xref: /openbmc/linux/kernel/locking/mutex.c (revision 9c9c7116)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/locking/mutex.c
4  *
5  * Mutexes: blocking mutual exclusion locks
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *
11  * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
12  * David Howells for suggestions and improvements.
13  *
14  *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
15  *    from the -rt tree, where it was originally implemented for rtmutexes
16  *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
17  *    and Sven Dietrich.
18  *
19  * Also see Documentation/locking/mutex-design.rst.
20  */
21 #include <linux/mutex.h>
22 #include <linux/ww_mutex.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/wake_q.h>
26 #include <linux/sched/debug.h>
27 #include <linux/export.h>
28 #include <linux/spinlock.h>
29 #include <linux/interrupt.h>
30 #include <linux/debug_locks.h>
31 #include <linux/osq_lock.h>
32 
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/lock.h>
35 
36 #ifndef CONFIG_PREEMPT_RT
37 #include "mutex.h"
38 
39 #ifdef CONFIG_DEBUG_MUTEXES
40 # define MUTEX_WARN_ON(cond) DEBUG_LOCKS_WARN_ON(cond)
41 #else
42 # define MUTEX_WARN_ON(cond)
43 #endif
44 
45 void
46 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
47 {
48 	atomic_long_set(&lock->owner, 0);
49 	raw_spin_lock_init(&lock->wait_lock);
50 	INIT_LIST_HEAD(&lock->wait_list);
51 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
52 	osq_lock_init(&lock->osq);
53 #endif
54 
55 	debug_mutex_init(lock, name, key);
56 }
57 EXPORT_SYMBOL(__mutex_init);
58 
59 /*
60  * @owner: contains: 'struct task_struct *' to the current lock owner,
61  * NULL means not owned. Since task_struct pointers are aligned at
62  * at least L1_CACHE_BYTES, we have low bits to store extra state.
63  *
64  * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
65  * Bit1 indicates unlock needs to hand the lock to the top-waiter
66  * Bit2 indicates handoff has been done and we're waiting for pickup.
67  */
68 #define MUTEX_FLAG_WAITERS	0x01
69 #define MUTEX_FLAG_HANDOFF	0x02
70 #define MUTEX_FLAG_PICKUP	0x04
71 
72 #define MUTEX_FLAGS		0x07
73 
74 /*
75  * Internal helper function; C doesn't allow us to hide it :/
76  *
77  * DO NOT USE (outside of mutex code).
78  */
79 static inline struct task_struct *__mutex_owner(struct mutex *lock)
80 {
81 	return (struct task_struct *)(atomic_long_read(&lock->owner) & ~MUTEX_FLAGS);
82 }
83 
84 static inline struct task_struct *__owner_task(unsigned long owner)
85 {
86 	return (struct task_struct *)(owner & ~MUTEX_FLAGS);
87 }
88 
89 bool mutex_is_locked(struct mutex *lock)
90 {
91 	return __mutex_owner(lock) != NULL;
92 }
93 EXPORT_SYMBOL(mutex_is_locked);
94 
95 static inline unsigned long __owner_flags(unsigned long owner)
96 {
97 	return owner & MUTEX_FLAGS;
98 }
99 
100 /*
101  * Returns: __mutex_owner(lock) on failure or NULL on success.
102  */
103 static inline struct task_struct *__mutex_trylock_common(struct mutex *lock, bool handoff)
104 {
105 	unsigned long owner, curr = (unsigned long)current;
106 
107 	owner = atomic_long_read(&lock->owner);
108 	for (;;) { /* must loop, can race against a flag */
109 		unsigned long flags = __owner_flags(owner);
110 		unsigned long task = owner & ~MUTEX_FLAGS;
111 
112 		if (task) {
113 			if (flags & MUTEX_FLAG_PICKUP) {
114 				if (task != curr)
115 					break;
116 				flags &= ~MUTEX_FLAG_PICKUP;
117 			} else if (handoff) {
118 				if (flags & MUTEX_FLAG_HANDOFF)
119 					break;
120 				flags |= MUTEX_FLAG_HANDOFF;
121 			} else {
122 				break;
123 			}
124 		} else {
125 			MUTEX_WARN_ON(flags & (MUTEX_FLAG_HANDOFF | MUTEX_FLAG_PICKUP));
126 			task = curr;
127 		}
128 
129 		if (atomic_long_try_cmpxchg_acquire(&lock->owner, &owner, task | flags)) {
130 			if (task == curr)
131 				return NULL;
132 			break;
133 		}
134 	}
135 
136 	return __owner_task(owner);
137 }
138 
139 /*
140  * Trylock or set HANDOFF
141  */
142 static inline bool __mutex_trylock_or_handoff(struct mutex *lock, bool handoff)
143 {
144 	return !__mutex_trylock_common(lock, handoff);
145 }
146 
147 /*
148  * Actual trylock that will work on any unlocked state.
