xref: /openbmc/linux/kernel/locking/mutex.c (revision addee42a)
1 /*
2  * kernel/locking/mutex.c
3  *
4  * Mutexes: blocking mutual exclusion locks
5  *
6  * Started by Ingo Molnar:
7  *
8  *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9  *
10  * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11  * David Howells for suggestions and improvements.
12  *
13  *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14  *    from the -rt tree, where it was originally implemented for rtmutexes
15  *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16  *    and Sven Dietrich.
17  *
18  * Also see Documentation/locking/mutex-design.txt.
19  */
20 #include <linux/mutex.h>
21 #include <linux/ww_mutex.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/rt.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/sched/debug.h>
26 #include <linux/export.h>
27 #include <linux/spinlock.h>
28 #include <linux/interrupt.h>
29 #include <linux/debug_locks.h>
30 #include <linux/osq_lock.h>
31 
32 #ifdef CONFIG_DEBUG_MUTEXES
33 # include "mutex-debug.h"
34 #else
35 # include "mutex.h"
36 #endif
37 
38 void
39 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
40 {
41 	atomic_long_set(&lock->owner, 0);
42 	spin_lock_init(&lock->wait_lock);
43 	INIT_LIST_HEAD(&lock->wait_list);
44 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
45 	osq_lock_init(&lock->osq);
46 #endif
47 
48 	debug_mutex_init(lock, name, key);
49 }
50 EXPORT_SYMBOL(__mutex_init);
51 
52 /*
53  * @owner: contains: 'struct task_struct *' to the current lock owner,
54  * NULL means not owned. Since task_struct pointers are aligned at
55  * at least L1_CACHE_BYTES, we have low bits to store extra state.
56  *
57  * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
58  * Bit1 indicates unlock needs to hand the lock to the top-waiter
59  * Bit2 indicates handoff has been done and we're waiting for pickup.
60  */
61 #define MUTEX_FLAG_WAITERS	0x01
62 #define MUTEX_FLAG_HANDOFF	0x02
63 #define MUTEX_FLAG_PICKUP	0x04
64 
65 #define MUTEX_FLAGS		0x07
66 
67 static inline struct task_struct *__owner_task(unsigned long owner)
68 {
69 	return (struct task_struct *)(owner & ~MUTEX_FLAGS);
70 }
71 
72 static inline unsigned long __owner_flags(unsigned long owner)
73 {
74 	return owner & MUTEX_FLAGS;
75 }
76 
77 /*
78  * Trylock variant that retuns the owning task on failure.
79  */
80 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
81 {
82 	unsigned long owner, curr = (unsigned long)current;
83 
84 	owner = atomic_long_read(&lock->owner);
85 	for (;;) { /* must loop, can race against a flag */
86 		unsigned long old, flags = __owner_flags(owner);
87 		unsigned long task = owner & ~MUTEX_FLAGS;
88 
89 		if (task) {
90 			if (likely(task != curr))
91 				break;
92 
93 			if (likely(!(flags & MUTEX_FLAG_PICKUP)))
94 				break;
95 
96 			flags &= ~MUTEX_FLAG_PICKUP;
97 		} else {
98 #ifdef CONFIG_DEBUG_MUTEXES
99 			DEBUG_LOCKS_WARN_ON(flags & MUTEX_FLAG_PICKUP);
100 #endif
101 		}
102 
103 		/*
104 		 * We set the HANDOFF bit, we must make sure it doesn't live
105 		 * past the point where we acquire it. This would be possible
106 		 * if we (accidentally) set the bit on an unlocked mutex.
107 		 */
108 		flags &= ~MUTEX_FLAG_HANDOFF;
109 
110 		old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags);
111 		if (old == owner)
112 			return NULL;
113 
114 		owner = old;
115 	}
116 
117 	return __owner_task(owner);
118 }
119 
120 /*
121  * Actual trylock that will work on any unlocked state.
122  */
123 static inline bool __mutex_trylock(struct mutex *lock)
124 {
125 	return !__mutex_trylock_or_owner(lock);
126 }
127 
128 #ifndef CONFIG_DEBUG_LOCK_ALLOC
129 /*
130  * Lockdep annotations are contained to the slow paths for simplicity.
131  * There is nothing that would stop spreading the lockdep annotations outwards
132  * except more code.
133  */
134 
135 /*
136  * Optimistic trylock that only works in the uncontended case. Make sure to
137  * follow with a __mutex_trylock() before failing.
