _RET_IP_, NULL, 0);
599 }
600 
601 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
602 
603 int __sched
604 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
605 {
606 	might_sleep();
607 	return __mutex_lock_common(lock, TASK_KILLABLE,
608 				   subclass, NULL, _RET_IP_, NULL, 0);
609 }
610 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
611 
612 int __sched
613 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
614 {
615 	might_sleep();
616 	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
617 				   subclass, NULL, _RET_IP_, NULL, 0);
618 }
619 
620 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
621 
622 static inline int
623 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
624 {
625 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
626 	unsigned tmp;
627 
628 	if (ctx->deadlock_inject_countdown-- == 0) {
629 		tmp = ctx->deadlock_inject_interval;
630 		if (tmp > UINT_MAX/4)
631 			tmp = UINT_MAX;
632 		else
633 			tmp = tmp*2 + tmp + tmp/2;
634 
635 		ctx->deadlock_inject_interval = tmp;
636 		ctx->deadlock_inject_countdown = tmp;
637 		ctx->contending_lock = lock;
638 
639 		ww_mutex_unlock(lock);
640 
641 		return -EDEADLK;
642 	}
643 #endif
644 
645 	return 0;
646 }
647 
648 int __sched
649 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
650 {
651 	int ret;
652 
653 	might_sleep();
654 	ret =  __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
655 				   0, &ctx->dep_map, _RET_IP_, ctx, 1);
656 	if (!ret && ctx->acquired > 1)
657 		return ww_mutex_deadlock_injection(lock, ctx);
658 
659 	return ret;
660 }
661 EXPORT_SYMBOL_GPL(__ww_mutex_lock);
662 
663 int __sched
664 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
665 {
666 	int ret;
667 
668 	might_sleep();
669 	ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
670 				  0, &ctx->dep_map, _RET_IP_, ctx, 1);
671 
672 	if (!ret && ctx->acquired > 1)
673 		return ww_mutex_deadlock_injection(lock, ctx);
674 
675 	return ret;
676 }
677 EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
678 
679 #endif
680 
681 /*
682  * Release the lock, slowpath:
683  */
684 static inline void
685 __mutex_unlock_common_slowpath(atomic_t *lock_count, int nested)
686 {
687 	struct mutex *lock = container_of(lock_count, struct mutex, count);
688 	unsigned long flags;
689 
690 	/*
691 	 * some architectures leave the lock unlocked in the fastpath failure
692 	 * case, others need to leave it locked. In the later case we have to
693 	 * unlock it here
694 	 */
695 	if (__mutex_slowpath_needs_to_unlock())
696 		atomic_set(&lock->count, 1);
697 
698 	spin_lock_mutex(&lock->wait_lock, flags);
699 	mutex_release(&lock->dep_map, nested, _RET_IP_);
700 	debug_mutex_unlock(lock);
701 
702 	if (!list_empty(&lock->wait_list)) {
703 		/* get the first entry from the wait-list: */
704 		struct mutex_waiter *waiter =
705 				list_entry(lock->wait_list.next,
706 					   struct mutex_waiter, list);
707 
708 		debug_mutex_wake_waiter(lock, waiter);
709 
710 		wake_up_process(waiter->task);
711 	}
712 
713 	spin_unlock_mutex(&lock->wait_lock, flags);
714 }
715 
716 /*
717  * Release the lock, slowpath:
718  */
719 __visible void
720 __mutex_unlock_slowpath(atomic_t *lock_count)
721 {
722 	__mutex_unlock_common_slowpath(lock_count, 1);
723 }
724 
725 #ifndef CONFIG_DEBUG_LOCK_ALLOC
726 /*
727  * Here come the less common (and hence less performance-critical) APIs:
728  * mutex_lock_interruptible() and mutex_trylock().
729  */
730 static noinline int __sched
731 __mutex_lock_killable_slowpath(struct mutex *lock);
732 
733 static noinline int __sched
734 __mutex_lock_interruptible_slowpath(struct mutex *lock);
735 
736 /**
737  * mutex_lock_interruptible - acquire the mutex, interruptible
738  * @lock: the mutex to be acquired
739  *
740  * Lock the mutex like mutex_lock(), and return 0 if the mutex has
741  * been acquired or sleep until the mutex becomes available. If a
742  * signal arrives while waiting for the lock then this function
743  * returns -EINTR.
744  *
745  * This function is similar to (but not equivalent to) down_interruptible().