149  */
150 static inline bool __mutex_trylock(struct mutex *lock)
151 {
152 	return !__mutex_trylock_common(lock, false);
153 }
154 
155 #ifndef CONFIG_DEBUG_LOCK_ALLOC
156 /*
157  * Lockdep annotations are contained to the slow paths for simplicity.
158  * There is nothing that would stop spreading the lockdep annotations outwards
159  * except more code.
160  */
161 
162 /*
163  * Optimistic trylock that only works in the uncontended case. Make sure to
164  * follow with a __mutex_trylock() before failing.
165  */
166 static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
167 {
168 	unsigned long curr = (unsigned long)current;
169 	unsigned long zero = 0UL;
170 
171 	if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr))
172 		return true;
173 
174 	return false;
175 }
176 
177 static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
178 {
179 	unsigned long curr = (unsigned long)current;
180 
181 	return atomic_long_try_cmpxchg_release(&lock->owner, &curr, 0UL);
182 }
183 #endif
184 
185 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
186 {
187 	atomic_long_or(flag, &lock->owner);
188 }
189 
190 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
191 {
192 	atomic_long_andnot(flag, &lock->owner);
193 }
194 
195 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
196 {
197 	return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
198 }
199 
200 /*
201  * Add @waiter to a given location in the lock wait_list and set the
202  * FLAG_WAITERS flag if it's the first waiter.
203  */
204 static void
205 __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter,
206 		   struct list_head *list)
207 {
208 	debug_mutex_add_waiter(lock, waiter, current);
209 
210 	list_add_tail(&waiter->list, list);
211 	if (__mutex_waiter_is_first(lock, waiter))
212 		__mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
213 }
214 
215 static void
216 __mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter)
217 {
218 	list_del(&waiter->list);
219 	if (likely(list_empty(&lock->wait_list)))
220 		__mutex_clear_flag(lock, MUTEX_FLAGS);
221 
222 	debug_mutex_remove_waiter(lock, waiter, current);
223 }
224 
225 /*
226  * Give up ownership to a specific task, when @task = NULL, this is equivalent
227  * to a regular unlock. Sets PICKUP on a handoff, clears HANDOFF, preserves
228  * WAITERS. Provides RELEASE semantics like a regular unlock, the
229  * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
230  */
231 static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
232 {
233 	unsigned long owner = atomic_long_read(&lock->owner);
234 
235 	for (;;) {
236 		unsigned long new;
237 
238 		MUTEX_WARN_ON(__owner_task(owner) != current);
239 		MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP);
240 
241 		new = (owner & MUTEX_FLAG_WAITERS);
242 		new |= (unsigned long)task;
243 		if (task)
244 			new |= MUTEX_FLAG_PICKUP;
245 
246 		if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, new))
247 			break;
248 	}
249 }
250 
251 #ifndef CONFIG_DEBUG_LOCK_ALLOC
252 /*
253  * We split the mutex lock/unlock logic into separate fastpath and
254  * slowpath functions, to reduce the register pressure on the fastpath.
255  * We also put the fastpath first in the kernel image, to make sure the
256  * branch is predicted by the CPU as default-untaken.
257  */
258 static void __sched __mutex_lock_slowpath(struct mutex *lock);
259 
260 /**
261  * mutex_lock - acquire the mutex
262  * @lock: the mutex to be acquired
263  *
264  * Lock the mutex exclusively for this task. If the mutex is not
265  * available right now, it will sleep until it can get it.
266  *
267  * The mutex must later on be released by the same task that
268  * acquired it. Recursive locking is not allowed. The task
269  * may not exit without first unlocking the mutex. Also, kernel
270  * memory where the mutex resides must not be freed with
271  * the mutex still locked. The mutex must first be initialized
272  * (or statically defined) before it can be locked. memset()-ing
273  * the mutex to 0 is not allowed.
274  *
275  * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
276  * checks that will enforce the restrictions and will also do
277  * deadlock debugging)
278  *
279  * This function is similar to (but not equivalent to) down().