138  */
139 static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
140 {
141 	unsigned long curr = (unsigned long)current;
142 
143 	if (!atomic_long_cmpxchg_acquire(&lock->owner, 0UL, curr))
144 		return true;
145 
146 	return false;
147 }
148 
149 static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
150 {
151 	unsigned long curr = (unsigned long)current;
152 
153 	if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr)
154 		return true;
155 
156 	return false;
157 }
158 #endif
159 
160 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
161 {
162 	atomic_long_or(flag, &lock->owner);
163 }
164 
165 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
166 {
167 	atomic_long_andnot(flag, &lock->owner);
168 }
169 
170 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
171 {
172 	return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
173 }
174 
175 /*
176  * Give up ownership to a specific task, when @task = NULL, this is equivalent
177  * to a regular unlock. Sets PICKUP on a handoff, clears HANDOF, preserves
178  * WAITERS. Provides RELEASE semantics like a regular unlock, the
179  * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
180  */
181 static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
182 {
183 	unsigned long owner = atomic_long_read(&lock->owner);
184 
185 	for (;;) {
186 		unsigned long old, new;
187 
188 #ifdef CONFIG_DEBUG_MUTEXES
189 		DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
190 		DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
191 #endif
192 
193 		new = (owner & MUTEX_FLAG_WAITERS);
194 		new |= (unsigned long)task;
195 		if (task)
196 			new |= MUTEX_FLAG_PICKUP;
197 
198 		old = atomic_long_cmpxchg_release(&lock->owner, owner, new);
199 		if (old == owner)
200 			break;
201 
202 		owner = old;
203 	}
204 }
205 
206 #ifndef CONFIG_DEBUG_LOCK_ALLOC
207 /*
208  * We split the mutex lock/unlock logic into separate fastpath and
209  * slowpath functions, to reduce the register pressure on the fastpath.
210  * We also put the fastpath first in the kernel image, to make sure the
211  * branch is predicted by the CPU as default-untaken.
212  */
213 static void __sched __mutex_lock_slowpath(struct mutex *lock);
214 
215 /**
216  * mutex_lock - acquire the mutex
217  * @lock: the mutex to be acquired
218  *
219  * Lock the mutex exclusively for this task. If the mutex is not
220  * available right now, it will sleep until it can get it.
221  *
222  * The mutex must later on be released by the same task that
223  * acquired it. Recursive locking is not allowed. The task
224  * may not exit without first unlocking the mutex. Also, kernel
225  * memory where the mutex resides must not be freed with
226  * the mutex still locked. The mutex must first be initialized
227  * (or statically defined) before it can be locked. memset()-ing
228  * the mutex to 0 is not allowed.
229  *
230  * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
231  * checks that will enforce the restrictions and will also do
232  * deadlock debugging)
233  *
234  * This function is similar to (but not equivalent to) down().
235  */
236 void __sched mutex_lock(struct mutex *lock)
237 {
238 	might_sleep();
239 
240 	if (!__mutex_trylock_fast(lock))
241 		__mutex_lock_slowpath(lock);
242 }
243 EXPORT_SYMBOL(mutex_lock);
244 #endif
245 
246 static __always_inline void
247 ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
248 {
249 #ifdef CONFIG_DEBUG_MUTEXES
250 	/*
251 	 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
252 	 * but released with a normal mutex_unlock in this call.
253 	 *
254 	 * This should never happen, always use ww_mutex_unlock.
255 	 */
256 	DEBUG_LOCKS_WARN_ON(ww->ctx);
257 
258 	/*
259 	 * Not quite done after calling ww_acquire_done() ?
260 	 */
261 	DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
262 
263 	if (ww_ctx->contending_lock) {
264 		/*
265 		 * After -EDEADLK you tried to
266 		 * acquire a different ww_mutex? Bad!
267 		 */
268 		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
269 
270 		/*
271 		 * You called ww_mutex_lock after receiving -EDEADLK,
272 		 * but 'forgot' to unlock everything else first?
273 		 */
274 		DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
275 		ww_ctx->contending_lock = NULL;
276 	}
277 
278 	/*
279 	 * Naughty, using a different class will lead to undefined behavior!
280 	 */
281 	DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
282 #endif
283 	ww_ctx->acquired++;
284 }
285 
286 static inline bool __sched
287 __ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b)
288 {
289 	return a->stamp - b->stamp <= LONG_MAX &&
290 	       (a->stamp != b->stamp || a > b);
291 }
292 
293 /*
294  * Wake up any waiters that may have to back off when the lock is held by the
295  * given context.
296  *
297  * Due to the invariants on the wait list, this can only affect the first
298  * waiter with a context.
299  *
300  * The current task must not be on the wait list.
301  */
302 static void __sched
303 __ww_mutex_wakeup_for_backoff(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
304 {
305 	struct mutex_waiter *cur;
306 
307 	lockdep_assert_held(&lock->wait_lock);
308 
309 	list_for_each_entry(cur, &lock->wait_list, list) {
310 		if (!cur->ww_ctx)
311 			continue;
312 
313 		if (cur->ww_ctx->acquired > 0 &&
314 		    __ww_ctx_stamp_after(cur->ww_ctx, ww_ctx)) {
315 			debug_mutex_wake_waiter(lock, cur);
316 			wake_up_process(cur->task);
317 		}
318 
319 		break;
320 	}
321 }
322 
323 /*
324  * After acquiring lock with fastpath or when we lost out in contested
325  * slowpath, set ctx and wake up any waiters so they can recheck.