746  */
747 int __sched mutex_lock_interruptible(struct mutex *lock)
748 {
749 	int ret;
750 
751 	might_sleep();
752 	ret =  __mutex_fastpath_lock_retval(&lock->count);
753 	if (likely(!ret)) {
754 		mutex_set_owner(lock);
755 		return 0;
756 	} else
757 		return __mutex_lock_interruptible_slowpath(lock);
758 }
759 
760 EXPORT_SYMBOL(mutex_lock_interruptible);
761 
762 int __sched mutex_lock_killable(struct mutex *lock)
763 {
764 	int ret;
765 
766 	might_sleep();
767 	ret = __mutex_fastpath_lock_retval(&lock->count);
768 	if (likely(!ret)) {
769 		mutex_set_owner(lock);
770 		return 0;
771 	} else
772 		return __mutex_lock_killable_slowpath(lock);
773 }
774 EXPORT_SYMBOL(mutex_lock_killable);
775 
776 __visible void __sched
777 __mutex_lock_slowpath(atomic_t *lock_count)
778 {
779 	struct mutex *lock = container_of(lock_count, struct mutex, count);
780 
781 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
782 			    NULL, _RET_IP_, NULL, 0);
783 }
784 
785 static noinline int __sched
786 __mutex_lock_killable_slowpath(struct mutex *lock)
787 {
788 	return __mutex_lock_common(lock, TASK_KILLABLE, 0,
789 				   NULL, _RET_IP_, NULL, 0);
790 }
791 
792 static noinline int __sched
793 __mutex_lock_interruptible_slowpath(struct mutex *lock)
794 {
795 	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
796 				   NULL, _RET_IP_, NULL, 0);
797 }
798 
799 static noinline int __sched
800 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
801 {
802 	return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
803 				   NULL, _RET_IP_, ctx, 1);
804 }
805 
806 static noinline int __sched
807 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
808 					    struct ww_acquire_ctx *ctx)
809 {
810 	return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
811 				   NULL, _RET_IP_, ctx, 1);
812 }
813 
814 #endif
815 
816 /*
817  * Spinlock based trylock, we take the spinlock and check whether we
818  * can get the lock:
819  */
820 static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
821 {
822 	struct mutex *lock = container_of(lock_count, struct mutex, count);
823 	unsigned long flags;
824 	int prev;
825 
826 	spin_lock_mutex(&lock->wait_lock, flags);
827 
828 	prev = atomic_xchg(&lock->count, -1);
829 	if (likely(prev == 1)) {
830 		mutex_set_owner(lock);
831 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
832 	}
833 
834 	/* Set it back to 0 if there are no waiters: */
835 	if (likely(list_empty(&lock->wait_list)))
836 		atomic_set(&lock->count, 0);
837 
838 	spin_unlock_mutex(&lock->wait_lock, flags);
839 
840 	return prev == 1;
841 }
842 
843 /**
844  * mutex_trylock - try to acquire the mutex, without waiting
845  * @lock: the mutex to be acquired
846  *
847  * Try to acquire the mutex atomically. Returns 1 if the mutex
848  * has been acquired successfully, and 0 on contention.
849  *
850  * NOTE: this function follows the spin_trylock() convention, so
851  * it is negated from the down_trylock() return values! Be careful
852  * about this when converting semaphore users to mutexes.
853  *
854  * This function must not be used in interrupt context. The
855  * mutex must be released by the same task that acquired it.
856  */
857 int __sched mutex_trylock(struct mutex *lock)
858 {
859 	int ret;
860 
861 	ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
862 	if (ret)
863 		mutex_set_owner(lock);
864 
865 	return ret;
866 }
867 EXPORT_SYMBOL(mutex_trylock);
868 
869 #ifndef CONFIG_DEBUG_LOCK_ALLOC
870 int __sched
871 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
872 {
873 	int ret;
874 
875 	might_sleep();
876 
877 	ret = __mutex_fastpath_lock_retval(&lock->base.count);
878 
879 	if (likely(!ret)) {
880 		ww_mutex_set_context_fastpath(lock, ctx);
881 		mutex_set_owner(&lock->base);
882 	} else
883 		ret = __ww_mutex_lock_slowpath(lock, ctx);
884 	return ret;
885 }
886 EXPORT_SYMBOL(__ww_mutex_lock);
887 
888 int __sched
889 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
890 {
891 	int ret;
892 
893 	might_sleep();
894 
895 	ret = __mutex_fastpath_lock_retval(&lock->base.count);
896 
897 	if (likely(!ret)) {
898 		ww_mutex_set_context_fastpath(lock, ctx);
899 		mutex_set_owner(&lock->base);
900 	} else
901 		ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
902 	return ret;
903 }
904 EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
905 
906 #endif
907 
908 /**
909  * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
910  * @cnt: the atomic which we are to dec
911  * @lock: the mutex to return holding if we dec to 0
912  *
913  * return true and hold lock if we dec to 0, return false otherwise
914  */
915 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
916 {
917 	/* dec if we can't possibly hit 0 */
918 	if (atomic_add_unless(cnt, -1, 1))
919 		return 0;
920 	/* we might hit 0, so take the lock */
921 	mutex_lock(lock);
922 	if (!atomic_dec_and_test(cnt)) {
923 		/* when we actually did the dec, we didn't hit 0 */
924 		mutex_unlock(lock);
925 		return 0;
926 	}
927 	/* we hit 0, and we hold the lock */
928 	return 1;
929 }
930 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
931