280  */
281 void __sched mutex_lock(struct mutex *lock)
282 {
283 	might_sleep();
284 
285 	if (!__mutex_trylock_fast(lock))
286 		__mutex_lock_slowpath(lock);
287 }
288 EXPORT_SYMBOL(mutex_lock);
289 #endif
290 
291 #include "ww_mutex.h"
292 
293 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
294 
295 /*
296  * Trylock variant that returns the owning task on failure.
297  */
298 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
299 {
300 	return __mutex_trylock_common(lock, false);
301 }
302 
303 static inline
304 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
305 			    struct mutex_waiter *waiter)
306 {
307 	struct ww_mutex *ww;
308 
309 	ww = container_of(lock, struct ww_mutex, base);
310 
311 	/*
312 	 * If ww->ctx is set the contents are undefined, only
313 	 * by acquiring wait_lock there is a guarantee that
314 	 * they are not invalid when reading.
315 	 *
316 	 * As such, when deadlock detection needs to be
317 	 * performed the optimistic spinning cannot be done.
318 	 *
319 	 * Check this in every inner iteration because we may
320 	 * be racing against another thread's ww_mutex_lock.
321 	 */
322 	if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
323 		return false;
324 
325 	/*
326 	 * If we aren't on the wait list yet, cancel the spin
327 	 * if there are waiters. We want  to avoid stealing the
328 	 * lock from a waiter with an earlier stamp, since the
329 	 * other thread may already own a lock that we also
330 	 * need.
331 	 */
332 	if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
333 		return false;
334 
335 	/*
336 	 * Similarly, stop spinning if we are no longer the
337 	 * first waiter.
338 	 */
339 	if (waiter && !__mutex_waiter_is_first(lock, waiter))
340 		return false;
341 
342 	return true;
343 }
344 
345 /*
346  * Look out! "owner" is an entirely speculative pointer access and not
347  * reliable.
348  *
349  * "noinline" so that this function shows up on perf profiles.
350  */
351 static noinline
352 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
353 			 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
354 {
355 	bool ret = true;
356 
357 	lockdep_assert_preemption_disabled();
358 
359 	while (__mutex_owner(lock) == owner) {
360 		/*
361 		 * Ensure we emit the owner->on_cpu, dereference _after_
362 		 * checking lock->owner still matches owner. And we already
363 		 * disabled preemption which is equal to the RCU read-side
364 		 * crital section in optimistic spinning code. Thus the
365 		 * task_strcut structure won't go away during the spinning
366 		 * period
367 		 */
368 		barrier();
369 
370 		/*
371 		 * Use vcpu_is_preempted to detect lock holder preemption issue.
372 		 */
373 		if (!owner_on_cpu(owner) || need_resched()) {
374 			ret = false;
375 			break;
376 		}
377 
378 		if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
379 			ret = false;
380 			break;
381 		}
382 
383 		cpu_relax();
384 	}
385 
386 	return ret;
387 }
388 
389 /*
390  * Initial check for entering the mutex spinning loop
391  */
392 static inline int mutex_can_spin_on_owner(struct mutex *lock)
393 {
394 	struct task_struct *owner;
395 	int retval = 1;
396 
397 	lockdep_assert_preemption_disabled();
398 
399 	if (need_resched())
400 		return 0;
401 
402 	/*
403 	 * We already disabled preemption which is equal to the RCU read-side
404 	 * crital section in optimistic spinning code. Thus the task_strcut
405 	 * structure won't go away during the spinning period.
406 	 */
407 	owner = __mutex_owner(lock);
408 	if (owner)
409 		retval = owner_on_cpu(owner);
410 
411 	/*
412 	 * If lock->owner is not set, the mutex has been released. Return true
413 	 * such that we'll trylock in the spin path, which is a faster option
414 	 * than the blocking slow path.
415 	 */
416 	return retval;
417 }
418 
419 /*
420  * Optimistic spinning.
421  *
422  * We try to spin for acquisition when we find that the lock owner
423  * is currently running on a (different) CPU and while we don't
424  * need to reschedule. The rationale is that if the lock owner is
425  * running, it is likely to release the lock soon.
426  *
427  * The mutex spinners are queued up using MCS lock so that only one
428  * spinner can compete for the mutex. However, if mutex spinning isn't
429  * going to happen, there is no point in going through the lock/unlock
430  * overhead.
431  *
432  * Returns true when the lock was taken, otherwise false, indicating
433  * that we need to jump to the slowpath and sleep.