326  */
327 static __always_inline void
328 ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
329 {
330 	ww_mutex_lock_acquired(lock, ctx);
331 
332 	lock->ctx = ctx;
333 
334 	/*
335 	 * The lock->ctx update should be visible on all cores before
336 	 * the atomic read is done, otherwise contended waiters might be
337 	 * missed. The contended waiters will either see ww_ctx == NULL
338 	 * and keep spinning, or it will acquire wait_lock, add itself
339 	 * to waiter list and sleep.
340 	 */
341 	smp_mb(); /* ^^^ */
342 
343 	/*
344 	 * Check if lock is contended, if not there is nobody to wake up
345 	 */
346 	if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
347 		return;
348 
349 	/*
350 	 * Uh oh, we raced in fastpath, wake up everyone in this case,
351 	 * so they can see the new lock->ctx.
352 	 */
353 	spin_lock(&lock->base.wait_lock);
354 	__ww_mutex_wakeup_for_backoff(&lock->base, ctx);
355 	spin_unlock(&lock->base.wait_lock);
356 }
357 
358 /*
359  * After acquiring lock in the slowpath set ctx.
360  *
361  * Unlike for the fast path, the caller ensures that waiters are woken up where
362  * necessary.
363  *
364  * Callers must hold the mutex wait_lock.
365  */
366 static __always_inline void
367 ww_mutex_set_context_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
368 {
369 	ww_mutex_lock_acquired(lock, ctx);
370 	lock->ctx = ctx;
371 }
372 
373 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
374 
375 static inline
376 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
377 			    struct mutex_waiter *waiter)
378 {
379 	struct ww_mutex *ww;
380 
381 	ww = container_of(lock, struct ww_mutex, base);
382 
383 	/*
384 	 * If ww->ctx is set the contents are undefined, only
385 	 * by acquiring wait_lock there is a guarantee that
386 	 * they are not invalid when reading.
387 	 *
388 	 * As such, when deadlock detection needs to be
389 	 * performed the optimistic spinning cannot be done.
390 	 *
391 	 * Check this in every inner iteration because we may
392 	 * be racing against another thread's ww_mutex_lock.
393 	 */
394 	if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
395 		return false;
396 
397 	/*
398 	 * If we aren't on the wait list yet, cancel the spin
399 	 * if there are waiters. We want  to avoid stealing the
400 	 * lock from a waiter with an earlier stamp, since the
401 	 * other thread may already own a lock that we also
402 	 * need.
403 	 */
404 	if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
405 		return false;
406 
407 	/*
408 	 * Similarly, stop spinning if we are no longer the
409 	 * first waiter.
410 	 */
411 	if (waiter && !__mutex_waiter_is_first(lock, waiter))
412 		return false;
413 
414 	return true;
415 }
416 
417 /*
418  * Look out! "owner" is an entirely speculative pointer access and not
419  * reliable.
420  *
421  * "noinline" so that this function shows up on perf profiles.
422  */
423 static noinline
424 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
425 			 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
426 {
427 	bool ret = true;
428 
429 	rcu_read_lock();
430 	while (__mutex_owner(lock) == owner) {
431 		/*
432 		 * Ensure we emit the owner->on_cpu, dereference _after_
433 		 * checking lock->owner still matches owner. If that fails,
434 		 * owner might point to freed memory. If it still matches,
435 		 * the rcu_read_lock() ensures the memory stays valid.
436 		 */
437 		barrier();
438 
439 		/*
440 		 * Use vcpu_is_preempted to detect lock holder preemption issue.
441 		 */
442 		if (!owner->on_cpu || need_resched() ||
443 				vcpu_is_preempted(task_cpu(owner))) {
444 			ret = false;
445 			break;
446 		}
447 
448 		if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
449 			ret = false;
450 			break;
451 		}
452 
453 		cpu_relax();
454 	}
455 	rcu_read_unlock();
456 
457 	return ret;
458 }
459 
460 /*
461  * Initial check for entering the mutex spinning loop
462  */
463 static inline int mutex_can_spin_on_owner(struct mutex *lock)
464 {
465 	struct task_struct *owner;
466 	int retval = 1;
467 
468 	if (need_resched())
469 		return 0;
470 
471 	rcu_read_lock();
472 	owner = __mutex_owner(lock);
473 
474 	/*
475 	 * As lock holder preemption issue, we both skip spinning if task is not
476 	 * on cpu or its cpu is preempted
477 	 */
478 	if (owner)
479 		retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
480 	rcu_read_unlock();
481 
482 	/*
483 	 * If lock->owner is not set, the mutex has been released. Return true
484 	 * such that we'll trylock in the spin path, which is a faster option
485 	 * than the blocking slow path.