434  *
435  * The waiter flag is set to true if the spinner is a waiter in the wait
436  * queue. The waiter-spinner will spin on the lock directly and concurrently
437  * with the spinner at the head of the OSQ, if present, until the owner is
438  * changed to itself.
439  */
440 static __always_inline bool
441 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
442 		      struct mutex_waiter *waiter)
443 {
444 	if (!waiter) {
445 		/*
446 		 * The purpose of the mutex_can_spin_on_owner() function is
447 		 * to eliminate the overhead of osq_lock() and osq_unlock()
448 		 * in case spinning isn't possible. As a waiter-spinner
449 		 * is not going to take OSQ lock anyway, there is no need
450 		 * to call mutex_can_spin_on_owner().
451 		 */
452 		if (!mutex_can_spin_on_owner(lock))
453 			goto fail;
454 
455 		/*
456 		 * In order to avoid a stampede of mutex spinners trying to
457 		 * acquire the mutex all at once, the spinners need to take a
458 		 * MCS (queued) lock first before spinning on the owner field.
459 		 */
460 		if (!osq_lock(&lock->osq))
461 			goto fail;
462 	}
463 
464 	for (;;) {
465 		struct task_struct *owner;
466 
467 		/* Try to acquire the mutex... */
468 		owner = __mutex_trylock_or_owner(lock);
469 		if (!owner)
470 			break;
471 
472 		/*
473 		 * There's an owner, wait for it to either
474 		 * release the lock or go to sleep.
475 		 */
476 		if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
477 			goto fail_unlock;
478 
479 		/*
480 		 * The cpu_relax() call is a compiler barrier which forces
481 		 * everything in this loop to be re-loaded. We don't need
482 		 * memory barriers as we'll eventually observe the right
483 		 * values at the cost of a few extra spins.
484 		 */
485 		cpu_relax();
486 	}
487 
488 	if (!waiter)
489 		osq_unlock(&lock->osq);
490 
491 	return true;
492 
493 
494 fail_unlock:
495 	if (!waiter)
496 		osq_unlock(&lock->osq);
497 
498 fail:
499 	/*
500 	 * If we fell out of the spin path because of need_resched(),
501 	 * reschedule now, before we try-lock the mutex. This avoids getting
502 	 * scheduled out right after we obtained the mutex.
503 	 */
504 	if (need_resched()) {
505 		/*
506 		 * We _should_ have TASK_RUNNING here, but just in case
507 		 * we do not, make it so, otherwise we might get stuck.
508 		 */
509 		__set_current_state(TASK_RUNNING);
510 		schedule_preempt_disabled();
511 	}
512 
513 	return false;
514 }
515 #else
516 static __always_inline bool
517 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
518 		      struct mutex_waiter *waiter)
519 {
520 	return false;
521 }
522 #endif
523 
524 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
525 
526 /**
527  * mutex_unlock - release the mutex
528  * @lock: the mutex to be released
529  *
530  * Unlock a mutex that has been locked by this task previously.
531  *
532  * This function must not be used in interrupt context. Unlocking
533  * of a not locked mutex is not allowed.
534  *
535  * This function is similar to (but not equivalent to) up().
536  */
537 void __sched mutex_unlock(struct mutex *lock)
538 {
539 #ifndef CONFIG_DEBUG_LOCK_ALLOC
540 	if (__mutex_unlock_fast(lock))
541 		return;
542 #endif
543 	__mutex_unlock_slowpath(lock, _RET_IP_);
544 }
545 EXPORT_SYMBOL(mutex_unlock);
546 
547 /**
548  * ww_mutex_unlock - release the w/w mutex
549  * @lock: the mutex to be released
550  *
551  * Unlock a mutex that has been locked by this task previously with any of the
552  * ww_mutex_lock* functions (with or without an acquire context). It is
553  * forbidden to release the locks after releasing the acquire context.
554  *
555  * This function must not be used in interrupt context. Unlocking
556  * of a unlocked mutex is not allowed.
557  */
558 void __sched ww_mutex_unlock(struct ww_mutex *lock)
559 {
560 	__ww_mutex_unlock(lock);
561 	mutex_unlock(&lock->base);
562 }
563 EXPORT_SYMBOL(ww_mutex_unlock);
564 
565 /*
566  * Lock a mutex (possibly interruptible), slowpath:
567  */
568 static __always_inline int __sched
569 __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclass,
570 		    struct lockdep_map *nest_lock, unsigned long ip,
571 		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
572 {
573 	struct mutex_waiter waiter;
574 	struct ww_mutex *ww;
575 	int ret;
576 
577 	if (!use_ww_ctx)
578 		ww_ctx = NULL;
579 
580 	might_sleep();
581 
582 	MUTEX_WARN_ON(lock->magic != lock);
583 
584 	ww = container_of(lock, struct ww_mutex, base);
585 	if (ww_ctx) {
586 		if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
587 			return -EALREADY;
588 
589 		/*
590 		 * Reset the wounded flag after a kill. No other process can
591 		 * race and wound us here since they can't have a valid owner
592 		 * pointer if we don't have any locks held.
593 		 */
594 		if (ww_ctx->acquired == 0)
595 			ww_ctx->wounded = 0;
596 
597 #ifdef CONFIG_DEBUG_LOCK_ALLOC
598 		nest_lock = &ww_ctx->dep_map;
599 #endif
600 	}
601 
602 	preempt_disable();
603 	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
604 
605 	trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN);
606 	if (__mutex_trylock(lock) ||
607 	    mutex_optimistic_spin(lock, ww_ctx, NULL)) {
608 		/* got the lock, yay! */
609 		lock_acquired(&lock->dep_map, ip);
610 		if (ww_ctx)
611 			ww_mutex_set_context_fastpath(ww, ww_ctx);
612 		trace_contention_end(lock, 0);
613 		preempt_enable();
614 		return 0;
615 	}
616 
617 	raw_spin_lock(&lock->wait_lock);
618 	/*
619 	 * After waiting to acquire the wait_lock, try again.
620 	 */
621 	if (__mutex_trylock(lock)) {
622 		if (ww_ctx)
623 			__ww_mutex_check_waiters(lock, ww_ctx);
624 
625 		goto skip_wait;
626 	}
627 
628 	debug_mutex_lock_common(lock, &waiter);
629 	waiter.task = current;
630 	if (use_ww_ctx)
631 		waiter.ww_ctx = ww_ctx;
632 
633 	lock_contended(&lock->dep_map, ip);
634 
635 	if (!use_ww_ctx) {
636 		/* add waiting tasks to the end of the waitqueue (FIFO): */
637 		__mutex_add_waiter(lock, &waiter, &lock->wait_list);
638 	} else {
639 		/*
640 		 * Add in stamp order, waking up waiters that must kill
641 		 * themselves.
642 		 */
643 		ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx);
644 		if (ret)
645 			goto err_early_kill;
646 	}
647 
648 	set_current_state(state);
649 	trace_contention_begin(lock, LCB_F_MUTEX);
650 	for (;;) {
651 		bool first;
652 
653 		/*
654 		 * Once we hold wait_lock, we're serialized against
655 		 * mutex_unlock() handing the lock off to us, do a trylock
656 		 * before testing the error conditions to make sure we pick up
657 		 * the handoff.
658 		 */
659 		if (__mutex_trylock(lock))
660 			goto acquired;
661 
662 		/*
663 		 * Check for signals and kill conditions while holding
664 		 * wait_lock. This ensures the lock cancellation is ordered
665 		 * against mutex_unlock() and wake-ups do not go missing.
666 		 */
667 		if (signal_pending_state(state, current)) {
668 			ret = -EINTR;
669 			goto err;
670 		}
671 
672 		if (ww_ctx) {
673 			ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx);
674 			if (ret)
675 				goto err;
676 		}
677 
678 		raw_spin_unlock(&lock->wait_lock);
679 		schedule_preempt_disabled();
680 
681 		first = __mutex_waiter_is_first(lock, &waiter);
682 
683 		set_current_state(state);
684 		/*
685 		 * Here we order against unlock; we must either see it change
686 		 * state back to RUNNING and fall through the next schedule(),
687 		 * or we must see its unlock and acquire.
688 		 */
689 		if (__mutex_trylock_or_handoff(lock, first))
690 			break;
691 
692 		if (first) {
693 			trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN);
694 			if (mutex_optimistic_spin(lock, ww_ctx, &waiter))
695 				break;
696 			trace_contention_begin(lock, LCB_F_MUTEX);
697 		}
698 
699 		raw_spin_lock(&lock->wait_lock);
700 	}
701 	raw_spin_lock(&lock->wait_lock);
702 acquired:
703 	__set_current_state(TASK_RUNNING);
704 
705 	if (ww_ctx) {
706 		/*
707 		 * Wound-Wait; we stole the lock (!first_waiter), check the
708 		 * waiters as anyone might want to wound us.