486 	 */
487 	return retval;
488 }
489 
490 /*
491  * Optimistic spinning.
492  *
493  * We try to spin for acquisition when we find that the lock owner
494  * is currently running on a (different) CPU and while we don't
495  * need to reschedule. The rationale is that if the lock owner is
496  * running, it is likely to release the lock soon.
497  *
498  * The mutex spinners are queued up using MCS lock so that only one
499  * spinner can compete for the mutex. However, if mutex spinning isn't
500  * going to happen, there is no point in going through the lock/unlock
501  * overhead.
502  *
503  * Returns true when the lock was taken, otherwise false, indicating
504  * that we need to jump to the slowpath and sleep.
505  *
506  * The waiter flag is set to true if the spinner is a waiter in the wait
507  * queue. The waiter-spinner will spin on the lock directly and concurrently
508  * with the spinner at the head of the OSQ, if present, until the owner is
509  * changed to itself.
510  */
511 static __always_inline bool
512 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
513 		      const bool use_ww_ctx, struct mutex_waiter *waiter)
514 {
515 	if (!waiter) {
516 		/*
517 		 * The purpose of the mutex_can_spin_on_owner() function is
518 		 * to eliminate the overhead of osq_lock() and osq_unlock()
519 		 * in case spinning isn't possible. As a waiter-spinner
520 		 * is not going to take OSQ lock anyway, there is no need
521 		 * to call mutex_can_spin_on_owner().
522 		 */
523 		if (!mutex_can_spin_on_owner(lock))
524 			goto fail;
525 
526 		/*
527 		 * In order to avoid a stampede of mutex spinners trying to
528 		 * acquire the mutex all at once, the spinners need to take a
529 		 * MCS (queued) lock first before spinning on the owner field.
530 		 */
531 		if (!osq_lock(&lock->osq))
532 			goto fail;
533 	}
534 
535 	for (;;) {
536 		struct task_struct *owner;
537 
538 		/* Try to acquire the mutex... */
539 		owner = __mutex_trylock_or_owner(lock);
540 		if (!owner)
541 			break;
542 
543 		/*
544 		 * There's an owner, wait for it to either
545 		 * release the lock or go to sleep.
546 		 */
547 		if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
548 			goto fail_unlock;
549 
550 		/*
551 		 * The cpu_relax() call is a compiler barrier which forces
552 		 * everything in this loop to be re-loaded. We don't need
553 		 * memory barriers as we'll eventually observe the right
554 		 * values at the cost of a few extra spins.
555 		 */
556 		cpu_relax();
557 	}
558 
559 	if (!waiter)
560 		osq_unlock(&lock->osq);
561 
562 	return true;
563 
564 
565 fail_unlock:
566 	if (!waiter)
567 		osq_unlock(&lock->osq);
568 
569 fail:
570 	/*
571 	 * If we fell out of the spin path because of need_resched(),
572 	 * reschedule now, before we try-lock the mutex. This avoids getting
573 	 * scheduled out right after we obtained the mutex.
574 	 */
575 	if (need_resched()) {
576 		/*
577 		 * We _should_ have TASK_RUNNING here, but just in case
578 		 * we do not, make it so, otherwise we might get stuck.
579 		 */
580 		__set_current_state(TASK_RUNNING);
581 		schedule_preempt_disabled();
582 	}
583 
584 	return false;
585 }
586 #else
587 static __always_inline bool
588 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
589 		      const bool use_ww_ctx, struct mutex_waiter *waiter)
590 {
591 	return false;
592 }
593 #endif
594 
595 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
596 
597 /**
598  * mutex_unlock - release the mutex
599  * @lock: the mutex to be released
600  *
601  * Unlock a mutex that has been locked by this task previously.
602  *
603  * This function must not be used in interrupt context. Unlocking
604  * of a not locked mutex is not allowed.
605  *
606  * This function is similar to (but not equivalent to) up().
607  */
608 void __sched mutex_unlock(struct mutex *lock)
609 {
610 #ifndef CONFIG_DEBUG_LOCK_ALLOC
611 	if (__mutex_unlock_fast(lock))
612 		return;
613 #endif
614 	__mutex_unlock_slowpath(lock, _RET_IP_);
615 }
616 EXPORT_SYMBOL(mutex_unlock);
617 
618 /**
619  * ww_mutex_unlock - release the w/w mutex
620  * @lock: the mutex to be released
621  *
622  * Unlock a mutex that has been locked by this task previously with any of the
623  * ww_mutex_lock* functions (with or without an acquire context). It is
624  * forbidden to release the locks after releasing the acquire context.
625  *
626  * This function must not be used in interrupt context. Unlocking
627  * of a unlocked mutex is not allowed.
628  */
629 void __sched ww_mutex_unlock(struct ww_mutex *lock)
630 {
631 	/*
632 	 * The unlocking fastpath is the 0->1 transition from 'locked'
633 	 * into 'unlocked' state:
634 	 */
635 	if (lock->ctx) {
636 #ifdef CONFIG_DEBUG_MUTEXES
637 		DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
638 #endif
639 		if (lock->ctx->acquired > 0)
640 			lock->ctx->acquired--;
641 		lock->ctx = NULL;
642 	}
643 
644 	mutex_unlock(&lock->base);
645 }
646 EXPORT_SYMBOL(ww_mutex_unlock);
647 
648 static inline int __sched
649 __ww_mutex_lock_check_stamp(struct mutex *lock, struct mutex_waiter *waiter,
650 			    struct ww_acquire_ctx *ctx)
651 {
652 	struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
653 	struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
654 	struct mutex_waiter *cur;
655 
656 	if (hold_ctx && __ww_ctx_stamp_after(ctx, hold_ctx))
657 		goto deadlock;
658 
659 	/*
660 	 * If there is a waiter in front of us that has a context, then its
661 	 * stamp is earlier than ours and we must back off.
662 	 */
663 	cur = waiter;
664 	list_for_each_entry_continue_reverse(cur, &lock->wait_list, list) {
665 		if (cur->ww_ctx)
666 			goto deadlock;
667 	}
668 
669 	return 0;
670 
671 deadlock:
672 #ifdef CONFIG_DEBUG_MUTEXES
673 	DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
674 	ctx->contending_lock = ww;
675 #endif
676 	return -EDEADLK;
677 }
678 
679 static inline int __sched
680 __ww_mutex_add_waiter(struct mutex_waiter *waiter,
681 		      struct mutex *lock,
682 		      struct ww_acquire_ctx *ww_ctx)
683 {
684 	struct mutex_waiter *cur;
685 	struct list_head *pos;
686 
687 	if (!ww_ctx) {
688 		list_add_tail(&waiter->list, &lock->wait_list);
689 		return 0;
690 	}
691 
692 	/*
693 	 * Add the waiter before the first waiter with a higher stamp.
694 	 * Waiters without a context are skipped to avoid starving
695 	 * them.
696 	 */
697 	pos = &lock->wait_list;
698 	list_for_each_entry_reverse(cur, &lock->wait_list, list) {
699 		if (!cur->ww_ctx)
700 			continue;
701 
702 		if (__ww_ctx_stamp_after(ww_ctx, cur->ww_ctx)) {
703 			/* Back off immediately if necessary. */
704 			if (ww_ctx->acquired > 0) {
705 #ifdef CONFIG_DEBUG_MUTEXES
706 				struct ww_mutex *ww;
707 
708 				ww = container_of(lock, struct ww_mutex, base);
709 				DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock);
710 				ww_ctx->contending_lock = ww;
711 #endif
712 				return -EDEADLK;
713 			}
714 
715 			break;
716 		}
717 
718 		pos = &cur->list;
719 
720 		/*
721 		 * Wake up the waiter so that it gets a chance to back
722 		 * off.
723 		 */
724 		if (cur->ww_ctx->acquired > 0) {
725 			debug_mutex_wake_waiter(lock, cur);
726 			wake_up_process(cur->task);
727 		}
728 	}
729 
730 	list_add_tail(&waiter->list, pos);
731 	return 0;
732 }
733 
734 /*
735  * Lock a mutex (possibly interruptible), slowpath:
736  */
737 static __always_inline int __sched
738 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
739 		    struct lockdep_map *nest_lock, unsigned long ip,
740 		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
741 {
742 	struct mutex_waiter waiter;
743 	bool first = false;
744 	struct ww_mutex *ww;
745 	int ret;
746 
747 	might_sleep();
748 
749 	ww = container_of(lock, struct ww_mutex, base);
750 	if (use_ww_ctx && ww_ctx) {
751 		if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
752 			return -EALREADY;
753 	}
754 
755 	preempt_disable();
756 	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
757 
758 	if (__mutex_trylock(lock) ||
759 	    mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, NULL)) {
760 		/* got the lock, yay! */
761 		lock_acquired(&lock->dep_map, ip);
762 		if (use_ww_ctx && ww_ctx)
763 			ww_mutex_set_context_fastpath(ww, ww_ctx);
764 		preempt_enable();
765 		return 0;
766 	}
767 
768 	spin_lock(&lock->wait_lock);
769 	/*
770 	 * After waiting to acquire the wait_lock, try again.