709 		 */
710 		if (!ww_ctx->is_wait_die &&
711 		    !__mutex_waiter_is_first(lock, &waiter))
712 			__ww_mutex_check_waiters(lock, ww_ctx);
713 	}
714 
715 	__mutex_remove_waiter(lock, &waiter);
716 
717 	debug_mutex_free_waiter(&waiter);
718 
719 skip_wait:
720 	/* got the lock - cleanup and rejoice! */
721 	lock_acquired(&lock->dep_map, ip);
722 	trace_contention_end(lock, 0);
723 
724 	if (ww_ctx)
725 		ww_mutex_lock_acquired(ww, ww_ctx);
726 
727 	raw_spin_unlock(&lock->wait_lock);
728 	preempt_enable();
729 	return 0;
730 
731 err:
732 	__set_current_state(TASK_RUNNING);
733 	__mutex_remove_waiter(lock, &waiter);
734 err_early_kill:
735 	trace_contention_end(lock, ret);
736 	raw_spin_unlock(&lock->wait_lock);
737 	debug_mutex_free_waiter(&waiter);
738 	mutex_release(&lock->dep_map, ip);
739 	preempt_enable();
740 	return ret;
741 }
742 
743 static int __sched
744 __mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass,
745 	     struct lockdep_map *nest_lock, unsigned long ip)
746 {
747 	return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
748 }
749 
750 static int __sched
751 __ww_mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass,
752 		unsigned long ip, struct ww_acquire_ctx *ww_ctx)
753 {
754 	return __mutex_lock_common(lock, state, subclass, NULL, ip, ww_ctx, true);
755 }
756 
757 /**
758  * ww_mutex_trylock - tries to acquire the w/w mutex with optional acquire context
759  * @ww: mutex to lock
760  * @ww_ctx: optional w/w acquire context
761  *
762  * Trylocks a mutex with the optional acquire context; no deadlock detection is
763  * possible. Returns 1 if the mutex has been acquired successfully, 0 otherwise.
764  *
765  * Unlike ww_mutex_lock, no deadlock handling is performed. However, if a @ctx is
766  * specified, -EALREADY handling may happen in calls to ww_mutex_trylock.
767  *
768  * A mutex acquired with this function must be released with ww_mutex_unlock.
769  */
770 int ww_mutex_trylock(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
771 {
772 	if (!ww_ctx)
773 		return mutex_trylock(&ww->base);
774 
775 	MUTEX_WARN_ON(ww->base.magic != &ww->base);
776 
777 	/*
778 	 * Reset the wounded flag after a kill. No other process can
779 	 * race and wound us here, since they can't have a valid owner
780 	 * pointer if we don't have any locks held.
781 	 */
782 	if (ww_ctx->acquired == 0)
783 		ww_ctx->wounded = 0;
784 
785 	if (__mutex_trylock(&ww->base)) {
786 		ww_mutex_set_context_fastpath(ww, ww_ctx);
787 		mutex_acquire_nest(&ww->base.dep_map, 0, 1, &ww_ctx->dep_map, _RET_IP_);
788 		return 1;
789 	}
790 
791 	return 0;
792 }
793 EXPORT_SYMBOL(ww_mutex_trylock);
794 
795 #ifdef CONFIG_DEBUG_LOCK_ALLOC
796 void __sched
797 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
798 {
799 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
800 }
801 
802 EXPORT_SYMBOL_GPL(mutex_lock_nested);
803 
804 void __sched
805 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
806 {
807 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
808 }
809 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
810 
811 int __sched
812 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
813 {
814 	return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
815 }
816 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
817 
818 int __sched
819 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
820 {
821 	return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
822 }
823 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
824 
825 void __sched
826 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
827 {
828 	int token;
829 
830 	might_sleep();
831 
832 	token = io_schedule_prepare();
833 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
834 			    subclass, NULL, _RET_IP_, NULL, 0);
835 	io_schedule_finish(token);
836 }
837 EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
838 
839 static inline int
840 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
841 {
842 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
843 	unsigned tmp;
844 
845 	if (ctx->deadlock_inject_countdown-- == 0) {
846 		tmp = ctx->deadlock_inject_interval;
847 		if (tmp > UINT_MAX/4)