771 	 */
772 	if (__mutex_trylock(lock)) {
773 		if (use_ww_ctx && ww_ctx)
774 			__ww_mutex_wakeup_for_backoff(lock, ww_ctx);
775 
776 		goto skip_wait;
777 	}
778 
779 	debug_mutex_lock_common(lock, &waiter);
780 	debug_mutex_add_waiter(lock, &waiter, current);
781 
782 	lock_contended(&lock->dep_map, ip);
783 
784 	if (!use_ww_ctx) {
785 		/* add waiting tasks to the end of the waitqueue (FIFO): */
786 		list_add_tail(&waiter.list, &lock->wait_list);
787 
788 #ifdef CONFIG_DEBUG_MUTEXES
789 		waiter.ww_ctx = MUTEX_POISON_WW_CTX;
790 #endif
791 	} else {
792 		/* Add in stamp order, waking up waiters that must back off. */
793 		ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx);
794 		if (ret)
795 			goto err_early_backoff;
796 
797 		waiter.ww_ctx = ww_ctx;
798 	}
799 
800 	waiter.task = current;
801 
802 	if (__mutex_waiter_is_first(lock, &waiter))
803 		__mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
804 
805 	set_current_state(state);
806 	for (;;) {
807 		/*
808 		 * Once we hold wait_lock, we're serialized against
809 		 * mutex_unlock() handing the lock off to us, do a trylock
810 		 * before testing the error conditions to make sure we pick up
811 		 * the handoff.
812 		 */
813 		if (__mutex_trylock(lock))
814 			goto acquired;
815 
816 		/*
817 		 * Check for signals and wound conditions while holding
818 		 * wait_lock. This ensures the lock cancellation is ordered
819 		 * against mutex_unlock() and wake-ups do not go missing.
820 		 */
821 		if (unlikely(signal_pending_state(state, current))) {
822 			ret = -EINTR;
823 			goto err;
824 		}
825 
826 		if (use_ww_ctx && ww_ctx && ww_ctx->acquired > 0) {
827 			ret = __ww_mutex_lock_check_stamp(lock, &waiter, ww_ctx);
828 			if (ret)
829 				goto err;
830 		}
831 
832 		spin_unlock(&lock->wait_lock);
833 		schedule_preempt_disabled();
834 
835 		/*
836 		 * ww_mutex needs to always recheck its position since its waiter
837 		 * list is not FIFO ordered.
838 		 */
839 		if ((use_ww_ctx && ww_ctx) || !first) {
840 			first = __mutex_waiter_is_first(lock, &waiter);
841 			if (first)
842 				__mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
843 		}
844 
845 		set_current_state(state);
846 		/*
847 		 * Here we order against unlock; we must either see it change
848 		 * state back to RUNNING and fall through the next schedule(),
849 		 * or we must see its unlock and acquire.
850 		 */
851 		if (__mutex_trylock(lock) ||
852 		    (first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, &waiter)))
853 			break;
854 
855 		spin_lock(&lock->wait_lock);
856 	}
857 	spin_lock(&lock->wait_lock);
858 acquired:
859 	__set_current_state(TASK_RUNNING);
860 
861 	mutex_remove_waiter(lock, &waiter, current);
862 	if (likely(list_empty(&lock->wait_list)))
863 		__mutex_clear_flag(lock, MUTEX_FLAGS);
864 
865 	debug_mutex_free_waiter(&waiter);
866 
867 skip_wait:
868 	/* got the lock - cleanup and rejoice! */
869 	lock_acquired(&lock->dep_map, ip);
870 
871 	if (use_ww_ctx && ww_ctx)
872 		ww_mutex_set_context_slowpath(ww, ww_ctx);
873 
874 	spin_unlock(&lock->wait_lock);
875 	preempt_enable();
876 	return 0;
877 
878 err:
879 	__set_current_state(TASK_RUNNING);
880 	mutex_remove_waiter(lock, &waiter, current);
881 err_early_backoff:
882 	spin_unlock(&lock->wait_lock);
883 	debug_mutex_free_waiter(&waiter);
884 	mutex_release(&lock->dep_map, 1, ip);
885 	preempt_enable();
886 	return ret;
887 }
888 
889 static int __sched
890 __mutex_lock(struct mutex *lock, long state, unsigned int subclass,
891 	     struct lockdep_map *nest_lock, unsigned long ip)
892 {
893 	return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
894 }
895 
896 static int __sched
897 __ww_mutex_lock(struct mutex *lock, long state, unsigned int subclass,
898 		struct lockdep_map *nest_lock, unsigned long ip,
899 		struct ww_acquire_ctx *ww_ctx)
900 {
901 	return __mutex_lock_common(lock, state, subclass, nest_lock, ip, ww_ctx, true);
902 }
903 
904 #ifdef CONFIG_DEBUG_LOCK_ALLOC
905 void __sched
906 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
907 {
908 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
909 }
910 
911 EXPORT_SYMBOL_GPL(mutex_lock_nested);
912 
913 void __sched
914 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
915 {
916 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
917 }
918 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
919 
920 int __sched
921 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
922 {
923 	return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
924 }
925 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
926 
927 int __sched
928 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
929 {
930 	return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
931 }
932 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