848 			tmp = UINT_MAX;
849 		else
850 			tmp = tmp*2 + tmp + tmp/2;
851 
852 		ctx->deadlock_inject_interval = tmp;
853 		ctx->deadlock_inject_countdown = tmp;
854 		ctx->contending_lock = lock;
855 
856 		ww_mutex_unlock(lock);
857 
858 		return -EDEADLK;
859 	}
860 #endif
861 
862 	return 0;
863 }
864 
865 int __sched
866 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
867 {
868 	int ret;
869 
870 	might_sleep();
871 	ret =  __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
872 			       0, _RET_IP_, ctx);
873 	if (!ret && ctx && ctx->acquired > 1)
874 		return ww_mutex_deadlock_injection(lock, ctx);
875 
876 	return ret;
877 }
878 EXPORT_SYMBOL_GPL(ww_mutex_lock);
879 
880 int __sched
881 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
882 {
883 	int ret;
884 
885 	might_sleep();
886 	ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
887 			      0, _RET_IP_, ctx);
888 
889 	if (!ret && ctx && ctx->acquired > 1)
890 		return ww_mutex_deadlock_injection(lock, ctx);
891 
892 	return ret;
893 }
894 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
895 
896 #endif
897 
898 /*
899  * Release the lock, slowpath:
900  */
901 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
902 {
903 	struct task_struct *next = NULL;
904 	DEFINE_WAKE_Q(wake_q);
905 	unsigned long owner;
906 
907 	mutex_release(&lock->dep_map, ip);
908 
909 	/*
910 	 * Release the lock before (potentially) taking the spinlock such that
911 	 * other contenders can get on with things ASAP.
912 	 *
913 	 * Except when HANDOFF, in that case we must not clear the owner field,
914 	 * but instead set it to the top waiter.
915 	 */
916 	owner = atomic_long_read(&lock->owner);
917 	for (;;) {
918 		MUTEX_WARN_ON(__owner_task(owner) != current);
919 		MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP);
920 
921 		if (owner & MUTEX_FLAG_HANDOFF)
922 			break;
923 
924 		if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, __owner_flags(owner))) {
925 			if (owner & MUTEX_FLAG_WAITERS)
926 				break;
927 
928 			return;
929 		}
930 	}
931 
932 	raw_spin_lock(&lock->wait_lock);
933 	debug_mutex_unlock(lock);
934 	if (!list_empty(&lock->wait_list)) {
935 		/* get the first entry from the wait-list: */
936 		struct mutex_waiter *waiter =
937 			list_first_entry(&lock->wait_list,
938 					 struct mutex_waiter, list);
939 
940 		next = waiter->task;
941 
942 		debug_mutex_wake_waiter(lock, waiter);
943 		wake_q_add(&wake_q, next);
944 	}
945 
946 	if (owner & MUTEX_FLAG_HANDOFF)
947 		__mutex_handoff(lock, next);
948 
949 	raw_spin_unlock(&lock->wait_lock);
950 
951 	wake_up_q(&wake_q);
952 }
953 
954 #ifndef CONFIG_DEBUG_LOCK_ALLOC
955 /*
956  * Here come the less common (and hence less performance-critical) APIs:
957  * mutex_lock_interruptible() and mutex_trylock().
958  */
959 static noinline int __sched
960 __mutex_lock_killable_slowpath(struct mutex *lock);
961 
962 static noinline int __sched
963 __mutex_lock_interruptible_slowpath(struct mutex *lock);
964 
965 /**
966  * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals.
967  * @lock: The mutex to be acquired.
968  *
969  * Lock the mutex like mutex_lock().  If a signal is delivered while the
970  * process is sleeping, this function will return without acquiring the
971  * mutex.
972  *
973  * Context: Process context.
974  * Return: 0 if the lock was successfully acquired or %-EINTR if a
975  * signal arrived.
976  */
977 int __sched mutex_lock_interruptible(struct mutex *lock)
978 {
979 	might_sleep();
980 
981 	if (__mutex_trylock_fast(lock))
982 		return 0;
983 
984 	return __mutex_lock_interruptible_slowpath(lock);
985 }
986 
987 EXPORT_SYMBOL(mutex_lock_interruptible);
988 
989 /**
990  * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals.
991  * @lock: The mutex to be acquired.
992  *
993  * Lock the mutex like mutex_lock().  If a signal which will be fatal to
994  * the current process is delivered while the process is sleeping, this
995  * function will return without acquiring the mutex.
996  *
997  * Context: Process context.
998  * Return: 0 if the lock was successfully acquired or %-EINTR if a
999  * fatal signal arrived.