933 
934 void __sched
935 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
936 {
937 	int token;
938 
939 	might_sleep();
940 
941 	token = io_schedule_prepare();
942 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
943 			    subclass, NULL, _RET_IP_, NULL, 0);
944 	io_schedule_finish(token);
945 }
946 EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
947 
948 static inline int
949 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
950 {
951 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
952 	unsigned tmp;
953 
954 	if (ctx->deadlock_inject_countdown-- == 0) {
955 		tmp = ctx->deadlock_inject_interval;
956 		if (tmp > UINT_MAX/4)
957 			tmp = UINT_MAX;
958 		else
959 			tmp = tmp*2 + tmp + tmp/2;
960 
961 		ctx->deadlock_inject_interval = tmp;
962 		ctx->deadlock_inject_countdown = tmp;
963 		ctx->contending_lock = lock;
964 
965 		ww_mutex_unlock(lock);
966 
967 		return -EDEADLK;
968 	}
969 #endif
970 
971 	return 0;
972 }
973 
974 int __sched
975 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
976 {
977 	int ret;
978 
979 	might_sleep();
980 	ret =  __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
981 			       0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
982 			       ctx);
983 	if (!ret && ctx && ctx->acquired > 1)
984 		return ww_mutex_deadlock_injection(lock, ctx);
985 
986 	return ret;
987 }
988 EXPORT_SYMBOL_GPL(ww_mutex_lock);
989 
990 int __sched
991 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
992 {
993 	int ret;
994 
995 	might_sleep();
996 	ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
997 			      0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
998 			      ctx);
999 
1000 	if (!ret && ctx && ctx->acquired > 1)
1001 		return ww_mutex_deadlock_injection(lock, ctx);
1002 
1003 	return ret;
1004 }
1005 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
1006 
1007 #endif
1008 
1009 /*
1010  * Release the lock, slowpath:
1011  */
1012 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
1013 {
1014 	struct task_struct *next = NULL;
1015 	DEFINE_WAKE_Q(wake_q);
1016 	unsigned long owner;
1017 
1018 	mutex_release(&lock->dep_map, 1, ip);
1019 
1020 	/*
1021 	 * Release the lock before (potentially) taking the spinlock such that
1022 	 * other contenders can get on with things ASAP.
1023 	 *
1024 	 * Except when HANDOFF, in that case we must not clear the owner field,
1025 	 * but instead set it to the top waiter.
1026 	 */
1027 	owner = atomic_long_read(&lock->owner);
1028 	for (;;) {
1029 		unsigned long old;
1030 
1031 #ifdef CONFIG_DEBUG_MUTEXES
1032 		DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
1033 		DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
1034 #endif
1035 
1036 		if (owner & MUTEX_FLAG_HANDOFF)
1037 			break;
1038 
1039 		old = atomic_long_cmpxchg_release(&lock->owner, owner,
1040 						  __owner_flags(owner));
1041 		if (old == owner) {
1042 			if (owner & MUTEX_FLAG_WAITERS)
1043 				break;
1044 
1045 			return;
1046 		}
1047 
1048 		owner = old;
1049 	}
1050 
1051 	spin_lock(&lock->wait_lock);
1052 	debug_mutex_unlock(lock);
1053 	if (!list_empty(&lock->wait_list)) {
1054 		/* get the first entry from the wait-list: */
1055 		struct mutex_waiter *waiter =
1056 			list_first_entry(&lock->wait_list,
1057 					 struct mutex_waiter, list);
1058 
1059 		next = waiter->task;
1060 
1061 		debug_mutex_wake_waiter(lock, waiter);
1062 		wake_q_add(&wake_q, next);
1063 	}
1064 
1065 	if (owner & MUTEX_FLAG_HANDOFF)
1066 		__mutex_handoff(lock, next);
1067 
1068 	spin_unlock(&lock->wait_lock);
1069 
1070 	wake_up_q(&wake_q);
1071 }
1072 
1073 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1074 /*
1075  * Here come the less common (and hence less performance-critical) APIs:
1076  * mutex_lock_interruptible() and mutex_trylock().
1077  */
1078 static noinline int __sched
1079 __mutex_lock_killable_slowpath(struct mutex *lock);
1080 
1081 static noinline int __sched
1082 __mutex_lock_interruptible_slowpath(struct mutex *lock);
1083 
1084 /**
1085  * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals.
1086  * @lock: The mutex to be acquired.
1087  *
1088  * Lock the mutex like mutex_lock().  If a signal is delivered while the
1089  * process is sleeping, this function will return without acquiring the
1090  * mutex.
1091  *
1092  * Context: Process context.
1093  * Return: 0 if the lock was successfully acquired or %-EINTR if a
1094  * signal arrived.
1095  */
1096 int __sched mutex_lock_interruptible(struct mutex *lock)
1097 {
1098 	might_sleep();
1099 
1100 	if (__mutex_trylock_fast(lock))
1101 		return 0;
1102 
1103 	return __mutex_lock_interruptible_slowpath(lock);
1104 }
1105 
1106 EXPORT_SYMBOL(mutex_lock_interruptible);
1107 
1108 /**
1109  * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals.
1110  * @lock: The mutex to be acquired.
1111  *
1112  * Lock the mutex like mutex_lock().  If a signal which will be fatal to
1113  * the current process is delivered while the process is sleeping, this
1114  * function will return without acquiring the mutex.
1115  *
1116  * Context: Process context.
1117  * Return: 0 if the lock was successfully acquired or %-EINTR if a
1118  * fatal signal arrived.
1119  */
1120 int __sched mutex_lock_killable(struct mutex *lock)
1121 {
1122 	might_sleep();
1123 
1124 	if (__mutex_trylock_fast(lock))
1125 		return 0;
1126 
1127 	return __mutex_lock_killable_slowpath(lock);
1128 }
1129 EXPORT_SYMBOL(mutex_lock_killable);
1130 
1131 /**
1132  * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O
1133  * @lock: The mutex to be acquired.
1134  *
1135  * Lock the mutex like mutex_lock().  While the task is waiting for this
1136  * mutex, it will be accounted as being in the IO wait state by the
1137  * scheduler.
1138  *
1139  * Context: Process context.
1140  */
1141 void __sched mutex_lock_io(struct mutex *lock)
1142 {
1143 	int token;
1144 
1145 	token = io_schedule_prepare();
1146 	mutex_lock(lock);
1147 	io_schedule_finish(token);
1148 }
1149 EXPORT_SYMBOL_GPL(mutex_lock_io);
1150 
1151 static noinline void __sched
1152 __mutex_lock_slowpath(struct mutex *lock)
1153 {
1154 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
1155 }
1156 
1157 static noinline int __sched
1158 __mutex_lock_killable_slowpath(struct mutex *lock)
1159 {
1160 	return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
1161 }
1162 
1163 static noinline int __sched
1164 __mutex_lock_interruptible_slowpath(struct mutex *lock)
1165 {
1166 	return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
1167 }
1168 
1169 static noinline int __sched
1170 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1171 {
1172 	return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, NULL,
1173 			       _RET_IP_, ctx);
1174 }
1175 
1176 static noinline int __sched
1177 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1178 					    struct ww_acquire_ctx *ctx)
1179 {
1180 	return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, NULL,
1181 			       _RET_IP_, ctx);
1182 }
1183 
1184 #endif
1185 
1186 /**
1187  * mutex_trylock - try to acquire the mutex, without waiting
1188  * @lock: the mutex to be acquired
1189  *
1190  * Try to acquire the mutex atomically. Returns 1 if the mutex
1191  * has been acquired successfully, and 0 on contention.
1192  *
1193  * NOTE: this function follows the spin_trylock() convention, so
1194  * it is negated from the down_trylock() return values! Be careful
1195  * about this when converting semaphore users to mutexes.
1196  *
1197  * This function must not be used in interrupt context. The
1198  * mutex must be released by the same task that acquired it.
1199  */
1200 int __sched mutex_trylock(struct mutex *lock)
1201 {
1202 	bool locked = __mutex_trylock(lock);
1203 
1204 	if (locked)
1205 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1206 
1207 	return locked;
1208 }
1209 EXPORT_SYMBOL(mutex_trylock);
1210 
1211 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1212 int __sched
1213 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1214 {
1215 	might_sleep();
1216 
1217 	if (__mutex_trylock_fast(&lock->base)) {
1218 		if (ctx)
1219 			ww_mutex_set_context_fastpath(lock, ctx);
1220 		return 0;
1221 	}
1222 
1223 	return __ww_mutex_lock_slowpath(lock, ctx);
1224 }
1225 EXPORT_SYMBOL(ww_mutex_lock);
1226 
1227 int __sched
1228 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1229 {
1230 	might_sleep();
1231 
1232 	if (__mutex_trylock_fast(&lock->base)) {
1233 		if (ctx)
1234 			ww_mutex_set_context_fastpath(lock, ctx);
1235 		return 0;
1236 	}
1237 
1238 	return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1239 }
1240 EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1241 
1242 #endif
1243 
1244 /**
1245  * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1246  * @cnt: the atomic which we are to dec
1247  * @lock: the mutex to return holding if we dec to 0
1248  *
1249  * return true and hold lock if we dec to 0, return false otherwise
1250  */
1251 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1252 {
1253 	/* dec if we can't possibly hit 0 */
1254 	if (atomic_add_unless(cnt, -1, 1))
1255 		return 0;
1256 	/* we might hit 0, so take the lock */
1257 	mutex_lock(lock);
1258 	if (!atomic_dec_and_test(cnt)) {
1259 		/* when we actually did the dec, we didn't hit 0 */
1260 		mutex_unlock(lock);
1261 		return 0;
1262 	}
1263 	/* we hit 0, and we hold the lock */
1264 	return 1;
1265 }
1266 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
1267