1000  */
1001 int __sched mutex_lock_killable(struct mutex *lock)
1002 {
1003 	might_sleep();
1004 
1005 	if (__mutex_trylock_fast(lock))
1006 		return 0;
1007 
1008 	return __mutex_lock_killable_slowpath(lock);
1009 }
1010 EXPORT_SYMBOL(mutex_lock_killable);
1011 
1012 /**
1013  * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O
1014  * @lock: The mutex to be acquired.
1015  *
1016  * Lock the mutex like mutex_lock().  While the task is waiting for this
1017  * mutex, it will be accounted as being in the IO wait state by the
1018  * scheduler.
1019  *
1020  * Context: Process context.
1021  */
1022 void __sched mutex_lock_io(struct mutex *lock)
1023 {
1024 	int token;
1025 
1026 	token = io_schedule_prepare();
1027 	mutex_lock(lock);
1028 	io_schedule_finish(token);
1029 }
1030 EXPORT_SYMBOL_GPL(mutex_lock_io);
1031 
1032 static noinline void __sched
1033 __mutex_lock_slowpath(struct mutex *lock)
1034 {
1035 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
1036 }
1037 
1038 static noinline int __sched
1039 __mutex_lock_killable_slowpath(struct mutex *lock)
1040 {
1041 	return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
1042 }
1043 
1044 static noinline int __sched
1045 __mutex_lock_interruptible_slowpath(struct mutex *lock)
1046 {
1047 	return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
1048 }
1049 
1050 static noinline int __sched
1051 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1052 {
1053 	return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0,
1054 			       _RET_IP_, ctx);
1055 }
1056 
1057 static noinline int __sched
1058 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1059 					    struct ww_acquire_ctx *ctx)
1060 {
1061 	return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0,
1062 			       _RET_IP_, ctx);
1063 }
1064 
1065 #endif
1066 
1067 /**
1068  * mutex_trylock - try to acquire the mutex, without waiting
1069  * @lock: the mutex to be acquired
1070  *
1071  * Try to acquire the mutex atomically. Returns 1 if the mutex
1072  * has been acquired successfully, and 0 on contention.
1073  *
1074  * NOTE: this function follows the spin_trylock() convention, so
1075  * it is negated from the down_trylock() return values! Be careful
1076  * about this when converting semaphore users to mutexes.
1077  *
1078  * This function must not be used in interrupt context. The
1079  * mutex must be released by the same task that acquired it.
1080  */
1081 int __sched mutex_trylock(struct mutex *lock)
1082 {
1083 	bool locked;
1084 
1085 	MUTEX_WARN_ON(lock->magic != lock);
1086 
1087 	locked = __mutex_trylock(lock);
1088 	if (locked)
1089 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1090 
1091 	return locked;
1092 }
1093 EXPORT_SYMBOL(mutex_trylock);
1094 
1095 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1096 int __sched
1097 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1098 {
1099 	might_sleep();
1100 
1101 	if (__mutex_trylock_fast(&lock->base)) {
1102 		if (ctx)
1103 			ww_mutex_set_context_fastpath(lock, ctx);
1104 		return 0;
1105 	}
1106 
1107 	return __ww_mutex_lock_slowpath(lock, ctx);
1108 }
1109 EXPORT_SYMBOL(ww_mutex_lock);
1110 
1111 int __sched
1112 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1113 {
1114 	might_sleep();
1115 
1116 	if (__mutex_trylock_fast(&lock->base)) {
1117 		if (ctx)
1118 			ww_mutex_set_context_fastpath(lock, ctx);
1119 		return 0;
1120 	}
1121 
1122 	return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1123 }
1124 EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1125 
1126 #endif /* !CONFIG_DEBUG_LOCK_ALLOC */
1127 #endif /* !CONFIG_PREEMPT_RT */
1128 
1129 /**
1130  * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1131  * @cnt: the atomic which we are to dec
1132  * @lock: the mutex to return holding if we dec to 0
1133  *
1134  * return true and hold lock if we dec to 0, return false otherwise
1135  */
1136 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1137 {
1138 	/* dec if we can't possibly hit 0 */
1139 	if (atomic_add_unless(cnt, -1, 1))
1140 		return 0;
1141 	/* we might hit 0, so take the lock */
1142 	mutex_lock(lock);
1143 	if (!atomic_dec_and_test(cnt)) {
1144 		/* when we actually did the dec, we didn't hit 0 */
1145 		mutex_unlock(lock);
1146 		return 0;
1147 	}
1148 	/* we hit 0, and we hold the lock */
1149 	return 1;
1150 }
1151 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
1152